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Preface 

The present e-book contains the full-length papers from the 11th World Congress on 
Structural and Multidisciplinary Optimisation (WCSMO-11) held in Sydney, Australia on 7-12 
June 2015, where the authors represented 35 different countries, from the Asian-Pacific, 
American, African and European regions. The conference is organized by The University of 
Sydney under the International Society for Structural and Multidisciplinary Optimization 
(ISSMO).  

In WCSMO-11, 343 papers (167 in full-length) were presented in either verbal (317) or 
poster (26) form. All the abstracts submitted to WCSMO-11 were reviewed under a rigorous 
process by the International Papers Committee (IPC), who met in Sydney on 1-3 Feb 2015. All 
the full length papers published in this e-book were reviewed by the members from the local 
organizing committee, international scientific committee and expert invitees. As the editors 
of the e-book, we wish to acknowledge the authors who contributed the papers to WCSMO-
11 and those who kindly participated in review of the papers within time constraint. 

Scientifically, these collected full-length papers in this e-book well reflected the latest 
progress in some traditional and emerging areas of structural and multidisciplinary 
optimization, ranging from mathematical foundations to algorithmic development as well as 
advanced applications in multiscale, uncertainty, nonlinearity, additive manufacturing, 
multidisciplinary and multiphysics in metamaterials, phononics, photonics, plasmonics, 
piezoelectricity, electromagnetics, thermofluids, renewable energy, and acoustics for 
aerospace, automotive, biomedical, mechanical, civil and structural engineering.  

This e-book is dedicated to the memory of ISSMO Founding President George Rozvany 
who passed away on July 31, 2015. George was a Professor of Structural Mechanics at 
Budapest University of Technology and Economics in Budapest, Hungary, the recipient of 
numerous honors and awards, a number of books and hundreds of technical publications and 
had an international reputation for his research activities. We will deeply miss George and 
the community has indeed suffered a deep loss.  

We are also grateful to all of the contributors who made the organization of WCSMO-11 
and publication of the e-book possible. Special thanks are also given to Bryant (Che-Cheng) 
Chang, Junning (John) Chen, Ali Entezari, Jianguang Fang, Salvatore Samuel Grasso, Zhipeng 
(Floyd) Liao, Andrian Sue, Guangyong Sun, Sriram Tammareddi, Scott Townsend, Phillip Tran, 
Paul Wong, Nobuhiro Yoda, Dequan (Darren) Zhang, Keke (Marco) Zheng for their 
tremendous secretarial and editing work.  
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1. Abstract
A kind of profile modification cubic curve of the involute spur gear is proposed in this paper using the geometric 
theory and the Curve fitting method. The derivation process of the key point coordinates and the curve equation is 
described in detail, the proposed modification curve tangents to both the involutes and the addendum circle. Using 
the modification curve to correct the flank shape of the driving and driven gears, the smooth transition between the 
cubic curve and involute can be ensured, as well as between the cubic curve and the addendum circle. Besides, the
contact stress reduces obviously after modification using this method which can be verified with Hertz contact 
theory, finally, an example is adopted to illustrate how to implement this modification method. The goal of this 
article is to put forward a scheme for the optimization design and improvement of gears so as to improve the gears’
working condition and prolong their service life. 
2. Keywords: spur gears; profile modification; cubic curve; smooth transition 

3. Introduction 
It is common to see that the meshing impact, load mutation, speed fluctuation and other vibration with 

different formation because of the teeth deformation, manufacturing and installation errors and so on when the 
spur gear works[1, 2], consequently, modification was carried out on the gears in order to improve all sorts of 
undesirable phenomenon foregoing. 

Tooth profile modification, refers to modifying the involute appropriately near the tip or root of the meshing 
teeth, which aims at compensating the machining error and elastic deformation of the teeth, and reducing the load 
impact during the gears enter and exit the mesh[3-5]. The pressure angle of the addendum of gear after 
modification is larger than unmodified; this means that the meshing angle of the start meshing point increases, that 
is the comprehensive radius of curvature of the start meshing point increases. 

Height of modification, amount of modification and curve of modification are regarded as the three elements 
of gear modification. Amount of modification varies gradually from the maximum to zero, and its change rule is
defined as the curve of modification, there are two types of modification curves: straight and curved[6], while 
neither straight line nor curve modification can guarantee that the modification curve not only tangent to the 
invonlute but also tangent to the addendum circle, in this case, when the gears enter the mesh, the addendum of 
driven gear contact with the root of driving gear tooth in terms of obtuse angle or chamfer, then sliding on the 
surface of the driving gear tooth, when the gears exit the mesh, the addendum of driving gear contact with the root 
of driven gear tooth in terms of obtuse angle or chamfer, then sliding on the surface of the driven gear tooth, In 
those cases mentioned above, the contact stress and contact deformation of gear teeth are very large, the 
transmission stability of gear is poor, so, the curve of modification proposed in this aims at improving all kinds of 
disadvantages stated above. 

4.8. Tables and Figures 
Tables and figures should be consecutively numbered. Place table caption above the table and figure caption below 
the figure. Table and figure captions should be centred. Allow one line space between the table and its caption and 
between the figure and its caption. Allow one line of space between the table or figure and the adjacent text. 

4.The method of calculating the modification curve 
The following part of this paper will detail the method of calculating the modification curve In figure1, line 
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segment AE  is the maximum amount of modification: maxAE involute section AB is the length of the 
modification: AB L the gear tooth and the addendum circle intersect at point A . maxh is the height of 

modification ( )mm

O X

Y

maxh

max

B

D

A
E

C

Fig.1.The three elements of gear modification 
The modification curve put forward in this paper and addendum circle intersect at point E, and involute tooth 

surfaces intersect at point B , the modification curve tangent to the involute as well as the addendum circle at the 
both two points. 

The specific steps of the modification curve are as follows: 
4.1. Solution of point A  coordinate 

The parameters equation of the involute can be expressed as : 
(cos sin )
(sin cos )

b

b

x r
y r

                                                             1

where br  is the radius of base circle mm The  radius of addendum circle can be expressed as
( 2)

2a
m zr                                                                    2

where m is module mm z is the number of teeth while the equation of addendum circle is
2 2 2

ax y r                                                                3
from the involute equation and the equation of addendum circle we can get that

2 2 2(1 )b ar r                                                                 4
consequently, 

2( ) 1a
A

b

r
r

                                                                   5                              

the coordinate of point A is [ (cos sin )b A A Ar , (sin cos )b A A Ar ].
4.2. Solution of point B  coordinate and the slope of involute 

The length of arc BD is (from figure1we know that max

cosAB
h

L )

2 2
2 2 max

0
( ) ( )

2 cos
A a b

BD DA BA BA
b

r r hdx dyL L L d L
d d r

                               6

while the length of arc BD is

2 2 2

0
( ) ( )

2
B b

BD B
rdx dyL d

d d
                                                    7

from equation 6 and 7 the B  can be obtained. The coordinate of point B  is 
[ (cos sin )b B B Br , (sin cos )b B B Br ], that is , ( , )B Bx y , the slope of involute of point B is

tanB B
dyk
dx

8

4.3. Solution of point E  coordinate and the slope of addendum 
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m

h

2
m

Fig.2.Gear parameter schematic diagram 
As presented in figure2, the tooth surface of the addendum circle can be seen  as a plane approximately then AC 
is straight line, AC perpendicular to OC and C  is the pedal ,we can easily get

tan ( tan )
4 4
Ph m m                                                              9

20 is pressure angle. In figure2, assuming AOC ,then sin
a

AC h
OA r

,

( tan )
4arcsin arcsin

a a

mh
r r

                                                          10

the slope of line segments OC  is tan( )OC Ak , and the slope of AC is
1 1

tan( )AC E
OC A

k k
k

                                                             11

assuming the coordinate of point E  is ,( )E Ex y ,then E A
AC E

E A

y yk k
x x

, meanwhile, maxEA ,that is 

2 2
max( ) ( )E A E Ax x y y , from above all we can get: 2 2 2 2

max( ) ( )E A E E Ax x k y y ,that is 
2 2 2

max(1 )( )E E Ak x x , we can get fatherly

max

2

max

2

1

1

E A

E

AC
E A

E

x x
k

k
y y

k

                                                                       12

4.4. Comprehensive above solution ,using the polynomial interpolation method, The cubic curve can be calculated 
that meet through points A and B ,as well as tangent to the no modification curve at the both points is as follows: 

3 2 , [ , ]B Ey ax bx cx d x x x                                                            13
various parameters are calculated as follows (the coordinate system of xOy is the coordinate system of involute): 

13 2

3 2

2

2

1
1

3 2 1 0
3 2 1 0

BB B B

EE E E

BB B

EE E

ya x x x
yb x x x

c kx x
d kx x

                                                          14

Where Bx By Ex Ey Bk Ek are solved according to the steps mentioned above. 
5.Theoretical bases 
In this part of the paper, the gear contact stress decreases after modification is certified with Hertz contact theory 
[7]. 
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Fig.3.The modification curve diagram 
In figure 3, the solid line represents the involute gear tooth profile, the dashed lines represent the tooth profile after 
modification using the proposed curve put forward in this paper. Based on Hertz contact theory, gear contact is 
approximately to regard as two cylindrical surfaces contact which have the parallel axis showed in figure 3,the 
driving tooth profile represented by the solid line contact with the driven gear surface in terms of obtuse angle ,the 
obtuse angle can be regarded as a circular arc  which radius is small enough its radius is 1R ,the radius of the 
driven gear is R , according to the Hertz contact theory: 

2 2
1 2 1

1
1 2 1

1
1max 2 2

11 2

1 2

2 21
1 2 2

11 2

1 2

1 14 ( )

1
1 1

1 , ( )
1 1

R RFb
L E E R R

R RF
L R R

E E

R RF b x b x b
L R R

E E

15

where 1b  is half of the contact width 1max is the maximum contact stress, 1 is contact stress distribution along 
the direction of contact surface width. Similarly, the addendum of driving tooth after modification represent by 
dashed lines contact with the surface of driven gear in terms of circle arc with the radius of 2R ,the parameters are 
calculated as follows: 

2 2
1 2 2

2
1 2 2

2
2max 2 2

1 2 2

1 2

2 22
2 2 2

1 2 2

1 2

1 14 ( )

1
1 1

1 ( )
1 1

R RFb
L E E R R

R RF
L R R

E E

R RF b x b x b
L R R

E E

16

where 2b is half of the contact width, 2max is the maximum contact stress, 2 is contact stress distribution along the 
direction of contact surface width. F  is the normal contact force N L  is the length of contact line, it is gear 
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width here mm 1 2  are the poison’s ratio of active and passive gear materials respectively, 1E , 2E  are the 
elasticity modulus of active and passive gear materials respectively aMP ,Due to the tooth surface tangent to the 
addendum circle after modification thus 1 2R R consequently 1 2b b 1max 2max 1 2 , so the 
driving gear teeth after modification according to this cubic curve have larger contact area and less contact stress 
during engaging-in, while the driven gear teeth after modification according to this cubic curve has larger contact 
area and less contact stress during engaging-out. 
Example 
To describe the steps of calculating this modification curve more clearly the following part is a specified 
example using the method A spur gear has the main parameters as shown in table 1.

Table 1 Gear parameters

Number of teeth 43
Module/mm 3

Pressure angle/deg 20
Face width/mm 82

The addendum coefficient 1
Gear tip clearance coefficient 0.25

The maximum amount of modification/mm 0.05
The modification height/mm 1.5

According to the mentioned method, the coordinate of points A B  and E  are (67.4553,2.32) (65.28,1.31)
and (67.4,2.32)  respectively. The involute slope of point B  is tan 0.4228B Bk .the addendum slope of 
point E  is 1.8Ek

According to 3 2 , [ , ]B Ey ax bx cx d x x x

13 2

3 2

2

2

1
1

3 2 1 0
3 2 1 0

BB B B

EE E E

BB B

EE E

ya x x x
yb x x x

c kx x
d kx x

The coordinates of points B  and E  as well as the slope of the modification of these two points are substitute into 
the equation. The coefficients of cubic curve can be solved and the cubic curve of modification we obtain is

3 20.518367 102.6712 6773.383 148968.649y x x x [65.28,67.4]x
6.Conclusions 

A modification curve of cubic curve is put forward in this paper, compared with the existing modification 
curve the smooth transition between modification curve and involute has improved the stability of the 
transmission and reduce the vibration and noise this is helpful for the improvement of the gear working conditions 
and increasing the service life. The smooth transition between modification curve and addendum has made the 
driven driving gear addendum contact the driving driven gear surface with circle arc instead of sharp corner
during engaging-in engaging-out, in this case according to Hertz contact theory, the driving and driven gear can 
be approximately regarded as the two cylinder with parallel axis, this increases the instantaneous contact area of 
the gear tooth surface and decreases the contact stress of the gear teeth during both engaging-in and engaging-out,
consequently thus the instantaneous impact is reduced between teeth, besides, the cubic curve of modification is 
simple and suitable for parametric design and programming of numerical control machining.
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1. Abstract
A level set method is developed for the representation of multiple types of boundaries, and it is applied in two

structural shape and topology optimization problems. The first problem is the optimization of both structure and

support, where both the homogeneous Neumann boundary and the Dirichlet boundary are optimized. The second

problem is the optimization of structures subjected to pressure load, where both the non-homogeneous and homo-

geneous Neumann boundaries are optimized. In order to address the issue that how to represent different types of

boundaries of a structure, a new scheme of representation is proposed. Two independent level set functions are

used for the representation. The two types of boundaries are represented separately and are allowed to be continu-

ously propagated during the optimization. The optimization problem of minimum compliance is considered.

2. Keywords: topology optimization, level set method, support, pressure load.

3. Introduction
A structure has several types of boundaries, for instance the Dirichlet boundary, the Neumann boundary, and the

free boundary. Optimization of any one of them will be helpful to improve the performance of a structure, and there

are engineering applications that require to simultaneously optimize two or more boundaries of a structure. For

instance, in the optimization of structure with pressure load, both the free boundary and the Neumann boundary

are required to be simultaneously optimized [1–11]. Also, it would be better if both the free boundary and the

Dirichlet boundary (support) are simultaneously optimized [12–18].

In conventional level set method of structural shape and topology optimization [10, 19–22], usually only the

traction free boundary of a structure is represented through a single level set function and is optimized, but the

Dirichlet boundary and the Neumann boundary are specified before and fixed during the optimization. If mul-

tiple types of structure boundaries are to be simultaneously optimized, it seems that a natural extension of the

conventional level set method is to use the zero level set of a single level set function to represent the multiple

types of boundaries, and then impose different labels on the points of these boundaries, and track these points

during the optimization. However, it is well known that such a tracking method is not able to deal with topological

changes [10, 19–22]. Therefore, the conventional representation of a structure through a single level set function

is not adequate for the simultaneous optimization of multiple types of boundaries.

Such a situation leads to a fundamental issue of the present study, i.e., how to represent multiple types of

boundaries of a structure. In order to address this issue, a new scheme of representation through two level set

functions is proposed, and it is applied in two structural shape and topology optimization problems.

4. Representation of structure and multiple types of boundaries
The scheme of representation is shown in Fig. 1. Two independent level set functions, denoted by Φ and Ψ, are

used to represent a structure. The inside and outside regions with respect to the structure boundary are given by

Ω = {x |Φ(x)< 0 and Ψ(x)< 0, x ∈ D} (1)

D\Ω = {x |Φ(x)> 0 or Ψ(x)> 0, x ∈ D} (2)

where D is the reference domain. In other words, a structure is represented by the set of points where both of the

two level set functions are negative. The level set function Φ or Ψ is constructed to be a signed distance function

to a closed curve in 2D or a closed surface in 3D, and a rectilinear grid is used in the numerical implementation.

With such a representation, the structure defined in Eq. (1) can be obtained through a boolean operation of the two

level set functions

Ω = {x |max{Φ(x),Ψ(x)}< 0, x ∈ D} (3)

1
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In addition, many geometric properties including the unit outward normal n and the curvature κ can be readily

expressed [23].

The free boundary to be optimized is represented by a portion of the zero-level set of Φ, i.e.,

ΓΦ
H = {x |Φ(x) = 0,Ψ(x)< 0, x ∈ D} (4)

In the shape and topology optimization of both structure and support, the Dirichlet boundary to be optimized is

represented by a portion of the zero-level set of Ψ, i.e.,

ΓD = {x |Ψ(x) = 0, Φ(x)< 0, x ∈ D} (5)

Similarly, in the shape and topology optimization of structures subjected to pressure load, the Neumann boundary

ΓN to be optimized is represented by a portion of the zero-level set of Ψ, i.e.,

ΓN = {x |Ψ(x) = 0, Φ(x)< 0, x ∈ D} (6)

0   and  0 <Ψ<Φ 0   and  0 <Ψ>Φ

0   and  0 <Ψ>Φ

Ω

0   and  0 >Ψ<Φ

0   and  0 >Ψ<Φ

 0=Φ  0=Ψ

0   and  0 >Ψ>Φ

(a) representation of shape

t

Ω

2

Γ
1

Γ
(b) representation of boundary

Figure 1: The scheme for the representation of shape and boundary.

During the optimization, the two types of boundaries are independently and continuously propagated. Propa-

gation of the two boundaries is modeled separately by two independent Hamilton–Jacobi equations [10, 19–22]

Φt +FΦ ·∇Φ = bΦκ |∇Φ| (7)

Ψt +FΨ ·∇Ψ = bΨκ |∇Ψ| (8)

where the velocity termsFΦ, bΦ, FΨ, bΨ are given by the shape derivatives of the optimization problem.

The concept of using multiple level set functions in the structural shape and topology optimization had been

introduced in the design of structures that have several different materials [24, 25]. The idea is to use n level

set functions to represent up to 2n different materials. In the present study, two level set functions are not used

to represent multiple regions of different materials, but they are used to represent two different types of boundaries.

5. Shape and topology optimization of both structure and support
The effects of the support on a structure’s performance have been considered in optimization for a long time. In

the early pioneering research work [26–30], the optimal position and stiffness of supports of discrete structures

were considered. Recently, the optimization of support was extended for continuum structures. In these studies,

the methods of optimization are divided into two categories. The first category is based on a field of background

springs that represent potential supports [12–14]. A continuous design variable is given to each spring. When

the value of a spring variable reaches the lower bound, the point where the spring is attached to the structure is

considered as free. On the other hand, when the value of a spring variable reaches the upper bound, the attachment

point is considered as fixed. Intermediate values of spring variables are penalized. The second category is based

on continuous variation of support point or support boundary [15–18], which is similar to the shape optimization.

The optimization problem considered in the present study is the regularized minimum compliance problem

inf
Ω∈Uad

J(Ω)+ �P(Ω) (9)

2
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where J is the compliance; � > 0 is a fixed weighting parameter; P(Ω) is the perimeter of a structure. The set of

admissible shapes is defined as Uad = {Ω ⊂ D , V (Ω)≤V , C(ΓD)≤C} where V (Ω)≤V is a volume constraint;

C(ΓD)≤C is a cost constraint of support given as

C(ΓD) =
∫

ΓD

c(x)ds ≤C (10)

where ΓD is the Dirichlet boundary; c(x) is a fixed scalar field that describes the cost of support at point x. The

function c(x) means that the cost of support depends on the position.

In the optimization, both the free boundary ΓH and the Dirichlet boundary ΓD are optimized. The results of

shape derivative analysis are given by

L ′(Ω)(θ) =
∫

ΓH

GΓH θ ·nds+
∫

ΓD

GΓD θ ·nds (11)

where L is the Lagrangian; GΓH and GΓD are given by

GΓH =−Ae(u) · e(u)+ �κ + �1 (12)

GΓD = Ae(u) · e(u)+ �κ + �1 + �2

(
∂c
∂n

+κc
)

(13)

where f is the body force; u is the displacement; A is the elasticity tensor; e(u) is the strain tensor; �1 and �2

are respectively the Lagrange multipliers for the volume constraint and the cost constraint of support; κ is the

curvature of boundary.

The shape derivatives lead to the the velocity terms in Eq. (7) and (8) as

FΦ = (Ae(u) · e(u)− �1)n, bΦ = � (14)

FΨ =

(
−Ae(u) · e(u)− �1 − �2

∂c
∂n

)
n, bΨ = �+ �2c (15)

More details about the optimization problem and the shape derivative analysis are referred to [31].

6. Shape and topology optimization of structures subjected to pressure load
The problem of shape and topology optimization of structures subjected to pressure load is in most cases solved

by using the SIMP method [32, 33]. Nevertheless, difficulties exist in the SIMP based solution, since one needs

to find the pressure boundary from a smooth scalar field that represents the distribution of material in a reference

domain. If the scalar field varies smoothly from 0 to 1 (unfortunately, this is true particularly in the early stage of

optimization), the boundary of a structure and the pressure load is ambiguously defined. Several methods were pro-

posed and integrated in the SIMP method to find the pressure boundary [1–5]. On the other hand, several creative

approaches were proposed to mimic the effects of a pressure load by artificially incorporating another physical

field into the optimization problem [6–9], hence circumventing the issue of pressure boundary. Nevertheless, the

downside of these approaches is that some new numerical issues may arise [7, 8] and the optimization is more

complex. The level set method was also used to solve the optimization with pressure load, for example the study

by Allaire et al. [10] and by Guo et al. [11]. In these studies, the pressure boundary together with the free boundary

are represented by the zero level set of a single level set function, then the pressure boundary is picked out from

the zero level set by checking whether the normal vector is along a specified direction [10, 11]. Nevertheless, when

the pressure load comes from several different directions, it will be much more complicated for these approaches

to deal with the pressure boundary.

The optimization problem is also the regularized minimum compliance problem as given by Eq. (9), except

that here is no constraint on the cost of Dirichlet boundary in the set of admissible shapes Uad, i.e., Uad = {Ω ⊂
D , V (Ω)≤V}.

In the optimization, both the free boundary ΓH and the Neumann boundary ΓN are optimized. The results of

shape derivative analysis are give by

L ′ =
∫

ΓH

GΓH θ ·nds+
∫

ΓN

GΓN θ ·nds (16)

where L is the Lagrangian; GΓH and GΓN are given by

GΓH =−Ae(u) · e(u)+ �κ + �1 (17)

GΓN =−2div(p0u)−Ae(u) · e(u)+ �+ �1 (18)

3
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where p0 is the constant magnitude of a pressure load, and in the present study, the magnitude of pressure load is

assumed to be a constant, i.e., p =−p0n; �1 is the Lagrange multiplier for the volume constraint.

The shape derivatives lead to tentative velocity terms in Eq. (7) and (8) as

FΦ =
(
Ae(u) · e(u)− �1

)
n, bΨ = � (19)

FΨ =
(
2div(p0u)+Ae(u) · e(u)− �1

)
n, bΦ = � (20)

For most of the engineering applications considered in the literature, the pressure boundary ΓN should not touch

or cross the traction free boundary ΓH . However, according to our experience of the present study, if the velocity

terms are chosen according to Eqs. (19–20), the two boundaries may indeed touch or cross each other when the

initial design is not so good or the size of descent steps of optimization is big. In order to address this issue, we

modify the velocity vector FΨ on boundary ΓN and modify FΦ on boundary ΓH , then we extend the modified

velocities from the two boundaries to the entire reference domain by using a PDE based method [34]. More details

about the shape derivative analysis and modification of velocity terms are referred to [35].

7. Numerical examples
7.1 Example 1: optimization of structure and support
The design problem is shown in Fig. 2(a). The shaded rectangular region at the middle is the admissible domain

for the design of support. We do the finite element analysis by modifying a fixed background triangle mesh and do

not use the artificial weak material, as proposed in our previous study [36]. The upper bound of volume is 0.35 m3,

and the upper bound of the cost of support is 0.3. The initial design is shown in Fig. 2(b).

The optimal structure is shown in Fig. 2(c). The objective function of the optimal structure is 10.93; compliance

is 10.74; the volume is 0.35; the cost of support of the optimal design is 0.29. It can be seen that the optimal support

does not coincide with the two dash lines. In addition, it is interesting to see that in the design shown in Fig. 2(c)

the three loads are connected and that the two loads at the bottom are effectively used to counteract the upper load,

thus minimizing the compliance due to these loads. From this example, we see that for a structure that is subject

to multiple loads, load path can be tailored by the support such that the loads are self-equilibrated. In such cases,

the design of support is important.

c(x)=1

1.2

1N 1N

1N

0
.
4

(0.4, 0.0) (0.8, 0.0)

(0.6, 1.0)

0
.
4

0
.
2

(a) design problem (b) initial design (c) optimal structure

Figure 2: Design problem, initial design, and optimal structure.

7.2 Example 2: optimization of structure subject to pressure load
The optimal design problem of the third example is shown in Fig. 3(a). The pressure load is applied from the top

of the structure. The reference domain is a rectangle of size 3 m× 1 m. The upper bound of volume is 0.9 m3.

An Eulerian method employing a fixed mesh and ersatz material [10] is used for the finite element analysis. The

pressure load is converted to a volume force as proposed in [10]. Only the left half is analyzed in this example.

The initial design is shown in Fig. 3(b). The optimal structure is shown in Fig. 3(c).

8. Conclusions
A new scheme of representation is proposed to represent multiple types of boundaries of a structure. Two indepen-

dent level set functions are used for the representation. The two types of boundaries are represented separately and

are allowed to be continuously propagated during the optimization. The optimization problem of minimum com-

pliance is considered. The numerical examples demonstrated that the proposed method is effective. In the future,
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1

3

(a) design problem

(b) initial design (c) optimal design

Figure 3: Design problem, initial design, and optimal design.

the proposed method will be applied to many optimization problems that involve with multiple type of boundaries.

9. References

[1] V. B. Hammer, N. Olhoff, Topology optimization of continuum structures subjected to pressure loading, Struct.

Multidiscip. Optim. 19 (2000) 85–92.

[2] J. Du, N. Olhoff, Topological optimization of continuum structures with design-dependent surface loading -

part I: new computational approach for 2D problems, Struct. Multidiscip. Optim. 27 (2004) 151–165.

[3] J. Du, N. Olhoff, Topological optimization of continuum structures with design-dependent surface loading -

part II: algorithm and examples for 3D problems, Struct. Multidiscip. Optim. 27 (2004) 166–177.

[4] H. Zhang, X. Zhang, S. T. Liu, A new boundary search scheme for topology optimization of continuum

structures with design-dependent loads, Struct. Multidiscip. Optim. 37 (2008) 121–129.

[5] E. Lee, J. R. Martins, Structural topology optimization with design-dependent pressure loads, Comput. Meth-

ods Appl. Mech. Eng. 233–236 (2012) 40–48.

[6] B. Chen, N. Kikuchi, Topology optimization with design-dependent loads, Finite Elem. Anal. Des. 37 (2001)

57–70.

[7] O. Sigmund, P. M. Clausen, Topology optimization using a mixed formulation: an alternative way to solve

pressure load problems, Comput. Methods Appl. Mech. Eng. 196 (2007) 1874–1889.

[8] M. Bruggi, C. Cinquini, An alternative truly-mixed formulation to solve pressure load problems in topology

optimization, Comput. Methods Appl. Mech. Eng. 198 (2009) 1500–1512.

[9] B. Zheng, C. Chang, H. G. Gea, Topology optimization with design-dependent pressure loading, Struct. Mul-

tidiscip. Optim. 38 (2009) 535–543.

[10] G. Allaire, F. Jouve, A. M. Toader, Structural optimization using sensitivity analysis and a level-set method,

J. Comput. Phys. 194 (2004) 363–393.

[11] X. Guo, K. Zhao, Y. X. Gu, Topology optimization with design-dependent loads by level set approach, in:

10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Albany, New York, 2004.

5

11

Leo
Rectangle



[12] T. Buhl, Simultaneous topology optimization of structure and supports, Struct. Multidiscip. Optim. 23 (2002)

336–346.

[13] J. H. Zhu, W. H. Zhang, Maximization of structural natural frequency with optimal support layout, Struct.

Multidiscip. Optim. 31 (2006) 462–469.

[14] G. Jang, H. Shim, Y. Kim, Optimization of support locations of beam and plate structures under self-weight

by using a sprung structure model, J. Mech. Des. 131 (2009) 021005–021005–11.

[15] J. H. Son, B. M. Kwak, Optimization of boundary conditions for maximum fundamental frequency of vibrat-

ing structures, AIAA J. 31 (1993) 2351–2357.

[16] S. Cox, P. Uhlig, Where best to hold a drum fast, SIAM J. Optim. 9 (1999) 948–964.

[17] D. Wang, J. S. Jiang, W. H. Zhang, Optimization of support positions to maximize the fundamental frequency

of structures, Int. J. Numer. Meth. Eng. 61 (2004) 1584–1602.

[18] J. H. Zhu, W. H. Zhang, Integrated layout design of supports and structures, Comput. Methods Appl. Mech.

Eng. 199 (2010) 557–569.

[19] J. A. Sethian, A. Wiegmann, Structural boundary design via level set and immersed interface methods, J.

Comput. Phys. 163 (2000) 489–528.

[20] S. Osher, F. Santosa, Level-set methods for optimization problems involving geometry and constraints: Fre-

quencies of a two-density inhomogeneous drum, J. Comput. Phys. 171 (2001) 272–288.

[21] G. Allaire, F. Jouve, A. M. Toader, A level-set method for shape optimization, C. R. Acad. Sci. Paris, Serie

I, 334 (2002) 1–6.

[22] M. Y. Wang, X. M. Wang, D. M. Guo, A level set method for structural topology optimization, Comput.

Methods Appl. Mech. Eng. 192 (2003) 227–246.

[23] S. Osher, R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Springer-Verlag, New York, 2002.

[24] M. Y. Wang, X. M. Wang, ”Color” level sets: A multi-phase method for structural topology optimization with

multiple materials, Comput. Methods Appl. Mech. Eng. 193 (2004) 469-496.

[25] [2] M. Y. Wang, X. M. Wang, A level-set based variational method for design and optimization of heteroge-

neous objects, Computer-Aided Design 37 (2005) 321-337.

[26] W. Prager, G. I. N. Rozvany, Plastic design of beams: optimal locations of supports and steps in yield moment,

Int. J. Mech. Sci. 17 (1975) 627–631.
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1. Abstract
In many practical engineering designs, the forms of objective functions are not easily available in terms of the
design variables. So as to obtain relatively accurate optimal solutions, a lot of computing iterations must be taken
into account, which results in huge computational consumption. A parallel optimization method based on Kriging
model is proposed in this paper: by developing entropy-based expected improvement algorithm on the Kriging
model, this approach progressively provides a designer a rich and evenly distributed set of Pareto optimal points;
meanwhile the implementation of the method proposed on a super-server is discussed, with speedup and efficiency
described by statistical data. Two mathematical optimization problems and two engineering optimization problems
are presented as testing cases, with the results showing that the proposed method can be effectively used for engi-
neering optimization designs. The method developed in this paper could help the designers to search and compare
near optimal design alternatives intelligently in the early design stages by utilizing high performance computing
resources.
2. Keywords: expected improvement, engineering optimization, Kriging model

3. Introduction
Optimization refers to finding the values of decision variables, which correspond to and provide the maximum or
minimum of one or more desired objectives. Problems may arise in engineering optimization at present: 1) The
physical and mathematical models for multidiscipline field are complicated to be optimized directly, so that some
general analysis programs, such as Ansys, Abaqus, Fluent, Moldflow, etc, have been used as black-box programs,
how to develop the efficient optimization methods based on these black-box programs; 2)High performance com-
puting that began to appear in the late 1970s and continue to undergo rapid development, how to solve a complex
optimization problem by using advanced computing infrastructure efficiently [1-3]. Physical and mathematical
models are hard to describe explicitly under normal engineering optimization situations, which makes “black-
box optimization” a very effective way in solving these problems. This “only-use-function-values” optimization
method is hailed as “the most useful algorithm” [4].
In this paper, a parallel optimization method based on Kriging model is developed. By weighted coefficient method
of multi-objective optimization, an evenly and rich distributed set of Pareto solutions can be provided, in which a
Pareto point obtained by optimizing weighted coefficient–with entropy-based expected improvement (EEI) algo-
rithm. To make the method well performed within parallel computing environment, the parallel strategy is given.
Test cases are developed, with numerical data showing that the proposed method not only effectively gives more
precise optimal solutions through EEI algorithm but accelerates the whole optimization process using parallel s-
trategy at the same time.

4. Related Work
4.1. “Black-box Optimization”
A typical “black-box optimization” process performed in this article is be defined as: 1) Use sampling method
(Latin hypercube sampling (LHS) [5], for example) to get a set of fairly well-distributed samples which are con-
sistent with the limits of the design variables; 2) Compute the responses of all the samples using a black-box
analysis program; 3) Try to set up a proximate model between the design variables and the responses so as to ana-
lyze the system features; 4) Calculate the optimal solution of the objective function under the approximation model
established before with an appropriate sampling guidance function such as EI method; 5) Convergence analysis: if
the optimal solution has met the given accuracy then stop; Otherwise, put the optimal solution into the sampling
set as a new sample and go to step 2) [6].
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4.2. Kriging Model
Samples mentioned above can be used as input data for “black-box optimization” and their responses would be
acquired after necessary calculations performed by black-box analysis software. With samples X = [X1,X2, . . . ,Xn]
and their responses y, Kriging model can be established as [7,8]:

ŷ(X) = f T(X)β + z(X) (1)

coefficient β is the regression ratio. Deterministic drift f (X), provided the global approximation of simulation in
the design domain, is often described as a polynomial of X . z(X), known as fluctuation, offers the local approxi-
mation of simulation.

4.3. Expected Improvement
Expected Improvement (EI) criterion is a sampling guidance function which considers both the predicted value
and the predicted variance while infilling a sample into the optimization models. To a new sample X , the Kriging
model can predict its average value ȳ(X) and its average variance σ2. Let ymin be the current minimum response
value, therefore I (lets assume that it is a minimization problem and y(X) = ymin − I) will be the improvement of
the response value at the given point. I is normally distributed with mean ȳ(X) and variance σ2. The likelihood of
this improvement is given by the normal density function [9]:

1√
2πσ(X)

exp
[
−
(
ymin − I− ȳ(X)

)2

2σ2(X)

]
(2)

The expected improvement is simply the expected value of the improvement found by integrating over this density

E
[
I(X)

]
=
∫ I=∞

I=0
I
{

1√
2πσ(X)

exp
[
−
(
ymin − I− ȳ(X)

)2

2σ2(X)

]}
dI (3)

using integration by parts, one can show that

E
[
I(X)

]
= σ(X)

[
vΦ(v)+ϕ(v)

]
,v =

ymin − ȳ(X)

σ(X)
(4)

where Φ and ϕ are the normal cumulative distribution function and density function, respectively.
5. Developed Methodology
5.1. Entropy-based Expected Improvement
In order to facilitate parallel computing, entropy-based expected improvement (EEI) is developed to optimize the
infilling samples in the design space. The optimization of the weighted expected improvement (WEI) can be
written as

max E
(
I(X)

)
=

2

∑
j=1

λ jE j
(
I(X)

)
(5)

and ⎧⎪⎪⎨
⎪⎪⎩

E1
(
I(X)

)
= Φ(v)

(
ymin − ȳ(X)

)
,

E2
(
I(X)

)
= σ(X)φ(v),

2
∑
j=1

λ j = 1,λ j ∈ [0,1]
(6)

Shannon entropy can be introduced to measure the uncertainty about the searching range. If λ j ∈ [0,1] are here
defined as a probability that the optimal solution occurs in the local space and other space, respectively, then the
Shannon entropy will be decreased during optimization process of Eq.5 and an entropy-based optimization model
for the optimizing weighting coefficient can be constructed as⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

min −
2
∑
j=1

λ jE(I)

min H =−
2
∑
j=1

λ j ln(λ j),

2
∑
j=1

λ j = 1,λ j ∈ [0,1]

(7)
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where H is the information entropy. It can easily be proved that Eq.5 and Eq.7 having the same optimal solutions.
By Lagrange multiplier method, an augmented function can be obtained as⎧⎨

⎩ L(I,η ,μ) =−(1−η)
2
∑
j=1

λ jE j −η
2
∑
j=1

λ j ln(λ j)+ μ(
2
∑
j=1

λ j − 1),

η ∈ (0,1)
(8)

where η and μ are the weighting coefficient of multi-object optimization and Lagrange multiplier, respectively.
Solving Kuhn-Tucker condition Eq.9 as follows

∂L
∂λ j

= 0,
∂L
∂ μ

= 0 (9)

gives

λ ∗
j =

exp
[
rE j(I)

]
2
∑
j=1

exp
[
rE j(I)

] (10)

in which r = (η −1)/η is called as the quasi-weighting coefficient (here η = 0.5). λ ∗
j is here called as the optimal

weighting coefficient. Then a Pareto optimal sample can be obtained by solving Eq.5 with the optimal weight
coefficient λ ∗

j of Eq.10. For a specific weight coefficient λ j ∈ [0,1], the optimization scheme stops when

E
[
I(X)

]
ymax − ymin

≤ ε1 (11)

where ε1 is the stopping tolerance, ymax and ymin are the maximal and minimal function value in samples, respec-
tively. Then considering the accuracies of both Kriging model and optimization simultaneously, besides Eq.11 the
convergence condition of Eq.12

| f (Xn)− ŷn|
f (Xn)

≤ ε2 (12)

should be satisfied too. Where, ε1 and ε2 are given errors (here take ε1 = ε2 = 0.01), ŷn is the approximate response
value of the Kriging surrogate model.

5.2 A Parallel Strategy of EEI on Super Servers
It is assumed here that p cores can be used for the computation on super servers, and the parallel algorithm is
described as follows

Step.1. Generate a set of Ns samples (each point corresponding to a group design variables) using LHS. Divide
the Ns samples into p parts, which used as input data for black-box analysis programs, the first p− 1 cores get
�Ns/p� samples, the last core gets the remaining samples;

Step.2. Compute the responses of the samples using black-box program on each core respectively;
Step.3. Build a Kriging surrogate model between the sample sets and their corresponding output response

values;
Step.4. Solve the maximizing problems of Eq.5 by the p cores, in which the weighted parameter of λ1 is

obtained by Eq.10 and λi = (i−1)/p, i = 2,3, . . . , p for the rest of the computing cores;
Step.5. Compute the responses of the samples after step 4 is accomplished by using same black-box program;
Step.6. Check convergence. If the convergence criteria Eq.11 and Eq.12 are satisfied then stop, the opti-

mization solution is obtained; Put new samples and their responses into the sampling set and the responding set
respectively, redirect to step 3.

6. Test Cases
6.1 Math problems
In this section, the results for some classic mathematical problems are presented. For all of the problems, LHS is
used and the number Ns of initial samples is 10, available computing cores p is 4.

6.1.1 Ackley Function
Ackley function is widely accepted by form of:

F(x1,x2) =−2exp(−0.2
√

x2
1 + x2

2)− exp((cos(2πx1)+

cos(2πx2))+ 2+ exp(2),(x1,x2) ∈ (−1.5,1.5)
(13)

3

15

Leo
Rectangle



theoretically, the minimum value of Ackley function is 0 at (0,0). The iteration histories of Ackleys problem are
shown in Fig. 1. The optimal value 0(0,0) is obtained after 33 iterations of WEI method and 10 iterations of EEI
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Figure 1: Iteration histories of Ackley problem

method, respectively.

6.1.2 Branin Function
Branin function is defined as:

F(x1,x2) = (x2 −5.1x2
1/(4π2)+ 5x1/π − 6)2 + 10(1− 0.125/π)cos(x1)+ 10,

x1 ∈ [−5,10.0],x2 ∈ [0,15.0] (14)

its optimal solution is 0.3979 at point (-3.1416, 12.28). Iteration histories of this problem is shown in Fig. 2.
The optimization value 0.784(9.342, 3) is obtained by WEI method after 16 iterations and 0.5031(-3.271, 12.75)
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Figure 2: Iteration histories of Branin problem

obtained by EEI method after 6 iterations. Method of EEI has given a more precise solution which is closer to the
optimal solution should be in theory.

6.2 Optimization Problem of Turbine Foundation
A turbine foundation is normally a concrete base for turbine generators. The turbine foundation optimization
(TFO) problem can be described as:

minF(X) = minF(Xs,Xg)
T = min fl(Xs,Xg)

T

s.t.

⎧⎪⎪⎨
⎪⎪⎩

uq(Xs,Xg)≤ ūq,q = 1,2, . . . ,Q
Mü(t)+Cu̇(t)+Ku(t) = P(t)
xi

s ≤ xi
s ≤ x̄i

s,xi
g ≤ xi

g ≤ x̄i
g,

l = 1,2, . . . ,L, i = 1,2, . . . , I, j = 1,2, . . . ,J

(15)

where, X = (Xs,Xg) stands for design variables: Xs is a size design vector with I beam section areas, Xg is geometry
design vector with J columns node coordinates, xi

s , x̄i
s and xi

g , x̄i
g represent section and geometry limits, i and j

are defined as variable numbers; here L = 2, f1 and f2 are separately defined as amplitude computed by black-box
analysis program (here Ansys software is used) dividing current average amplitude and construction weight (a
linear function of the section areas) dividing current average weight of the foundation; uq(X) is the amplitude of
the points concerned; Q is the number of points concerned; ūq is the maximum amplitude of the foundation; P(t)
is disturbing force of the generator. TFO is a multi-objective engineering optimization problem. By means of the
weighted coefficient method for solving multi-objective optimization, a weighted parameter ω to unify amplitude
and weight to one objective function in order to reduce the complexity of modeling using Kriging method in
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Table 1: Speedup and efficiency of test cases

Test Case WEI EEI
Speedup Efficiency(%) Speedup Efficiency(%)

6.1.1 3.243 81.075 3.333 83.325
6.1.2 3.332 83.300 3.320 83.000
6.2.1 3.259 81.475 3.350 83.750
6.2.2 3.351 83.775 3.299 82.475

engineering practice. In this article, ω is defined as 0.5 for considering both structural weight and the amplitude at
the same level. Therefore should F(X) become F(X) = 0.5 f1(X)+ 0.5 f2(X) by now.
6.2.1 A 600MW Turbine Foundation Example
There are 15 size design variables and a geometry design variable for this example. The iteration histories are
available in Fig. 3.
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Figure 3: Iteration histories of the 600MW turbine foundation

Fig. 3 gives that iterations of EEI (10 optimization steps at optimal solution of F(X) = 1.27) is less than WEI (29
optimization steps at optimal solution of F(X) = 1.28).

6.2.2 A 300MW Turbine Foundation Example
There are 17 size design variables and two geometry design variables for this example. Fig. 4 and has described
the iteration processes.
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Figure 4: Iteration histories of the 300MW turbine foundation

According to Fig. 4, optimization iterations needed by EEI method (4 steps) is less than WEI method (13 steps);
meanwhile WEI method has also got a not so good optimization result (F(X) = 1.92) than EEI (F(X) = 1.83),
which is a very huge effort for this problem as a 0.1 more less of the objective function would gain nearly about
105kg saving of the foundations construction of weight consume.

6.3 Speedup & efficiency statistic data for test cases
Table 1 has given the characteristics belonging to all the test cases including speedup and efficiency using the
parallel strategy discussed in 5.2.
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6.4 Results analysis & discussion
As can be seen from the above figures, the developed EEI method can normally calculate better optimization
solutions and WEI method (and also EI method, obviously). This is a behavior caused by a reasonable weighted
parameter is given while doing the optimization, which stands for a correct and direct way for searching final
optimal solutions generally. A better solution always means better objective function values, which indicates great
construction cost savings and better other related engineering technical indicators are obtained.
An ordinary way to save time cost while doing optimization must be making it into parallel pattern. Reading from
Table 1, both WEI and EEI methods have expressed high speedup and efficiency for all test cases. This is very
simple to comprehend that black-box optimization has established based on Kriging models: black-box programs
are scheduled without too much correspondence to each other henceforth a much more considerable speedup could
be made. Using the parallel strategy proposed above, engineering optimization problems can be estimated to be
performed in a quicker mode.

7. Conclusion
This paper has developed an improved expected improvement method called entropy-based expected improvement
(EEI) method, adapting to address computing-intensive optimization problems. It is based on black-box optimiza-
tion method and global Kriging models. An optimal weighted parameter is calculated at each iteration, which
is used for sampling guidance next iteration: it has similar process steps to normal WEI method but gives more
accurate solutions under normal circumstances. A parallel strategy described as responses computed by different
computing cores with black-box programs has been successfully implemented on a super server to deal with the
problem encountered when EEI method needs to consider several samples and points at the same iteration, which
could get large speedup and efficiency for engineering problems due to black-box optimizations manifest excellent
character to be paralleled.
In order to verify the effectiveness of the proposed method, several examples consist of both math and engineering
problems are developed. Numerical results have demonstrated that the raised method could get good speedup
and better optimal solutions simultaneously, which surely gives an advance in parallel engineering optimization.
We hope the method discussed may further be used in other related engineering optimization problems due to the
common behaviors in black-box optimization as to ease the cost made by all of them.
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1.  Abstract  
A cantilever column is loaded by compression and bending. The horizontal displacement of the column top as well 
as the outside diameter of the cylindrical shell are limited. The strengthening of the column is performed in the 
lower part of the column only. 
Three structural versions of the column are optimized and compared to each other. 
Firstly, the unstiffened circular shell is optimized. It is found that the required large thickness is unsuitable for 
fabrication. 
Secondly, the stringer stiffened circular shell is optimized. The halved rolled UC section stringers are used only in 
the lower part of the column, the distance of the interruption of stiffeners is also optimized. It is found that the 
required shell thickness is unsuitable for fabrication. 
Thirdly, a new structural version, the cellular shell is used. Cellular shells are constructed from two circular 
cylindrical shells and a grid of stiffeners welded between them. They have similar advantages than the cellular 
plates, namely they can produce a large stiffness with small structural height. Their smooth surface is suitable for 
corrosion protection and they are more aesthetic than the stringer stiffened shells. 
The parts of the outer circular shell are welded to the stringers from outer side with longitudinal fillet welds. 
Halved circular hollow section (CHS) stringers enable the easy welding of the outer fillet welds. 
The unknown variables to be optimized are as follows: thicknesses of the inner and outer shell, dimensions and 
number of the halved CHS stiffeners as well as the distance of the interruption of stiffeners. 
The study shows a realistic case when the cellular shell can be used with smaller shell thicknesses and lower cost 
than the shell stiffened with outer side stringers.  
The displacement constraint is so strict that the stress, shell buckling and beam-column buckling constraints are 
passive.  
The cost function to be minimized contents the cost of material, welding and painting. The optimization is 
performed by a systematic search using a MathCAD algorithm. 
 
2. Keywords: welded shell structures, structural optimization, cost calculation, cellular structures, cantilever 
columns 
 
3. Introduction 
Similar to cellular plates [1, 2, 3] the cellular shells are constructed from two circular cylindrical shells and a grid 
of stiffeners welded between them (Fig. 3). It is advantageous to use halved circular hollow section (CHS) 
stiffeners, since the parts of the outer circular shell can easily be welded to them.  
The aim of present study is to show the advantages of cellular shells over the stringer stiffened ones. Their large 
stiffness and small structural height can be useful for a compressed and bent cantilever column in the case of a 
strict constraint on horizontal displacement of the top together with a constraint on maximum diameter. 
The study compares three structural versions for the welded circular cylindrical shell as follows: (a) unstiffened, 
(b) stiffened with halved rolled I section stiffeners, and (c) stiffened by cellular shell. 
The basis of the comparison is the cost, which contents the cost of material, welding and painting. 
The base of the column is built-up, but the structural solution of the foundation and its cost is not treated. 
Given data: column height L = 15 m, factored compression force NF= 2x107 [N], horizontal force HF = 0.1NF, yield 
stress of steel fy = 355 MPa, elastic modulus E = 2.1x105 MPa. In the calculation of displacement the horizontal 
force is divided by the safety factor γM = 1.5. 
Constraints: limitation of the horizontal displacement of the column top: 1000,/max Lw  and limitation of 
the shell diameter: D = 2R = 3000 mm. 
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4. The unstiffened shell (Fig.1 without stiffeners) 
It can be concluded that the solutions need very thick shell parts, not suitable for fabrication. It should be noted that 
the constraint on beam-column buckling is passive in this case. 
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Figure 1: (a) Cantilever column loaded by a compressive and a horizontal force, the horizontal displacement w and 

the outside diameter are limited, (b) cross-section of the column, (c) dimensions of the stringer stiffeners 
 
5. The shell stiffened with halved rolled I section stiffeners from outside (Fig.1) 
 

Table 1: Some results of the optimization. Dimensions in mm, volume in mm3 and costs in $. The optima are 
marked by bolt letters 

 
h 222.2 222.2 161.8 152.4 
b 209.1 208.1 154.4 152.2 
tw 12.7 12.7 8 5.8 
tf 20.5 20.5 11.5 6.8 
t 45 46 42 42 

ns 18 18 20 20 
L2 12000 9000 9500 9000 
w 14.99 14.99 14.84 14.96 

10-9V 7.0130 6.847 6.666 6.545 
K 96480 94850 88500 88010 

 
The constraints on panel buckling and beam-column buckling (see section 3) are passive. It can be seen that the 
decrease of L2 and the dimensions of stiffeners gives less volume and cost. 
The main problem is the large shell thickness (over 40 mm), which is unsuitable for fabrication. 
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6.  The column stiffened by cellular shell (Figs. 2, 3) 
Halved circular hollow section (CHS) [4] stiffeners are used. This type of stiffeners have more advantages as 
follows: (a) they enable suitable welded joints for the cover shell elements, (b) their large torsional stiffness gives 
a large overall stiffness for the whole structure. 

 
6.1  Geometric characteristics 
The cross-sectional area of a half CHS is (Fig. 2) 
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Figure 2: Geometry of the cellular shell 

 
Figure 3: Dimensions of a cellular shell 

 
 
The radius of the inner shell R0 can be calculated from the following equation 
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(t1 is the thickness of the outer shell) 
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The moment of inertia of ns stiffeners about the centre of the shell  
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The moment of inertia of the whole cellular shell (Fig.3) 
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Fabrication constraint to enable the welding of the half CHS to the inner shell: 
from 
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the maximum allowable number of half CHS stiffeners 
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6.2 Constraint on horizontal displacement of the column top 
 

    
10002223

2
2
2

22
2

3
2

1
max

LL
L

L
LLL

L
L

LL
EI

H
w

M

F    (10) 

where 

        5.1,
2

1
MI

I
,   xIItRI 21

3
01 ,       (11) 

Ii and I2 are the moments of inertia of the upper and lower column part, respectively, γM is the safety factor. 
 

6.3  Constraint on panel shell buckling of the outer shell parts between stiffeners 
According to the Det Norske Veritas [5] design rules for shell buckling 
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In the case of such a very strict displacement constraint the panel buckling constraint is not active.  max is so small 
that the effective shell width is equal to the whole width s0. 
Calculations show that this constraint is not active. 

  
6.4 Constraint on beam-column buckling 
The check should be performed by taking into account the overall buckling of the column [6]. For the calculation 
of the Euler critical stress the formula given by Timoshenko and Gere [7] is used. 
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6.5 The cost function 
The cost of welding is formulated according to the fabrication sequence [8 - 11]. 
(1) Fabrication of 5 shell elements of length 3 m without stiffeners. For one shell element 2 axial butt welds are 
needed (GMAW-C) (KF1). The cost of forming of a shell element into the cylindrical shape is also included (KF0). 
(2) Welding of the whole unstiffened shell from 5 elements with 4 circumferential butt welds (KF2). Θ is the 
factor expressing the complexity of assembly 
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001 1086.7,23000 xtRxV kgmm-3, kF = 1.0 $/min, kM1 = 1.0 $/kg.    (20) 
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(3) Welding of the half CHS stiffeners to the base shell using SAW fillet welds 
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(4) Forming of the outer curved shell panels of length 3 m 
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(5) Welding of an outer curved shell panel of length L2 using κ3 shell parts of length 3 m by (κ30-1) GMAW-C butt 
welds 
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(6) Welding of the outer panels to the stiffened shell by SAW fillet welds of size aw1 = 0.3ts 
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Painting cost 
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Material cost 
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The total cost 
 
     PFFsFFFFFM KKKnKKKKKKK 6543032105     (34) 
 
The details of the search are shown in Table 2. For fabrication aspects the following limits are introduced: t0max = 
30, t1max = 30, tsmin = 10 mm. 
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Table 2: Details of the optimization. The maximal displacement in each case is near the allowable value of 15 
mm. Dimensions in mm, volume V in mm3. The optimum is marked by bold letters 

 
t0 t1 L2 V4x10-9 K ($) 
25 29 8900 5.768 78460 
24 30 8900 5.720 77440 
23 30 9300 5.705 79410 
22 30 9800 5.719 78740 
21 30 10300 5.733 78100 
20 30 10900 5.776 77740 
19 30 11700 5.876 77940 
18 30 13200 6.1780 82920 

 
The numerical values show the following results:  
(a) The minimum volume and cost is found for the minimum number of stiffeners ns = 4:  
(b) The CHS stiffener profile of 101.6x10 gives the minimum volume and cost. The tendency is to minimize Ds to 
maximize R0, and to maximize ts, thus, we select this profile. 

 
7.  Conclusions 
A realistic numerical problem is investigated, in which the outer shell diameter and the horizontal displacement of 
the column top is limited. The numerical value of the compression force NF is also given. Three structural solutions 
are optimized:  
(1) the unstiffened circular cylindrical shell has the minimal volume V = 5.316sx109 mm3 but the shell thickness is 
50 mm, which is unsuitable for fabrication,  
(2) the circular shell stiffened with halved rolled UC sections has the structural volume  V = 6.545x109 mm3 and  
the cost K = 88010 $, but the shell thickness is 42 mm, unsuitable for fabrication, 
(3) the optimum solution of the column strengthened by cellular shell has values V = 5.705x109 mm3 and K = 
77440 $, thickness 30 mm. 
It can be concluded that in this case only the cellular shell version can fulfil all the requirements (horizontal 
displacement, maximum outer diameter, maximum thickness of 30 mm, minimum cost). In addition, the cellular 
shell can be more easily protected against corrosion and is much more aesthetic than the second version. 
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1. Abstract
This paper presents new results within the design of three-dimensional (3D) coated structures using topology op-

timization. The work is an extension of a recently published two-dimensional (2D) method for including coated

structures into the minimum compliance topology optimization problem. The high level of control over key pa-

rameters demonstrated for the 2D model can likewise be achieved in 3D. The effectiveness of the approach is

demonstrated with numerical examples, which for the 3D problems have been solved using a parallel topology

optimization implementation based on the PETSc toolkit.

2. Keywords: Topology optimization, Coating, 3D optimization.

3. Introduction
This study considers the design of coated structures in 3D using topology optimization. Metal coating of polymer

structures can be used to enhance functional or visual properties. Many polymers are more easily processed into

complex shapes than metals. By coating polymer structures with metal it is possible to combine the processing

and cost advantages of polymers with the performance benefits of metal.

This work is based on a recently published paper [4], which introduced a novel method for modeling coated

structures and material interface problems in relation to density based topology optimization. The original method

was limited to 2D applications. In this paper the method is extended to 3D. As in the 2D version, the method

assumes perfect bonding between the substrate and the coating material.

The paper considers minimum compliance problems. The approach is applicable for density based topology

optimization and draws on the basic ideas of the SIMP approach (see e.g. [3]). As described in detail in the paper

on 2D coating [4], the usual stiffness interpolation from SIMP is extended to include spatial gradients of the filtered

design field. This allows to identify material interfaces and enforce coating. In order to control the spatial gradient

field, and thereby assure a uniform coating thickness, a two-step filtering approach is applied.

The ability to accurately describe material interfaces is often mentioned as an advantage of level-set based ap-

proaches, for which interfaces are implicitly defined by iso-contours of a level-set function (for a review of level-set

based topology optimization, see e.g. [9]). An example is [10], where a level-set based method for including ma-

terial interface properties in the optimization of multi-phase elastic and thermoelastic structures is introduced. The

method introduced in [4], and extended in this paper, shows that it is also possible to accurately capture material

interfaces using a density based approach.

4. Problem formulation
This section recapitulates the optimization problem as defined in [4] with focus on conveying the main ideas of the

approach. Furthermore, the relevant parameters chosen for the present study are described. The material model

and characteristic properties are reported in the continuous versions of the design field and filters. Only when

defining the optimization problem, the discretized version is introduced.

A coated structure is characterized by a base structure made of one material (referred to as the substrate in

a process context) and a coating made of a different material. Initially, no limitations are put on the shape and

dimensions of the base structure, whereas the coating is assumed to have a constant, predefined thickness, tref, at

all surfaces of the base structure. Fig. 1 shows a sketch of a 3D coated structure. It is important to notice that

the prescribed coating thickness, tref, is a fixed parameter which is defined as part of the design problem. For the

optimization problem, it is convenient to define the coating based on the spatial gradient of the design field in order

to assure sufficient design freedom. The modeled coating may be characterized by a thickness, t, which depends on

the design field. This approach assures sufficient design freedom, but must be combined with a method to control

the gradient field in order to end up with a design where t = tref.

1
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tre f

Base material
Coating

Figure 1: Illustrative sketch of a 3D coated structure with coating thickness tref.

To control the shape of the gradient a two-step filtering process is applied. First, the design field, μ , is smoothed

(giving μ̂) and projected (giving ϕ = ¯̂μ). This projection defines the base structure.

In order to identify the interface of the base structure, a second smoothing is applied (giving ϕ̂). The norm of

the spatial gradient, ‖∇ϕ̂‖α , in this second smoothed field is used to identify the interface (the index α means that

the norm is normalized, such that its maximum value is one - see details in Section 4.4). The normalized norm is

subsequently projected to model a sharp interface. This field, which is denoted ‖∇ϕ̂‖α , defines the coating.

Thus, the desired coating thickness is defined indirectly by setting the filter radius used for the second smooth-

ing (R2), as this filter determines the width of the interface region.

4.1. Filters

In order to regularize the optimization problem a smoothing is performed using a so-called PDE-filter [6] with

appropriate boundary conditions. The first smoothing (from μ to μ̂) is performed by solving the equation:

−
( R1

2
√

3

)2
∇2μ̂ + μ̂ = μ (1)

where the spatial neighborhood is defined by the magnitude of the scalar in front of the Laplacian. In the above

form, R1 corresponds to the filter radius in standard filtering techniques. Furthermore, a projection method ([5],

[7]), in the form first proposed in [11], is applied as a means of obtaining black-and-white designs. The projection

is determined by the step “sharpness” β and the threshold parameter η ∈ [0;1].

4.2. Interpolation function

The coating material has the mass density ρ0 and elasticity modulus E0. The material properties of the base mate-

rial are defined as ratios of the coating material’s properties. The mass density ratio is λm ∈]0,1[ and the stiffness

ratio is λE ∈]0,1[. For simplicity, both materials are assumed to be isotropic with a Poisson’s ratio, ν0, independent

of interpolation density.

The physical density, ρ , and stiffness, E, are defined as interpolations of ϕ and ‖∇ϕ̂‖α :

ρ(ϕ,‖∇ϕ̂‖α) = ρ0
[
λmϕ +(1−λmϕ)‖∇ϕ̂‖α

]
(2)

E(ϕ,‖∇ϕ̂‖α) = E0
[
λEϕ p +(1−λEϕ p)(‖∇ϕ̂‖α)

pg
]

(3)

Opposite to the original paper [4] a distinction is made between the penalization parameters, p and pg, penalizing

ϕ and ‖∇ϕ̂‖α , respectively.

Note that when the normalized gradient norm approaches its maximum value (‖∇ϕ̂‖α = 1), i.e. at the interface

region, the physical density and stiffness approach ρ0 and E0, respectively:

ρcoating(ϕ,1) = ρ0 [λmϕ +(1−λmϕ)] = ρ0

Ecoating(ϕ,1) = E0 [λEϕ p +(1−λEϕ p)] = E0
(4)

Opposite, when the gradient norm approaches zero, i.e. when going away from the interface, the second term in

Equation (2) and (3) vanishes. In these regions ϕ = 1 corresponds to base structure, whereas ϕ = 0 corresponds to

void.
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4.3. Optimization problem

The optimization problem is a standard minimum compliance problem with a constraint on the volume. For the

discretized problem the continuous fields are replaced with vectors of element values (e.g. μμμ instead of μ).

The global stiffness matrix, K, is defined as:

K(μμμ) = ∑
e

ke(μμμ) = ∑
e

Ee(ϕe(μμμ),‖∇ϕ̂e(μμμ)‖α)k
0
e (5)

where ke is the element stiffness matrix, and k0
e is the element stiffness matrix for an element with unit elasticity

modulus. To avoid a singular system in the numerical interpolation, the first term in Eq. (3), λEϕ p
e , is replaced

with λE,min +(λE −λE,min)ϕ
p
e .

The optimization problem is defined in the following way:

min
μμμ

: c(μμμ) = UTKU

subject to: KU = F
g(μμμ) =V (μμμ)/V ∗ −1 ≤ 0

0 ≤ μe ≤ 1, ∀e

(6)

Here c is the compliance, U and F are the global displacement and force vectors, respectively, g is the volume

constraint, V (ρρρ(μμμ)) = ∑viρi(μμμ) is the material volume and V ∗ is the maximum allowed volume.

Design updates are performed based on sensitivities using MMA ([8]). The sensitivity analysis is performed in

a way analogous to the 2D version.

4.4. Parameters

In the second smoothing step, where the filter radius is set to R2, the filter radius is computed based on the specified

coating thickness tref as R2 = 2.5tref. This is independent on whether a 2D or 3D problem is considered. The same

holds for the normalization factor α , which is defined as the inverse of the maximum possible gradient norm of the

second smoothed field, ϕ̂ . It takes the value α = R2/
√

3.

As opposed to [4], the penalization factor on the gradient part is distinguished from the penalization on the

design variable. This is done because in 3D it is usual to work with lower volume fractions. Thus, if the gradient

field were to be penalized in the initial phase of the optimization, the corresponding sensitivities would be small.

This can be circumvented by instead introducing the penalization on the gradient field gradually.

A continuation scheme is adopted for both the penalization parameters and the projection. The penalization for

‖∇ϕ̂‖α is initialized as pg = 1 and gradually increased to pg,max = 3. When pg,max is achieved the penalization for

ϕ is gradually increased from p = 3 to pmax = 4. The two projections are performed with identical parameters. The

threshold is η = ηg = 0.5. The sharpness parameter is initialized with β = 16. After reaching pmax, β is gradually

increased to 64 by doubling at convergence (or after 100 iterations since last update).

The parallel 3D implementation is based on the topology optimization framework [1] utilizing PETSc [2]. This

allows solving problems with millions of design elements, which is necessary in order to have a fine enough dis-

cretization to capture the coating.

5. Results
The approach is demonstrated by solving the optimization problem in Eq. (6) on both a 2D domain and an

equivalent 3D domain. The design problem for both cases consists of a distributed load applied at the entire top

surface. The 2D domain is illustrated in Fig. 2. The full domain has the dimensions 200 by 50, however, by using

a symmetry condition at the right edge only half of the domain is modeled. The center half of the bottom layer

is clamped. The domain is discretized using bi-linear elements with two elements per unit length. The total load

equals 10. The coating thickness is set to tre f = 1.

The 3D design problem is similar to the 2D problem. Denote the vertical direction by z and the two horizontal

directions by x and y. Again, a distributed load is applied at the entire top surface (z = zmax). The load sums up

to 0.25. The central area of the bottom layer (z = 0) is clamped. The central area here refers to points which are

simultaneously in the central half in the x and y directions (see the optimized structure in Fig. 4 for visualization).

Only a quarter of the domain is modeled, using symmetry constraints in both the x and y directions.

When discretizing the 3D problem the chosen domain decomposition approach from the parallelized PETSc

code has to be taken into account. Using four decompositions, the number of elements in each direction should

be a multiple of 16 (24). Simultaneously it is chosen to let the coating thickness tre f = 1 correspond to an integer

number of elements. This is not a requirement, but makes it easier to visually assess the results. Bearing these

two choices in mind the full domain dimensions are defined as 192 × 96 × 48 (a 4:2:1 length ratio), such that a
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Figure 2: Design domain for the 2D problem, using a symmetry condition at the right edge.

Figure 3: Optimized results in 2D. Top: Coated structure (c = 814.9). Bottom: Solid structure (c = 636.0).

quarter domain has the dimensions 96 × 48 × 48 and can be resolved with 288 × 144 × 144 tri-linear elements.

This slight modification of dimensions compared to the modeled 2D domain (100 × 50) is justified by the easier

interpretation of the results.

For both problems the material parameters of the coating and solid material are ρ0 = 1 and E0 = 1. The base

material is defined by λE = 0.35 and λm = 0.6. The first filter radius is R1 = 10. The elements in the topmost layer

(at the loaded surface) are set as passive, solid elements. The boundary conditions for the PDE-filter are chosen

as homogeneous Neumann conditions at all edges. For the 3D case, the projection sharpness, β , is initialized as 8

rather than 16 in order to stabilize the optimization.

The optimized results for the 2D problem are shown in Fig. 3 for both a coated structure and a solid structure

(corresponding to λE = λm = 1). In the coated structure, the base material has a constant density and the coating

is seen to be applied with a uniform thickness everywhere at the structure. The topology of the coated structure is

simpler than for the solid structure, as the low density base material has a lower cost in the volume constraint than

the solid material. The compliance for the coated structure is larger than for the solid structure, as the stiffness of

the base material is disproportionately low with respect to its weight compared to the solid material.

Figure 4 shows the optimized coated structure for the full 3D problem viewed from below. The coating material

is visualized in light blue at 35 % transparency, while the base material is light gray. Note that the clamped part of

the bottom surface is clearly traced out by the structure. The coating material is again applied in a highly uniform

manner at all visible interfaces.

The coated structure is compared with a solid structure optimized with the same parameters in Fig. 5. Only

the modeled quarter part of each structure is shown. The structures are compared in full height and for two cross

sections at 75 % and 50 % height. First consider the full height structures (a-b). The two structures show the same

trend as their 2D equivalents in Fig. 3. The topology for the coated structure is simpler with a significantly lower

number of holes. Again, the compliance for the coated structure is larger than for the solid structure due to the

disproportionately low stiffness of the base material.

The cross sections in (c-f) further illustrate that the coating material is applied uniformly over the structure. In
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Figure 4: Full 3D structure optimized using the coating approach. The coating material is rendered at 35% trans-

parency to visualize the internal base structure.

(a) (b)

(c) (d)

(e) (f)

Figure 5: Optimized results in 3D (quarter domain). Left column: Coated structure (c = 0.2742). Right column:

Solid structure (c = 0.1420). (a-b) View from below. Coating and solid material shown at 35% transparency. (c-d)

Cross section at 75% height, view from above. (e-f) Cross section at 50% height, view from above.
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addition, the figures very clearly show the difference in topology between the coated and solid structures. The pure

solid structure continues to branch out in a higher number of members with increasing z-coordinate, whereas the

coated structure consists of a few members which do not branch out but rather stay connected while adapting the

cross sectional area.

6. Conclusion
It has been shown that coated structures in 3D can be designed using topology optimization. The approach is

demonstrated on equivalent design problems in 2D and 3D. The high level of control over the modeled coating

which is earlier demonstrated for the 2D model is likewise achieved in 3D.
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1. Abstract
Aerothermoelasticity plays a vital role in the design of hypersonic aircraft as a strong coupling exists between the

aerothermodynamic loads and the structural response. Fluid-thermal-structural interactions are one of the multi-

disciplinary problems that must be solved for the design of hypersonic aircraft. Existing optimisation algorithms

lack the capability to include these aerothermodynamic coupling effects. This article presents a novel bi-directional

evolutionary structural topology optimisation algorithm that includes aerothermoelastic coupling effects. The time-

varying temperature distribution is applied through an original formulation, solving for equilibrium of convective,

radiative and through thickness conduction at each time step, with a time-marching unsteady conduction solution

for time integration. The thermal solution is coupled with a high order aerodynamic solver and the structural finite

element model. The results presented in this article show that the coupling between the thermal, structural and

aerodynamic forces drive the optimisation of the design and must be taken into consideration to achieve a feasible

working structure for the required environment.

2. Keywords: Hypersonic; Aerothermoelastic; Evolutionary; Aircraft.

3. Introduction
Hypersonic flight has been an active area of research for the past six decades, motivated by shorter flight times and

reusable launch vehicles for affordable access to space [1]. In a recent review paper, McNamara and Friedmann

[2] conclude that accurate modeling of the aerothermodynamics is crucial for the design of hypersonic vehicles.

Furthermore the design of the airframe is crucial in order to survive the harsh environment [2]. Current high speed,

high enthalpy tunnels are not suitable for the testing of scaled models of hypersonic vehicles [3]. Also, hypersonic

aerothermoelastic scaling laws are not available at high Mach numbers [4]. Therefore, the development of accurate

computational aerothermodynamic simulation capabilities is important for the design and analysis of hypersonic

vehicles.

Aerothermodynamic applications to structural topology optimisation have not yet been considered for lightweight

design. Eschenauer and Olhoff [5] and Krog et al. [6] both studied the internal design of wing ribs using topology

optimisation methods. However, the aerodynamic load was prescribed and therefore not design dependent. Studies

that have included aerodynamic loading feedback, to model aerodynamic-structure coupling, in the optimisation

are shown in [7, 8]. These studies dealt with steady aerodynamic-structural coupling. Stanford and Beran [9]

looked at dynamic aerodynamic-structural coupling. However, none of these studies had a temperature model in-

cluded in the analysis. Stanford and Beran [10] recently added a thermal model, however a temperature profile is

prescribed along the solid-fluid interface, therefore no aero-thermo coupling is present.

This paper extends the previous work by developing a structural topology optimisation algorithm with a strong

coupling between the aerodynamics and thermodynamics. The article optimises the wing of a generic hypersonic

cruise vehicle in its cruise condition for minimum weight. The importance of the aerothermodynamic coupling on

the design of the structure is analysed.

4. Theoretical Analysis
The wing structure used in this article is the LAPCAT A2 [11]. A finite element mesh is generated from a series

of node coordinates. The aerothermoelastic module is shown in Fig. 1.

The inertial and elastic modules make up the finite element analysis (Fig. 1 (left)). A strong coupling exits be-

tween the aerodynamic and structural modules, however the weak coupling between the thermal and aerodynamic

module is ignored [12]. The weak feedback of the structural deformations on the thermal module is included in

the analysis.

The inputs and outputs of the different modules are shown in Fig. 1 (right). MATLAB R© is used to communi-

cate between the different modules and check for convergence of optimisation.
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Figure 1: Degree of Coupling for the Aerothermoelastic Domain (left), Optimisation Network for Aerothermoe-

lastic Coupling (right).

4.1. Structural Module

The structural deformation and stresses are calculated by performing a finite element analysis. The finite element

software used is MSC/Nastran R©. The initial structural model is shown in Fig. 2 (left).

Figure 2: Initial Structural Model (left), Cross-Stiffened Skin (right).

The model uses four node shell elements (Fig. 2 (left)), since aircraft structures are built from metal plates.

The initial model begins with all possible combinations of spars, ribs and cross-bars.

4.2. Aerodynamic Module

Two complementary software packages are used in the aerodynamic module, AGPSTM and Tranair R©. AGPSTM,

the Aero Grid and Panelling System, takes the vehicles geometry and generates the grid points for an aerodynamic

mesh. AGPSTM efficiently and accurately produces such a mesh, which can be updated from deformations in the

structure, such that the structural module can update the aerodynamic module.

AGPSTM produces the input files for the aerodynamic solver Tranair R©. The surface and wake meshes are

written into a Tranair R© input file, specifying the coordinates of each corner point of the mesh. Tranair R© solves the

non-linear, full potential equation for three-dimensional flow at subsonic, transonic and supersonic Mach numbers

[13]. Tranair R© uses an adaptive rectangular flow-field grid, which relieves the computational expense of generating

a surface fitted flow-field grid for complex geometries by using a rectangular mesh that adapts to the vehicle

surface. Tranair R© has a boundary layer coupling incorporated into the code. The output of the aerodynamic

module is the discretised geometry, used for all the other modules, the pressure loading on the wing, and the

boundary layer edge properties, used to calculate the surface temperature in the thermal module.

4.3. Thermal Module

The temperature loading on the wing is determined by solving an equilibrium calculation at the solid-fluid interface.

Heat is transferred by convection, due to aerodynamic heating, radiation of the skin to the environment and internal

conduction. The solution is then stepped forward in time by solving the unsteady conduction equation.
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At the fluid-solid interface the equilibrium condition states that:

qconv −qrad = qcond (1)

therefore, an expression for the temperature of the skin can be derived. The expression is solved for the wall

temperature, T :

σεT 4 +

(
StρuCw +

kw

Δz

)
T = StρuCawTaw +σεT 4

e +
kwTint

Δz
(2)

where St is the Stanton number, C is the specific heat, ρ is the density, kw is the conductivity coefficient, u is

the local velocity at the edge of the boundary layer and Δz is the thickness of the wing skin. Eq. 3 calculates the

surface temperature for a given flight condition at every location except in the stagnation region.

4.4. Topology Optimisation Algorithm

Structural failure occurs once a certain stress level is reached in a material, this is a case of under-design. Con-

versely, over-design is when low stress levels are present in a material. Ideally the stress in every part of a structure

is near the same safe level. The evolutionary technique of this work begins with an over designed structure and

slowly removes the unused material until a certain stress level is reached in the structure. The optimisation proce-

dure also checks for material that is over-stressed and adds more material in these regions.

The algorithm used in this article is a hard-kill Bi-directional Evolutionary Structural Optimisation (BESO)

method [14]. The algorithm is computationally far more efficient, compared to gradient methods, as the hard-

killed elements are not involved in the finite element analysis. Furthermore, elements with intermediate densities,

such as those found in soft-kill BESO and SIMP algorithms, may cause the global stiffness matrix to become

ill-conditioned, particularly for a nonlinear structure. For these reasons the hard-kill BESO method is preferable,

particularly for complex three-dimensional structures.

4.4.1. Sensitivity Number and Filter Schemes

When a continuum structure is discretised the sensitivity numbers can become discontinuous across the element

boundaries. This leads to checkerboard patterns in the resulting topologies [15]. A secondary issue in topology

optimisation is mesh dependency, this is when different topologies are obtained when using different finite element

meshes. To overcome such problems nodal sensitivity numbers are defined by averaging the element sensitivity

numbers as follows:

αn
j =

M

∑
i=1

wiαe
i (3)

where M denotes the total number of elements connected to the jth node. αe
i is the element sensitivity number

of the ith element, for a fully stressed design the element sensitivities are defined as:

αe
i = σ vm

i (4)

wi is the weight factor of the ith element, defined by:

wi =
1

M−1

(
1− ri j

∑M
i=1 ri j

)
(5)

where ri j is the distance between the centre of the ith element and the jth node. The nodal sensitivity numbers

are then converted into smoothed elemental sensitivity numbers. This is performed by a filter scheme that projects

the nodal sensitivity numbers to the design domain. The filter has a length scale rmin that does not change with

mesh refinement. The purpose of the scale parameter, rmin, is to identify the nodes that will influence the sensitivity

of the ith element. Where rmin must be large enough such that the sub-domain, Ωi, covers more than one element.

Nodes inside the sub-domain Ωi contribute to the computation of the improved sensitivity number of the ith element

as:

αi =
∑K

j=1 w(ri j)αn
j

∑K
j=1 w(ri j)

(6)

where K is the total number of nodes in the sub-domain Ωi, w(ri j) is the linear weight factor defined as:
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w(ri j) = rmin − ri j ( j = 1,2, . . . ,K) (7)

The filter scheme smoothes the sensitivity numbers in the whole design domain. Therefore, the sensitivity

numbers for void elements are automatically obtained. Void elements may have high sensitivity numbers due to

high sensitivity numbers of solid elements within the sub-domain Ωi. Therefore, void elements may be turned into

solid elements in the next iterations.

This filter scheme is similar to the mesh-independency filter used by Sigmund and Petersson [16], except that

node sensitivities are used in Eq. 10 instead of element sensitivities.

With ESO/BESO methods the sensitivity numbers of solid and void elements are based on discrete design

variables of element presence (1) and absence (0). This results in convergence difficulties for the objective function

and hence topology. Large oscillations are often observed in the evolution history of the objective function. Huang

and Xie [17] found that by averaging the sensitivity number with its historical information is an effective way to

solve this problem. The simple averaging scheme is given by:

αi =
αk

i +αk−1
i

2
(8)

where k is the current iteration number. Therefore, the updated sensitivity number includes the whole history

of the sensitivity information in the previous iterations.

4.4.2. Ensuring Connectivity

Aircraft structures usually consist of thin shell structures where the outer surface or skin of the shell is usually

supported by longitudinal stiffening members and transverse frames to enable it to resist bending, compressive

and torsional loads. The internal structure is a continuous frame structure, such that if the skin were removed the

remaining structure would not fall apart. Such structures are known as semi-monocoque. Therefore, to ensure such

a structure is output by the optimisation algorithm of this article a original connectivity filter has been developed.

The connectivity filter ensures that all internal elements are connected. This is done by passing the internal solid

elements through a filter that checks all nodes connected to the solid element are connected to another internal

solid element.

4.4.3. Panel Buckling

Another consideration of the optimisation process is panel buckling, a common failure mode for high speed aircraft.

Nonuniform stress distributions may result in panel buckling, while still having stress levels below the failure point.

To prevent panel buckling a technique employed in the NASA developed structural sizing program HyperSizer R©

[18] is used for the optimisation of the skin.

The critical buckling stress for a plate is calculated by:

σcr =
kπ2E

12(1−ν2)

( t
b

)2

(9)

where k = 4 for simply supported panels, E is the modulus of elasticity of the plate, ν is the Poisson’s ratio, t
is the thickness and b is the characteristic length of the plate. The margin of safety of the panel can be calculated

by:

MSbuckling = 1− σapplied

σcr
(10)

where σapplied is the applied buckling stress. For panels with a MSbuckling < 0 the thickness of the panel is

increased. Cross-stiffened panels, see Fig. 2 (right), are used to model the skin of the wing. To reduce the

computational space of the optimisiation a smearing technique is employed to model the skin and stringers [19].

The smearing technique is employed by updating the thickness of the shells by:

te = t +hsws

(
1

as
+

1

bs

)
− hsw2

s

asbs
(11)

where t is the thickness of the skin, ts is the thickness of the stringers, ws and hs are the width and height of the

stringers respectively and as and bs are the spacing of the stringers in the chordwise and spanwise direction.
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5. Results and Discussion
The LAPCAT A2 wing is optimised for its cruise condition. The aircraft is flying at Mach 5 with a 1◦ angle of

attack, at an altitude of 25km. Due to the brevity of this article only preliminary results are presented, further

results will be shown in the presentation.

5. 1. Aerothermoelastic Coupling

The aerothermoelastic module couples the aerodynamic, thermal and structural module to determine the aerody-

namic pressure and heating on the wing (see Section 4). The initial pressure and heat loading on the wing is given

in Fig. 3.

Figure 3: Initial Pressure Loading (left), Initial Thermal Loading (right).

5. 2. Optimisation

The internal structure of the A2 wing has been optimised for the load case defined in Section 5.1. The wing skin is

kept unchanged, having a span varying thickness of 6mm at the root and 3mm at the tip. The internal structure has

a constant thickness of 3mm. The initial and final stress distribution can be seen in Fig. 4.

Figure 4: Initial Stress Distribution (left), Final Stress Distribution (right).

The final topology has kept the majority of its structure at the leading edge, since this coincides with the maxi-

mum temperature and therefore the region where the material is at its weakest. Furhtermore, due to the low aspect

ratio of the A2 wing large bending stresses at the root are not present. Therefore the wing is twisted, along the

spanwise axis, causing torsion.

6. Conclusion
A novel bi-directional evolutionary optimisation technique with aerothermoelastic coupling has been demon-

strated. The strong coupling between the aerodynamic and structural modules and the aerodynamic and thermal

modules has been included. The aerodynamic loading is determined using Tranair R©. The thermal loading is

calculated by a novel conjugate method, with an unsteady conduction solver for time integration.

The optimisation algorithm was able to satisfy the weight constraint of 20tons, without exceeding material

limits or causing skin buckling. It was found that the deflections of the wing alter the loadcase significantly,

indicating that there is a strong coupling present.
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The optimisation algorithm allows multiple preliminary designs to be considered with the aerothermoelastic

coupling present. This allows preliminary designs to be considered that have been optimised for a more realistic

hypersonic environment.
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1. Abstract  
In this paper, we present a solution to a reaction force control problem of a shell structure based on the free-form 
optimization method for shells concerned with material nonlinearity and geometrical nonlinearity. The sum of 
squared error norms subjected to a specified force is minimized under a volume constraint. The shape optimum 
design problem is formulated as a distributed-parameter system under the assumptions that a shell is varied in the 
out-of-plane direction to the surface, whereas the thickness is not varied with respect to the shape change. The 
shape gradient function and the optimal conditions for this problem are theoretically derived using the material 
derivative method and the Lagrange multiplier method. The derived shape gradients are applied to the H1 gradient 
method for shells, which was proposed one of the authors, to determine the optimal shape variation. The optimal 
shape of shell structures can be obtained without the shape parameterization, while maintaining the surface 
smoothness. The shape gradient function is calculated by a user sub-program which is developed using the result 
of non-linear FEM analysis based on a commercial solver. Several numerical examples are presented to verify the 
validity and practical utility of the proposed methodology and the developed system. 
2. Keywords: FEM, Shape Optimization, Shell Structure, Material Nonlinear, Geometrical Nonlinear 
 
3. Introduction 
Shell structures have been widely utilized for automobile, train, airplane, architecture structure and so on. For 
instance, structures for energy absorption sometimes called crash box are attached to the end of an automobile or a 
train. Suspensions of automobiles are generally required to maximize the reaction force towards to an unexpected 
load. Moreover, structure dumpers are developed to absorb a seismic energy by the plastic deformation in the 
design of civil structures or buildings. Material nonlinearity and geometrical nonlinearity should be concerned in 
these design problem with large deformation and elasto-plasticity.  
Some shape optimization methods concerning with material nonlinearity or geometrical nonlinearity have been 
published. Kaneko et al. [1] implement size optimization concerned with material non-linearity that is not 
path-dependent toward direct proportion load. And, Ryu et al. [2] showed sensibility analysis method for size 
optimization concerned with material non-linearity that is not path-dependent by the direct differentiation method. 
Thus, Ihara et al. [3] proposed a nonparametric design method for the compliance minimization problem 
concerned with material nonlinearity and the displacement control problem concerned with geometrical 
nonlinearity. Shintani et al. [4] proposed a solution method based on the H1 gradient method for the mass 
minimization problem of 3D suspension parts subjected to the reaction force constraint.  
In ours previous research, one of the authors proposed a shape optimization method for design of shell structures, 
and applied it to a linear stiffness problem and a linear frequency problem. In this work, we aim at developing a 
shape optimization method concerned with material nonlinearity and geometrical nonlinearity for controlling the 
reaction forces to equal to target values by applying the free-form optimization method for shells. We formulate 
the problem as a distributed parameter system, in which the squared error norm of the reaction forces to the target 
values is minimized under the volume constraint. The optimal shape variation is determined by the H1 gradient 
method for shells. 
In the following sections, domain variation for free-form design and the governing equation of the shell structure 
are described. Then, the formulation of the design problem and the derivation of the shape gradient function are 
presented. After introducing the free-form optimization method in detail, the validity and practical utility of this 
method are verified through several design examples at last.  
 
4. Governing equation for a shell as a set of infinitesimal flat surfaces 
As shown in Fig.1 (a) and (b) and Eqs.(1)-(3), consider that a shell having an initial bounded domain 33  
( boundary of ), mid-area A (boundary of A ) and side surface S undergoes domain variation in the 
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out-of-plane direction to the surface so that its domain, mid-area and side-surface become
s
 , SA  and 

SS , 
respectively.  The notation dA expresses a small area. The subscript s indicates the iteration history of domain 
variation. It is assumed that the plate thickness h keeps a constant under the domain variation. 
 

 

 
Figure 1: Shell as a set of infinitesimal flat surfaces. 

 
The Mindlin-Reissner plate theory is used for concerning plate bending, whereas coupling of the membrane 
stiffness and bending stiffness is ignored. The displacement expressed by the local coordinates 

1,2,3i i
uu  are 

divided in the in-plane directions 
1,2 

u  and the out-of-plane direction 3u , given as 
 

 
where 0 0 1,2 

uu , w  and 1,2  express the in-plane displacement, out-of-plane displacement and 
rotational angle of the mid-area of the plate, respectively. The tensor subscript notation with respect to 

1,2 uses Einstein's summation convention and a partial differential notation for the spatial coordinates 

,( ) ( ) /i ix . 
Then, the weak form of the equilibrium equation for 0( , , )w Uu  can be expressed as  
 

 
where ( ))  expresses a variation. In addition, the bilinear symmetric form ( , )a , ),  and the linear form ( )l )  are 
defined as, respectively. 

 
 

 

1 2 3 1 2 3( , , ) | ( , ) , ( , )
2 2
h hx x x x x A x3 2 h h( , )| ( ) ( )h h((3| ( ))1 2 311 21 2 3 2 21 2 3 ( , )1 2 3 2 2

,,1 2 311 (31 2 311| ( )| ( )| ( )| ( )| ( )| ( )) ,  ( , ),   ( , )
2 2 2 2
h h h hA S A   (1) 

 1 2 3 0 1 2 3 1 2( , , ) ( , ) ( , )u x x x u x x x x x1 2 3( 1 2 32 3u ( , , ), ,1 2 32 32 ( )( )(0 1 2 30 1 2 31 2( )( )0 1 2 31 20 1 2 ( )( 1 2 )1 21( 1 211 (2) 
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where ijS  and ijE  express the 2nd Piola-Kirchhoff stress and the Green-Lagrange strain tensor, respectively. 
In order to assume that the enforced displacement is a monotonous increasing function, , , , 1,2{ ( )}C E  and 

, 1,2{ ( )}SC E  express an elastic tensor including bending and membrane components and an elastic tensor 
with respect to the shear component, which are functions of strain tensor in the total strain theory. 

1,2
ff , 1,2

mm  and q express the in-plane load, the out-of-plane bending moment and the 
out-of-plane load, respectively. 1,2

NN , 
1,2

MM  and Q express the in-plane load, the bending 
moment and the shear force, respectively. 
The enforced displacement 1,2,3{ }i ihh  is divided into components in the in-plane direction 1,2{ }h  and in 
the out-of-plane direction 3h .  
 

 
where 0 0 1,2{ }h huu , hw  and 

1,2{ }h  express the displacement vector in the in-plane direction, the flexure 
and the rotational angles of the mid-area of the plate, respectively. The subscripts of the Greek letters are expressed 
as , , , , 1,2 . 
 
5. Formulation of the reaction forces control problem 
The reaction forces control problem under a volume and the state equation (Eq. (4)) constraints is formulated as a 
distributed-parameter system. The design variable to be determined is the design velocity field V. 
When the NB control points are considered to a shell, the weak form of the equilibrium on pth control point can be 
expressed as Eq. (13) to control the reaction forces. c(p) indicates the weighting coefficient for the pth control point 
in Fig.2. 
 

 
Figure 2: The reaction forces control problem 

 

 
where, ( )( )pI r T  can be expressed as 
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where 1,2,3{ }i irr  expresses the unit vector of the enforced displacement direction. ( ) ( ) ( ) ( )

1,2,3{ }p p p p
i i ij jT S nT , 

( )p
in  and ( )ˆ pT  express the stress vector, the normal vector to the surface and the target force, respectively. M and 

M̂  denote the volume and its constraint value, respectively. Letting 0( , , )wu  and  denote the Lagrange 
multiplier for the state equation and the volume constraint, respectively, the Lagrange functional L associated with 
this problem can be expressed as 
 

 
For the sake of simplicity here, it is assumed that on the sub-boundaries, the non-zero boundary forces 

 andN, Q  M  and the surface forces and qf, m , do not vary with regard to the space (i.e., qf m 0 ). Then, 

using the design velocity field V, the derivative LL  of the domain variation of the Lagrange functional L can be 
expressed as 
 

where , n
A A

G G dA GV dAn V n V . 

 

where n i iV ni iV niiV  and  expresses a shape derivative. H denotes twice the mean curvature of the mid-area. C  is 
the suitably smooth function space that satisfies the constraints of the domain variation. The notations 

andtop btmn   n  denote unit outward normal vectors at the top surface and the bottom surface, respectively, and a unit 
normal vector at the mid-area ( )mid top btmn n = n = n is assumed by Shimoda et al. [5]. 
The optimality conditions of the Lagrange functional L with respect to the state variables 0( , , )wu , the adjoint 
variables 0( , , )wu  and  are expressed as 
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where Eqs. (19) and (20) express the state equation for 0( , , )wu  and the adjoint equation for 0( , , )wu , 
respectively. Eq. (21) denotes the governing equations for the volume constraint. 
Substituting 0( , , )wu , 0( , , )wu  and   determined by these equations into Eq. (17), the material derivative LL  
can be expressed as 
 

 
where coefficient function Gi expresses the shape gradient function, which is used in H1 gradient method for shells. 
 
6. H1 gradient method for shells 
The original traction method was proposed by Azegami in 1994 and developed for free-form shell optimization by 
Shimoda et al. [5]. It is a node-based shape optimization method that treats all nodes as design variables and does 
not require any design variable parameterization. The shape gradient function is not used directly while replaced 
by a distributed force to vary the shape. The governing equation is expressed by Eq. (23).  is introduced to 
control influence range of the shape gradient function.  

 
7. Result of numerical analysis 
FE model consists of constant strain triangle elements. Initial barrel-shaped model is shown in Fig.3. The enforced 
displacement by 1mm is applied at the right edge in the positive X direction and the left edge is clamped in the state 
and adjoint analyses. The objective is to control the reaction force to 5000N at the enforced displacement 1mm. 
And, the volume constraint is set as 1.01 times of initial shape. Both edges of the barrel-shaped model are clamped 
in the velocity analysis. 
 

(a) State analysis                  (b) Adjoint analysis            (c) Velocity analysis 
Figure 3: Boundary conditions 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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Fig.4 shows the iteration histories of objective and volume (a), and reaction force (b). It is clear that the reaction 
force is equal to 5000N at the enforced displacement 1mm. Fig.5 (a) shows the optimized shape at the 100th 
iteration and (b) shows the reaction force-enforced displacement curves. It is confirmed that the reaction force 
changes from 6481N to 5000N at the enforced displacement 1mm. Curvature of the middle part of barrel becomes 
bigger that owns lower stiffness, at which are valid results. 
 

(a)Objective and volume                                               (b)Reaction force 
Figure 4: Iteration histories 

 

 
(a)Optimal shape                             (b)Reaction force-displacement curves

Figure 5: Optimization results 
 
8. Conclusion 
We presented a solution to a reaction force control problem of a shell structure based on the free-form optimization 
method for shells concerned with material nonlinearity and geometrical nonlinearity. With this method, the 
smooth out-of-plane domain variations for controlling the reaction forces to target values can be obtained. The 
results of a barrel-shaped model showed that the smooth optimal free-form shape and stable convergence histories 
were obtained.   
With this method, it is easy to obtain the smooth optimal free-form shapes of shell structures without any shape 
design parameterization, and to control the reaction forces to target values. 
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1. Abstract 
This article discusses the bi-level decomposition approach for the optimization of product families with 
predefined platforms, and the challenge lies in providing an optimal compromise between the competing needs 
of all family members. To improve the efficiency of the optimization process, a new sensitivity-based 
coordination method (SCM) is proposed. The key idea in this approach is that the system coordinator not only 
provides consistent shared variables, but also makes tradeoff between all the products by using of sensitivity 
information. The coordinated shared variables are determined by minimizing performance deviation with respect 
to the optimal solution of subproblems and constraints violation. Each subproblem owns a significant degree of 
independence and can be solved in a simultaneous way. The numerical performance of the proposed method is 
investigated, and the results suggest that the new approach is robust and leads to a substantial reduction in 
computational effort compared with analytical target cascading (ATC) method. Then the proposed methodology 
is successfully applied to the structural optimization problem of wing structures for an unmanned aircraft family, 
which is more complicated and related to practical implementation issues.  
2. Keywords: product family optimization; bi-level decomposition; sensitivity; system coordination; structural 
optimization  
 
3. Introduction 
Due to the highly competitive global marketplace, the contradiction between product variety and development 
and production costs is prominent. Under this backdrop, the product family design has received considerable 
attention from both industry [1] and academia [2, 3] in recent years. 
In general terms, a product family is a group of related products that share a collection of the common elements, 
which called product platform, to satisfy a variety of market niches [4]. The core technology of product family 
design is product platform. Meyer and Lehnerd [5] defined the product platform as the set of parts, interfaces, 
and manufacturing processes that are shared among a set of products and allow the development of derivative 
products with cost and time savings. Jiao et al. [6] and Simpson et al. [7, 8] summarized the relevant 
terminology and applications in detail, respectively. 
The challenge when optimizing a family of products with predefined platforms lies in providing an optimal 
compromise between the competing needs of all family members [9]. The product family problem can be solved 
by one-stage or multi-stage approach. When a product family problem is relatively small, the one-stage approach 
is preferred, as it can yield the best overall performance of the product family because the optimization is not 
partitioned into two or more stages [10]. The dimensionality of one-stage optimization problems is, however, 
considerably higher than in multi-stage approaches and often leads to computational difficulties. While for the 
decomposition-based multi-stage approach, in which the family design problem is partitioned into smaller 
subproblems, the complexity increases only linearly with the number of individual products and is more suitable 
for design of large and complex product families [11]. 
This article discusses the multi-stage approach for the optimization of product families with predefined platforms. 
Fellini et al. [12] pointed out that developing a rigorous global coordination strategy is necessary to increase the 
efficiency and robustness for product family design. Simpson et al. [13] adopted a two-stage approach that the 
product platform is designed during the first stage of the optimization, followed by instantiation of the individual 
products during the second stage. Allison et al. [14] decomposed the family design problem by individual variant, 
and the shared variables were coordinated at system level. Then he applied two decomposition-based method, 
collaborative optimization (CO) and ATC, to the aircraft family problem.  
Some scholars have proposed some new methods to improve the computation efficiency of product family 
optimization. Kokkolaras et al. [15] presented an extended ATC methodology for product family problem. The 
ATC formulation for a single product was extended to a family of products to accommodate the presence of a 
shared product platform and local design targets. Roth and Kroo [16] presented a distributed optimization based 
on CO and ATC, named Enhanced Collaborative Optimization (ECO). The system level optimum is simply the 
average of the responses returned from the subspaces, and subspace’s constraint set includes local constraints 
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and models of constraints from other subspaces. Öman and Nilsson [17] presented a multi-stage method named 
Critical Constraint Method (CCM) for structural optimization of product family problem, in which the problem 
reduction is performed by only considering the constraints that are critical in the optimal solution. 
To improve the efficiency of the system coordinator and reduce the number of iterations needed for convergence, 
in this article a new SCM method is proposed. The key idea in this approach is that the system coordinator not 
only provides consistent shared variables, but also makes tradeoff between all individual products by using of 
sensitivity information to evaluate the performance deviation and constraint violation resulting from sharing. The 
new algorithm is described and tested by a numerical test case and a family of aircraft wing structures design 
example in this paper. 
 
4. Problem formulation 
The family design problem with predefined platforms is formulated as: 

 1 1

find ( )   
min ( ( ), , ( ))
s.t. ( )   ( 1, 2, , )

s li

s l n s ln

i s li

F f f
i = n

x x
x x x x

g x x 0
                       (1) 

where sx  is the vector of shared variables, which are the design variables of platform and shared between all the 
family members. lix is the vector of individual local variables for ith product. ( )i s lif x x  and ( )ig x is the design 
objective and set of constraints for ith product respectively. F is the design objective of the whole product family, 
which is the function of ( )i s lif x x . The product family includes n product variants. 
 
5. Sensitivity-based coordination method 
 

 
Figure 1: Schematic illustration of SCM 

The basic idea of the new method is to provide an efficient system coordinator, so that the optimization process 
can converge with less number of iterations. This is done by decomposing the family problem into several 
subproblems and one system coordinator. Each subproblem is responsible for specifying the variables for one 
family member, and the task of the system level is to coordinate the different design of shared variables obtained 
from subproblems based on sensitivity information. The proposed SCM to solve the product family optimization 
problem defined in Eq. (1) is illustrated in Figure 1 and is here described in detail below. 
 
5.1. System coordinator 
The objective of system level is to ensure that all subsystems use the same values of shared variables sx . As 
each subsystem has very limited knowledge of the status and preferences of the other subsystems, a system 
coordinator with global sense will greatly improve the optimization efficiency. In general, sharing may cause 
deviations from the individually optimized design of subsystems, and inapposite consistency coordination may 
lead to infeasible design or large performance loss for the product variants [18]. The optimal value of 
coordinated shared variables sx  is determined by minimizing the performance deviation with respect to the 
optimal solution of subproblems while remaining in feasible space. 
Formally, the system level is defined as: 

 ,* , *

1 1

find   

min   max( ,0)
ij i

s
n n

i i o
ij

i i g
F F g

g

x
                      (2) 

where ,i oF corresponds to the value of F obtained from the solution of ith subproblem, as described in next part, 
while ,*iF  and *  ( )ij ij ig g g  is the value of F and constraint evaluated at a consistent shared variables sx . 
It can be seen that the system level is an unconstrained minimization problem. A first order Taylor series 
approximation is introduced to evaluate the value of performance deviation and constraints. That is: 
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,* , ,

* ,

( ) ( ) ( , )

 ( ) ( ) ( , )

i si o T o i o o o
s si si li

si o T o o o o
ij ij s is ij si li

F F F

g g g

x x x x

x x x x
                       (3) 

where sx  is the vector of shared variables after coordination, and ( , )o o
si lix x  is the optimal solution of ith 

subproblem. ,si oF and ,si o
ijg is the gradient of F and ijg  evaluated at the optimal design point of subproblem i.  

It easily to find out that the values of shared variables sx  attempt to be closer to the solution of the subproblem 
that objective F and constraints are more sensitive to the change of shared variables. 
 
5.2. Subproblem optimization 
Each subspace optimization problem is responsible for the design of one individual product variant, which 
includes both shared variables six  and individual variables lix . The formulation of subsystem problem, as 
illustrated for the ith subproblem, is shown as follows: 

 2
1 2

find   ( , )

min    ( , , ( , ), , )+ ( )

 s.t.    ( , )

si li

i si li n i s si

i si li

F f f f

x x

x x w x x

g x x 0

2

2
, )+ ( )n i s si)+ ()+ (n, )+ ()+ ()+ ((, )+ ((                      (4) 

where iw  is the vector of penalty weights. The symbol  is used to indicate term-by-term multiplication of 
vectors. The sequence of w  is nondecreasing to guide the optimization process to convergence. 
The system coordinator provides targets for shared variables sx  and the objective value  ( )jf j i  at the optimal 
solution of the other subproblems, which are treated as parameters. The objective of subproblem is a 
combination of the product family objective and a compatibility term. 
 
5.3. Stopping criteria 
The optimization is stopped based on two conditions: The change of the objective value and inconsistency of 
shared variables have to be smaller than defined corresponding critical values.  

 
(k) (k 1)

(k 1) 2
   AND   max( , 1, , )F s is

F F i n
F

, ), ), )), xx x               (5) 

where F is the value of objective function at the optimal point of subproblem optimizations, and F is the 
corresponding stop criterion. isx  refers to the optimal solution of shared variables at subproblem i, and sx  refers 
to the vector of shared variables input from the system coordinator and x is the corresponding stop criterion. 
 
6. Numerical test 
In this section, the numerical behaviour of the SCM is investigated through an analytic test problem. Results are 
compared with those obtained via the ATC approach. The test problem is Golinski’s speed reducer problem [19]. 
The reason for selecting this problem is that each subsystem involves only local and global shared variables, and 
the global objective is a function of the objectives of each subsystem, which are the same as the formulation of 
product family problem defined in Eq. (1). 
According to the design problem defined in [19], the weight, or local objective, of the gear subsystem is 1 1f F , 
and its local constraints are 1 gearg g . The weights for shaft 1 and 2 subsystem are 2 2 4 6f F F F  and 

3 3 5 7f F F F , respectively. Similarly, the local constraints are 2 shaft, 1g g for shaft 1 and 3 shaft, 2g g  for shaft 
2. The optimal result of the original all-in-one problem is F(z)=2994 (rounded) [20].  
 
6.1. Solve via ATC  
The original design problem is decomposed into a two-level ATC formulation with three subproblems. The 
problem decomposition is shown below: 

(1) (1) (1)
1 2 3 1 1 2 3

1 1

1 gear

1 2 3

  find   [ , , ] find [ , , ]
Subproblem 1:     min + ( )  min   = ( )

System Problem:  
s.t.   s.t.   No Constraints

          where  [ ;  ; ] [ ; ; ]

T T
s s

s s s s s s

x x x x x x
f Ff F

x x
cc

g g 0

c x x x x x x 1                 where   s sc x x

    (6) 

where the bracketed top-right index denotes the subsystem at which the shared variable copy is computed, and 
( )c  is the penalty function with a quadratic form, that is 2

2
( ) 2

2
c w c . The formulation of subproblem 2 and 
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3 are similar, thus the vector of shared variables is 1 2 3[ , , ]T
s x x xx . Termination tolerances are set to 

0.03%F  and 0.01x . For all experiments, initial penalty parameters are (1) w 0.1  and 2 . 
 
6.2. Solve via SCM 
SCM uses the same problem decomposition strategy, yielding a system level problem and three subproblems. It 
is not difficult to find that the formulations of the three subproblems are exactly the same as the ATC method, 
while only the system level differs. This can be helpful for us to compare the efficiency of the system levels. The 
termination tolerances and initial penalty parameters are the same as that in the ATC method.  
Convergence is achieved for the same four different starting points, which are shown in the Table 1. It can be 
seen that for the SCM, the convergence requires an average of 1226.5 function evaluations, which highlights an 
average computational saving about 25% over the ATC method. In addition, all the objective values converge to 
the global optimum, which are better and more stable compared with ATC approach. In summary, SCM robustly 
and efficiently solves this test problem. 

Table 1: Solutions via ATC and SCM 

Starting Point Optimum Objective System Iterations Function Evaluations 
ATC SCM ATC SCM ATC SCM 

z=[3.10,0.75,21.50,7.80,7.80,3.40,5.25]T 2996 2994 25 17 1638 1268 
z=[2.60,0.70,17.00,7.30,7.30,2.90,5.00]T 2995 2994 25 17 1636 1192 
z=[3.60,0.80,28.00,8.30,8.30,3.90,5.50]T 2996 2994 25 17 1644 1253 
z=[3.60,0.80,17.00,7.30,8.30,2.90,5.00]T 2995 2994 25 17 1623 1193 

 
7. Wing structures family 
The second problem describes the approach for optimization of wing structures for an unmanned aircraft family 
with reconfigurable wing component, which is more complicated and related to practical implementation issues. 
The aircraft family consists of two variants, A and B, with different aspect ratio. Aircraft A mainly performs the 
dash mission with a low aspect ratio wing, while aircraft B mainly performs the surveillance mission with a high 
aspect ratio wing. The wing structure of aircraft A is adopted by aircraft B as inner wing section, which means it 
is a shared component in the aircraft family. The mission requirements and reference wing properties are 
summarized in Table 2 and Figure 2(a). 

Table 2: Aircraft design parameters 

Parameter Aircraft A Aircraft B 
Maximum takeoff weight [kg] 3000 3000 
Cruise altitude [m] 7000 12000 
Cruise speed [Mach] 0.8 0.23 
Wing span [m] 6.52 16.8 
Leading edge sweep [deg.] 20 20 
Aspect ratio 4 12 
Max load factor [G] 12 2.5 

 
(a) 

 
(b) 

Figure 2: Planform and finite element models of the two aircraft wings 

The wing structures are modeled consisting of spars, ribs, and skin panels, as showed in Figure 2(b). The skin 
panels, spar webs and the ribs are modeled as shear panels, and the spar caps as rod elements. All these elements 
can be designed, whereas the leading edge, trailing edge and ribs are not designed. The goal of the wing 
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structural optimization problem is to minimize the weight of the wing structure subject to stress and deflection 
constraints. The shape function linking method is adopted to reduce the number of design variables, and the 
value of linear function at a certain location determines the value of the property of that specific element. To 
simplify the computation, the span-wise distribution of the air load is based on Schrenk load distribution. 
The upper and lower skin of wing box is subdivided into 2 regions by the spars, respectively. As the wing A is 
shared as the inner wing section of wing B, the shape function of wing B uses two independent linear functions 
to determine the size of each component, thus each component’s shape function is determined by the property of 
elements at four locations, which means that there are 4 design variables for each component. As we can see 
from Table 3, there are 40 design variables in total for wing B, in which the Location 1 refers to wing root, 
Location 2 and 3 refer to the separation surface, and Location 4 located at wing tip. While for wing A, only the 
design variables at Location 1 and 2 are included, that is 20 variables in total. The individual optimal design 
problem for wing structure A and B is formulated as: 

max max

min min

find find

 A:      
( ) ( )min min

222 MPa 267 MPas.t. s.t.
167 MPa 200 MPa

22

 B:    

6 mm 840 mm

A B

A A B Bm m
x x

x x
                              (7) 

where m  is the weight of wing, and 1 20[ , , ]T
A A Ax x20, ]T

A20202x and 1 40[ , , ]T
B B Bx x40, ]40

T
B404044x . max and min are the 

maximum tensile and minimum compression stresses, respectively. is the maximum deflection at wing tip. 
It is assumed that the structures are manufactured from aluminum with a density of 2.7 g/cm3 and an elasticity 
modulus of 7.0 104 MPa. The optima of individual design for wing A and B are 43.89 kg and 92.28 kg, 
respectively. The objective for the wing structures family is defined as the sum of normalized weight, that is: 

43.89 92.28( ) ( )A A B BmF mx x                                               (8) 
As mentioned above, the vector of shared variables can be denoted as 1 20 1 20[ ] [ ]T T

s A A B Bx x x x] [ ]T T[ ]A B B20 1 2020 1 20] [] []20 1 220 1]x . Wing A 
has no individual variables, and the individual variables for wing B are 20 40 [ ]T

lB B Bx x ]T
B40404x . 

Implement the proposed methodology to solve this design problem. The optimization converged after 11 
iterations with a value of 2.219. The design results are presented in Table 3. 

Table 3: Wing structures design results of aircraft family 

Components 
Location & Variable Values 

Wing Structure A Wing Structure B 
1 2 1 2 3 4 

Front spar [mm2] 171.68 135.40 171.68 135.40 148.50 50.00 
Internal spar [mm2] 198.77 122.69 198.77 122.69 121.37 50.00 

Rear spar [mm2] 71.79 56.57 71.79 56.57 50.00 50.00 
Front upper skin [mm] 3.84 2.51 3.84 2.51 2.79 0.55 
Front lower skin [mm] 2.37 2.44 2.37 2.44 3.00 0.50 
Rear upper skin [mm] 3.10 1.75 3.1 1.75 2.30 0.50 
Rear lower skin [mm] 2.06 0.83 2.06 0.83 1.59 0.50 

Front web [mm] 1.92 1.09 1.92 1.09 1.00 1.00 
Internal web [mm] 1.22 2.00 1.22 2.00 1.00 1.00 

Rear web [mm] 1.77 1.08 1.77 1.08 1.00 1.00 
Weight [kg] 51.66 96.13 

 
It can be seen that both wing A and B pay a price due to the commonality decision of sharing components. 
Compared with the individual design results, the increased weight for two wing structures are 7.77 kg and 3.85 
kg, respectively. The weight of wing A increased more than that of wing B, this is due to the fact that the wing 
tip area for aircraft A needs to support the load on the outer wing section when it is used as inner wing section on 
aircraft B. In addition, for wing B, it is important to note that the designed property on the outer wing section is 
larger than the values on inner wing section for part of components. The reason is that the inner wing section is 
shared by the two family members, to satisfy the deflection constraint at wing tip for wing B, increasing the 
stiffness of outer wing section leads to less increment of design objective F than that of inner section. 
 
8. Conclusions 
This article discusses the bi-level decomposition approach for the optimization of product families with 
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predefined platforms. For decomposition-based method, a system coordinator with global sense will greatly 
improve the optimization efficiency. Based on this consideration, a new SCM is proposed is in this article. 
The innovation of the new method is the system coordinator, which not only provides consistent shared variables 
to subsystems, but also does the tradeoff between the all subsystems by the use of sensitivity information. The 
shared variables are determined by minimizing the total performance deviation with respect to the optimal 
design of each subproblems and constraints violation incurred by sharing. The first order Taylor series 
approximation is introduced to evaluate the values of performance deviation and constraints violation. 
As many other decomposition-based methods, the family design problem is decomposed naturally by individual 
product. This decomposition by product variant provides many benefits, such as simplifying the analysis 
integration, reducing problem complexity, and enabling concurrent design of all product variants.  
Results from the numerical test problem suggest that SCM can robustly and efficiently solve the test problem, 
which performs better than the ATC method. In addition, both the formulations of SCM and numerical test 
suggest that the SCM is also suitable to the MDO problems that the subsystems are only linked through a 
number of shared variables. This article also illustrates the successful application of SCM to the structural 
optimization problem of wing structures for an unmanned aircraft family.  
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1. Abstract
Many commercial automobile industries are seeking to design the automobile structure for improvement of 
passenger safety as well as reduction of the mass of the automobile.  Optimization can be employed to 
accommodate the crash environment.  The automobile crash optimization problem has large nonlinearity in 
analysis while the analysis is carried out in the time domain.  Although the performance of the computer has been 
significantly improved, automobile crash optimization still needs considerable computational cost.  The equivalent 
static loads (ESLs) method has been developed for such nonlinear dynamic response structural optimization.  The 
ESLs are static loads that generate the same displacement in the linear static analysis as those of the nonlinear 
dynamic analysis at a certain time step.  The ESLs are generated at all the time steps and used as multiple external 
forces in linear static response structural optimization.  Nonlinear analysis and linear static response optimization 
using ESLs are carried out sequentially until the convergence criteria are satisfied.  A new ESLs method is 
proposed for automobile crash optimization and the proposed method is verified using two practical examples.  
Crash optimization under a frontal impact performed to minimize the mass, and the thicknesses of the structure are 
determined to satisfy the relative distance constraints.  The side structure of an automobile is optimized under a 
side impact test.  The mass is minimized while the regulation of Insurance Institute for Highway Safety (IIHS) is 
satisfied.  The regulation is the limit of the maximum intrusion that is the relative distance between the B-pillar and 
the center line of the seat.  The resultant designs are discussed from a practical viewpoint. 

2. Keywords: Structural optimization, equivalent static loads (ESLs), frontal structure, side impact test, moving 
deformable barrier (MDB). 

3. Introduction 
Automobile safety regulations have become more stringent in the last decades.  Many automobile industries are 
seeking to design the automobile structure for safety as well as reduction of the automobile mass.  It is well-known 
that the mass of an automobile is one of the important factors for the fuel cost.  Automobile structural optimization 
has been utilized to minimize an objective function such as mass while the conditions for safety are satisfied [1].  
Automobile crash optimization generally uses nonlinear dynamic analysis that has large nonlinearity in the time 
domain.  Therefore, optimization techniques for crash optimization should be able to address the nonlinearity in 
the time domain with an appropriate manner. 
Automobile industries are trying to utilize a high-fidelity model in structural optimization.  An intuitive design 
based on the designer's experience has been popularly utilized.  The conventional optimization paradigm is 
difficult to use for crash optimization due to extremely high cost.  Meta-models are actively used for optimization 
with approximated functions to save the cost [2-4].  The meta-model approaches vary depending on the sampling 
method, fitting function or interpolation function, and the optimum solution depends on the selection of a method.  
When the number of design variables is large, the number of sampling, i.e., the number of nonlinear dynamic 
analyses can be quite large.  The equivalent static loads method (ESLM) has been utilized to save the 
computational cost as well as to use a gradient-based optimization process. 
Since the ESLM was introduced by Choi and Park in 1999 [5], it has been applied to various practical examples 
[6-9].  Two domains such as the analysis domain and the design domain are defined.  In the analysis domain, 
nonlinear dynamic analysis is performed, equivalent static loads (ESLs) are generated by using the displacement 
output of the analysis domain, and linear static structural optimization is carried out using the ESLs in the design 
domain.  Generally, the finite element (FE) models of the two domains are the same.  An FE model for crash 
analysis may not have boundary conditions; however, an FE model for linear static structural optimization requires 
boundary conditions.  A novel method is proposed to solve this discrepancy by using the inertia relief technique 
[10] when using the ESLM.  The proposed method is validated by solving two practical examples.  The two 
examples are optimizations of a frontal structure and a side structure.  Optimization of the frontal structure is 
carried out under the low speed impact test protocol of the Electronic Code of Federal Regulations (e-CFR) [11] 
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and side impact optimization is carried out based on the IIHS [12].  Nonlinear dynamic analysis is carried out using 
LS-DYNA 971 [13], linear static response structural optimization is conducted by using NASTRAN SOL 200, and 
calculation of ESLs is utilized using NASTRAN DMAP [14].  A computer program is developed for optimization 
with ESLM [15]. 

4. Test protocol of crash analysis 
4.1. Frontal structure 
An important function of an automobile frontal structure is to absorb impact energy.  It reduces the physical 
injuries to passengers as well as damages to the interior of the engine room.  There are two kinds of the low speed 
impact test of the e-CFR.  One is the pendulum impact test and the other is the barrier impact test.  In the pendulum 
impact test, a frontal structure is fixed at the rear end and the pendulum impacts the frontal structure.  In the case of 
the barrier impact test, the frontal structure impacts a fixed rigid wall at a low velocity of 8 km/h.  Jeong et al. 
performed crash optimization using the pendulum impact test [8].  In this research, the barrier impact test is 
utilized.  Thus, the finite element model does not have any boundary conditions in nonlinear dynamic analysis.  
The finite element model is divided into 29 parts that has the 8,526 finite elements, and the total mass is 16.16 kg.  
The specific sizes of the frontal structure are illustrated in Figure 1 a). 

4.1. Side structure 
According to the side impact test protocol of the IIHS, the side impact test uses a motionless test automobile 
impacted by an IIHS moving deformable barrier (MDB).  The mass of MDB is 1,500 kg, and the MBD impacts at 
a velocity of 50 km/h.  In this research, the structural rating of IIHS is utilized.   For example, it is evaluated as 
‘good’, if the distance from the B-pillar point with maximum intrusion to a seat centerline is greater than 125mm.  
The finite element model is from the National Crash Analysis Center [16], which is the Yaris model from Toyota.  
The total number of finite elements is 974,445 and the total mass is 1,247 kg.  The FE model of IIHS MDB is 
provided by the Livermore Software Technology Corporation [13].  Figure 1 b) shows the FE model with MBD.   
In the initial side impact simulation, the maximum distance between the deformed B-pillar and the seat centerline 
is 122.49 mm.  In other words, the initial design would receive a nearly ‘good’ structural rating. 

5. Equivalent static loads method for nonlinear dynamic response structural optimization 
The schematic view of the two domains is presented in Figure 2.  In the analysis domain, nonlinear dynamic 
response analysis is carried out.  Then ESLs are generated. In the design domain, generated ESLs are applied as 
external loads in linear static response structural optimization.  The process of ESLM is repeated until the 
convergence criterion is satisfied.  The repeated process is called a design cycle.
The process of calculating ESLs is described in detail.  Eq.(1) is the governing equation of nonlinear dynamic 
response analysis.

N N N( , ( )) ( ) ( , ( )) ( ) ( ) ( 0, , )t t t t t t l+ = =M b z z K b z z f (1)
where nRb  is the design variable vector, n is the number of design variables, M  is the mass matrix, N ( )tz  is 

Figure 2: Schematic view of the equivalent static loads method 

Figure 1: Finite element model: a) a frontal structure, and b) a side impact test  

412mm 

762mm

1,127mm 

Rigid wall a) b)
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the acceleration vector, K  is the stiffness matrix, N ( )tz  is the displacement vector, and ( )tf  the is dynamic load 
vector, subscript N  means that it is from nonlinear analysis, t  is time and l  is the number of time steps.  
The following equation is the governing equation of linear static analysis:

L ( ) =K b z f  (2) 
where the subscript L  means that it is from linear analysis, z  is the displacement vector and f  is the force vector.  
The displacement vector z  is replaced by N ( )tz  to calculate ESLs in the following equation: 

eq L N( ) ( ) ( ); 1,...,s t s l= =f K b z  (3)
Thus, the ESLs vector eq ( )sf  is calculated as the product of linear stiffness matrix L ( )K b  and the displacement 
vector N ( )tz .  Since the number of sets of ESLs is the same as that of time steps, the notations s  and t  exactly 
correspond.  Finally, ESLs are applied as multiple loading conditions for linear static response structural 
optimization.  
The overall process is as follows: 

Step 1. Set the initial design variables (cycle number: 0k = , design variables: ( ) (0)k =b b ).
Step 2. Perform nonlinear dynamic response analysis with ( )kb .
Step 3. Calculate the ESLs using Eq.(3). 
Step 4. Solve the linear static response structural optimization problem with ESLs using inertia relief 

analysis.  Since the structures have no boundary conditions, the inertia relief technique is utilized 
[10].

Step 5. When 0k = , go to Step 6.  When 0k > , if the convergence criterion is satisfied then terminate the 
process.  Otherwise, go to Step 6. 

Step 6. Update the design variables, set 1k k= + and go to Step 2.

6. Automobile crash optimization using equivalent static loads 
6.1. Frontal structure 
Figure 3 shows the 28 design variables among 29 parts and three grids that are utilized for the displacement 
constraints.  The objective function is the entire mass of the structure, and size optimization is carried out.  The 
displacement constraints are defined using the distance from A  to C  and B  to C .  Using the displacement 
constraints, the bumper intrusion is constrained.  The bound for the constraint is 140.5 mm that is the result of the 
initial nonlinear dynamic analysis.  

Figure 3: Design variables of a frontal structure and grids of displacement constraints 
Grid A 

Grid B 

Grid C 

Figure 4: History of objective function and constraint violation of a frontal structure 
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Design formulation is as follows: 
 Find  ( 1,2,...,28)ib i =  (4) 
 to minimize mass  (5) 
 subject to x,A x,C 140.5mm  (6) 

x,B x,C 140.5mm (7)

0.7 mm 2.5mmib  (8) 
where ib is the i th design variable that is thickness, and x,A , x,B , and x,C  are the displacements of grids A, B, 
and C, respectively.  
Figure 4 shows the history of optimization.  The process converges to the optimum solution in the 21st cycle.  The 
mass is reduced by 38% from 16.16 kg to 9.98 kg while the displacement constraints are satisfied. 

6.2. Side structure 
The selected eight parts in Figure 5 are divided into the B-pillar and the roof rail.  As shown in Figure 5, a plane is 
derived using three grids on the seat centerline.  The design formulation is defined as follows: 
 Find  ( 1,2,...,8)ib i =  (9) 
 to minimize mass  (10) 
 subject to B pillar,max 125mm  (11) 
As shown in Figure 6, the optimization process under the side impact test converges in the 6th cycle.  The mass is 
decreased from 18.35 kg to 15.29 kg.  Table 1 shows the history of eight design variables.  The parts of roof-rail, 
DV1 to DV 3, do not have a significant effect on the side impact test.  

7. Conclusions 

a) ISO view a) YZ Plane view

B pillar,max

Plane

Seat

Centerline

B pillar,max

Grids: 

Figure 5: Reference points of the displacement constrant for the side structure 

DV4

DV2
DV3

DV8

DV7

DV5

DV6

DV1

Figure 6: History of objective function and constraint violation of a side structure 
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Table 1: Comparison of thickness of the initial and the optimum 
Cycle
No. DV1 DV2 DV3 DV4 DV5 DV6 DV7 DV8 

Initial 1.069 1.069 1.069 0.990 2.560 2.120 1.190 2.120 

Optimum 0.500 0.500 0.500 0.606 2.016 1.589 1.288 1.577 

Nonlinear dynamic response structural optimization of high-fidelity finite element model seems to be almost 
impossible in conventional gradient based optimization due to high nonlinearity and time-dependent behavior.  In 
this research, crash optimization with the barrier impact test and the side impact test is carried out using ESLM.  
The inertia relief technique is utilized to avoid singularity that can occur in linear static response structural 
optimization.  Practical examples are solved by the proposed method.
Crash optimization of a frontal structure is carried out to determine 28 design variables.  The optimum thickness is 
derived by performing 22 nonlinear dynamic analyses.  The displacement constraint is satisfied and the mass is 
reduced by 38%.  Crash optimization of a side structure is also carried out for 8 design variables.  The process 
converges in the 6th cycle while the displacement constraint of IIHS is satisfied.  The mass is decreased by 17%.  It 
is noted that the design variables of the roof-rail converge to the lower bound.  If the roof crush test is considered, 
the optimum values can be different.  In future research, considering various crash tests is necessary.  
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1. Abstract
Optimal operations of heat exchanger networks (HENs) are of great significance to energy conservation. As one of 
the most efficient methods to reduce the running costs of HENs, the pressure differential set points control strategy 
has been widely applied in practice, where the optimal pressure differentials of different sections are obtained by 
suitable empirical and mathematical models, and then the optimal pressure differentials are passed to control 
systems to guide the operations of each component. Most control systems in these methods are indirect control 
strategies. That is, it will take a long time to seek the operating parameters of each component due to the lack of 
direct operating parameters. Based on the newly proposed thermal resistance-based optimization method, we 
introduce a direct optimal control strategy for adjustable valves in HENs to obtain the optimal valve openings 
directly with the full awareness of HENs in physics. Finally, we take a variable water volume chiller system as an 
example to validate the proposed control strategy. Groups of experiments and the results illustrate the proposed 
direct valve control strategy of the HEN. 
2. Keywords: heat exchanger networks; energy conservation; valve opening; control strategy. 

3. Introduction 
Heat exchanger networks (HENs) take the main components and cost large proportion of energy consumption in 
many engineering fields, such as power plant and chemical industries. Energy conservations demands the 
optimizations of HENs, where adjustable valve is an efficient way for HENs optimal control [1]. 
The main control method of adjustable valve focuses on the pressure differential set points control strategy. For 
instance, Wang et al. [2] proposed a pressure set point control method for an indirect water-cooled chilling system, 
and Lu et al. [3] raised a optimization method for a heat, ventilation and air condition (HVAC) system with the 
duct differential pressure set point. Besides, pressure differential of other set points also work in the optimal 
operating of HENS, such as the pressure differential of secondary VSP [4, 5], the fan static pressure [6], and the 
pressure drop through the heat exchanger [2]. 
However, the direct control parameters in a HEN are the opening of valves, rather than the set points of pressure 
differentials. With these optimal set points, it is unavoidable to control the valve openness by seeking the help of 
some control strategies, such as the PID controllers [3, 4, 7], the direct digital control (DDC) strategies [8], the 
online control strategies [9], and the feedback [10] or self-turning control strategies [11, 12]. 
Actually, the aforementioned methods with the optimal set points and the control strategies divide the optimization 
into two sequential steps virtually. One is to get the optimal set points to satisfy the requirements, and the other is 
to achieve these set points by regulating the valves through control strategies. However, these two sequential steps 
separate the influences of the valves and pipelines characteristics out of the global system performance, and 
consequently narrow down the range of the optimization results artificially. What’s more, the control strategies 
require more or less setting time [13, 14]. The set points are only controlled close to but not indeed the optimal 
values, and incessantly varied within a range, which is influenced by the controller [15, 16]. 
In order to directly obtain the optimal valve openness for each pipeline, Chen et al. [17] provide a thermal 
resistance-based method for HEN optimization, which links the operating parameters, i.e. the valve openness, 
directly to the requirements, such as the required heat transfer rate and the surrounding temperature, and the 
performance of each component, including the heat exchanger thermal conductances, the pump characteristics, 
and the pipeline characteristics. 
This paper provides an effort to obtain the direct optimal openness of the adjustable valves for HEN optimizations, 
avoiding the inconvenient control strategies with intermediate set points values. Based on the physical models of 
heat exchangers, pumps, and pipelines, we first fit the thermal conductances of heat exchangers and the 
characteristic parameters of pumps and pipelines in a VWV HEN by a series of experiments. With these fitted 
physical models, utilization of the thermal resistance-based optimization method directly offers different optimal 
valve openness under different operating conditions. Experimental measurements of the HEN performance 
illustrate that the optimized valve openness indeed lead to the lowest total energy consumptions of the HEN under 
different operating conditions. 
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4. Experiment facilities and measurement instruments 
Fig.1 gives the sketch and the photo of an experimental HEN studied in this paper, consisting of two counter-flow 
plate heat exchangers, three adjustable valves (AV), three variable speed pumps (VSP), a thermostatic hot water 
tank, a chiller, and pipelines wrapped up with thermal insulating materials. The working fluids in Loop 1 and 3 are 
water, and that in Loop 2 is a refrigerant R142b. The pumps drive the working fluids to circulate in each loop, 
transferring heat in the thermostatic hot water tank through heat exchanger 1, heat exchanger 2, finally to the 
evaporator of the chiller. Three turbine volume flow-meters (VFM) with an accuracy ±0.5% of the full scale 20 
L/min are utilized to measure the fluid flow rates in three loops. Three differential pressure transducers (DPT) with 
an accuracy ±0.2% of the full scale 350 kPa are employed to measure the pressure differentials of each VSP. A 
pressure gauge (PG) with the full scale 1.8 Mpa is equipped in Loop 2 to monitor the refrigerant absolute pressure. 
T type copper-constantan thermocouples (Produced by Omega Engineering) with an accuracy ±0.2 oC serve to test 
the working fluid temperatures in each measurement points shown in Fig.1, where two thermocouples are placed 
in each point for accuracy. The subscript w and r represent water and refrigerant, i and o mean the inlet and the 
outlet of heat exchangers, and 1, 2 and e stand for heat exchanger 1, heat exchanger 2 and the evaporator, 
respectively. In addition to the measuring instruments, the experiment system also contains a data acquisition and 
control system (DACS) to log the measured data, including volume flow rates, pressure differentials and 
temperatures, and control the components, such as the openness of the AVs and the water temperature of the tank. 

Heat Exchanger 1

Heat Exchanger 2

Evaporator

Tank

Tw1,i Tw1,o

Tr1,o Tr1,i

Tr2,i Tr2,o

Tw2,o Tw2,i

Twe,i Twe,o

Te Te

VSP1

VSP2

VSP3

DPT 1

DPT 2

DPT 3

VFM 2

VFM 1

VFM 3

PG

MV 1

MV 2

MV 3

DACS

Chiller

Fig.1 The sketch of a variable water volume heat exchanger network and the photo of the experiment facility 

5. Physical models of each component 
5.1 Physical models of heat exchangers 
For the counter-flow heat exchangers, i.e. heat exchanger 1 and 2, the entransy dissipation-based thermal 
resistances are [18] 

( ) ( ) ( )
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where R is the entransy dissipation-based thermal resistance,  is the flow arrangement factor of a heat exchanger, 
k is the heat transfer coefficient, A is the heat transfer area, m is the mass flow rate, and cp is the constant pressure 
specific heat. The subscripts hx1 and hx2 represent heat exchangers 1 and 2, and the numbers 1, 2, and 3 represents 
the liquid driven by the pump1, pump2, and pump3, respectively. 
By assuming the evaporation temperature constant, the physical model of the evaporator is [18] 
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where the subscript e stands for the evaporator. 
Similarly, the entransy dissipation-based thermal resistance for the mixing process of the cooled hot water and the 
tank water gives [18] 

1, 1,

1 ,1

1
2 2

w i w o
m

p

T T
R

Q m c
= = , (4)

where the subscript m means the mixing process. 
5.2 Physical models of pumps 
For a pump operating in a given speed, the mass flow rate m, and the head loss or the pressure drop H obey the 
following formula [19, 20] 

2

0 1 2 2= + +
m mH a a a , (5) 
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where a0, a1, a2 are the characteristic parameters of pump, which can be identified by experimental data, and  is 
the working fluid density.  
Without considering the mechanical losses, the power consumption of the pump is represented as 

=P mgH . (6)
5.3 Physical models of pipelines with an adjustable valve in different openness 
The head loss or the pressure drop of the pipelines with an adjustable valve in different openness, is calculated by 
[21]

= + +s d vH H H H , (7)
where Hs is the static head that the pump needs to lift, Hd is the dynamic head, and Hv is the head loss caused by the 
adjustable valve. 
The dynamics head of the pump is expressed by [22] 

2
2 2

1,
2

= = +d i
fLH dm d K

g S D
, (8)

where f is the Darcy friction-factor, L is the length of pipe, D is the pipe diameter, and K is the minor loss 
coefficient of the detail structure. 
Assuming the valve openness in the given pipeline is c, the additional head loss caused by the valve, i.e. Hv, can be 
seen as a sudden contraction expressed as [22] 

( ) ( )2 2
1 21 1= +vH b c b c m . (9)

where b1 and b2 are the coefficients, which are related to the size of the valve and the pipelines. 
Then the pipeline head loss with a valve openness being c follows 

( ) ( )2 2
1 21 1sH H d b c b c m= + + + . (10)

6. Determination of the characteristic parameters of each component 
In order to identify the thermal conductances of heat exchangers, the characteristic parameters, a0, a1 and a2 in Eq. 
(6), of pumps, and the characteristic parameters, Hs, b1, b2, and d in Eq. (12), of pipelines, a group of experiments 
are conducted. In the experiments, the proprieties of water and R142b are assumed constant. The water average 
density is 1000 kg/m3, and the water constant pressure specific heats is 4196 J/(kg K). The absolute pressure of 
Loop 2 is 0.47 MPa. In this condition, by referring to NIST-Refprop, the average density of R142b is 1100 kg/m3,
and the constant pressure specific heat is 1304 J/(kg K). (300 K ± 10 K, saturated liquid). 
6.1 Experiment to determine the thermal conductances of heat exchangers  
We set the operating frequencies of pump1, pump2, and pump3 at 30, 40 and 20 Hz, respectively, the temperature 
difference of the thermostatic hot water tank and the evaporating temperature is kept as 40 oC. Under this working 
condition, we operate the experiment system at steady-state condition for 30 minutes, which are monitored by the 
DACS. Table 1 offers the thermal conductances of all heat exchangers in this operating condition. 
Table 1 The thermal conductances of each heat exchanger 

kA (kA)1 (kA)2 (kA)3
Value(W/K) 219.3 196.7 53.2 

Because the thermal conductances are influenced by the fluid velocities, it is need to re-calculate the thermal 
conductances case by case with different working parameters. 
6.2 Experiments to identify the characteristic parameters of pumps 
The working point of each pump is determined by the mass flow rate and the head loss with the relation given in 
Eq. (5). We preform experiments with the three pumps at given rotation speeds, i.e. 30 Hz, 40 Hz and 20 Hz, 
respectively, and change the opening of the adjustable valves at 100%, 80%, 60%, 50%, 40%, 30% and 20%, 
sequentially. The average mass flow rates, the head losses of each pump and the fitted m-H curves are given in 
Fig.2. The points exp1, exp2, and exp3 represent the experiment data, and the dash lines fit1, fit2, and fit3 stand for the 
fitted m-H curves, respectively. Table 2 exhibits the characteristic parameters of the pumps and the maximum 
deviations between the experimental data and the fitted values, max.
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Fig. 2 The experiment data and the fitted curves of each pump at given speed 
Table 2 The characteristic parameters of pump s and the maximum deviations 
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Pump a0 a1 a2 max
pump1 13.4 -32.6 -567.4 0.55% 
pump2 5.1 -9.8 -141.5 3.73% 
pump3 11.6 -18.5 -261.2 1.29% 

The maximum deviations between the experiment data and the calculated values of pump1, pump2, and pump3 are 
5.31%, 4.95% and 5.17%, in sequence. 
6.3 Experiments to identify the characteristic parameters of pipelines with different valve openness 
For identifying the characteristic parameters, i.e. Hs, b1, b2, and d. We conduct experiments at 100 %, 50 %, 75 %, 
25 % opening of the adjustable valve and with the valve openness of the VSPs at 50 Hz, 45 Hz, 40 Hz, 35 Hz, 30 
Hz, 25 Hz and 20 Hz, sequentially. Fig.3 offers the averaged mass flow rates, the head losses of each pipeline and 
the fitted or calculated m-H curves of each pipeline, respectively, where the subscript exp means experimental 
values, fit represents the fitted values, and cal stands for the calculated values. Table 3 lists the characteristic 
parameters of the pipelines, and the maximum deviations between the experiment data and the fitted values. 

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11
0

5

10

15

20

25

30

35

40

H
1/m

m1/(kg/s)

exp 100%
fit 100%
exp 75%
fit 75%
exp 50%
cal 50%
exp 25%
cal 25%

0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12
2

4

6

8

10

 

 
H

2/m

m2/(kg/s)

exp 100%
fit 100%
exp 75%
fit 75%
exp 50%
cal 50%
exp 25%
cal 25%

0.050 0.075 0.100 0.125 0.150
0

5

10

15

20

25

30

 

 H
3/m

m3/(kg/s)

exp 100%
fit 100%
exp 75%
fit 75%
exp 50%
cal 50%
exp 25%
cal 25%

Fig. 3 The experiment data and the fitted curves of Loop 1 at different opening of the adjustable valve 
Table 3 The characteristic parameters of pipelines and the maximum deviations 
Parameter Hs d b1 b2 max
Loop 1 0.569 2623.55 3099.3 2327.3 0.55% 
Loop 2 0.358 1205.17 757.3 567.9 3.73% 
Loop 3 0.1 413.04 711.4 536.0 1.29% 

7. The thermal resistance-based method for HEN optimization 
Based on the physical models of heat exchangers in Part 3.1, combining Eqs. (1) ~ (4) offers the inherent relation 
of the heat transfer processes in the entire experiment system [17, 18]: 

( )1 2= + + +h e m hx hx eT T Q R R R R . (11)
For a VWV HEN with given pipeline structures, pumps, valves and heat exchangers, it is always needed to seek 
the optimal operating parameters of each valve for such objective as the minimum total power consumption of all 
pumps, at a fixed heat transfer rate, which is relevant to the running cost. With the power consumption of a pump 
given in Eq. (6), ignoring the mechanical losses, the total one of all pumps is 

= =t i i i
i i

P P m gH . (12)

The optimization for minimizing the total power consumption of all pumps, with the constraints expressed in Eqs. 
(5), (10) and (11), can be converted as a conditional extremum problem by the method of Lagrange multipliers, 
which provides a Lagrange function as 
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1 2
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H d m b c m b c m H

m ma a a H i

, (13)

where ,  and  are the Lagrange multiplies. 
Making the partial derivations of the Lagrange function with respect to mi, ci, and Hi equal to zero offers the 
optimization equation set. Solving the equation set and Eqs. (5), (10), (11) simultaneously will get the optimal 
values of all the unknown parameters, including the openness of the adjustable valves, for the minimum total 
power consumption. 

8. Experimental results and discussions 
Based on the optimal openness of the adjustable valves for the given heat transfer rate and the referenced thermal 
conductances, we operate the experiment system at steady-state for 30 minutes. The DACS records temperatures 
and volume flow rates of each measurement point, and averaged values can be obtained. Since the thermal 
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conductance varies with different fluid velocities, it is necessary to compare the actual thermal conductances to the 
referenced ones during optimization, to ensure these valve openness being the optimal ones by eliminating the 
influences to the thermal conductances from different fluid velocities. If the thermal conductances deviations 
between experimental values and the referenced ones are within 5%, which is thought as the measurement 
uncertainties, experiment in that case is regarded as the one with optimal openness of the adjustable valves. 
Otherwise, optimization calculations should be made again with the newly experimental thermal conductances 
values, until deviations are within 5%. Obviously, the heat transfer rates by the experiment should be near the 
given heat transfer ones within the measurement uncertainties. To make it clear, the flowchart of this procedure is 
as below 

Constraints

Optimization Calculations

Optimal Openness

Experiment

Experimental Thermal 
Conductances (kA)exp

Optimal Case

Yes

(kA)exp

Referenced Thermal 
Conductances (kA)ref

( ) ( )
5%

( )
refexp

ref

kA kA

kA

No

Fig.4 The flowchart of the optimization procedure used for finding actual optimal cases 
8.1 Experiments with the optimal valve openness 
When the heat transfer rate is fixed at 1000 W, and the temperature difference of the thermostatic hot water tank 
and the evaporating temperature is kept as 40 oC, solving Eqs. (5), (10), (11), and the equation set from the 
Lagrange function gives the optimal valve openness with the lowest total power consumption.. Table 4 exhibits the 
average temperatures at each measurement point, and the average volume flow rates and the corresponding mass 
flow rates in each loop with the optimal valve openness. 
Table 4 The optimal valve openness of the adjustable valves 

Openness c1 c2 c3
Value (100%) 53% 56% 45% 

The average heat transfer rate is 1016 W. The maximum deviation to the average value is 1.28% from heat 
exchanger 1 (1003 W), and the maximum deviation to the target value 1000 W is 2.70% from evaporator, which 
are within the measurement uncertainties. Table 5 provides the experimental results of the head losses, the power 
consumptions of each pump and the corresponding total power consumption of all the pumps. 
Table 5 The experimental results of the head losses, the power consumptions of each pump and the corresponding 
total power consumption of all the pumps 

Parameter H1(m) H2(m) H3(m) P1(W) P2(W) P3(W) Pt(W) 
Experiment value (W/K) 10.57 7.38 4.36 4.95 6.98 1.89 13.82 

8.2 Experiments with other alternative operating frequencies 
Alternative experiments with the valve openness listed in Table 6 can also satisfy the same requirements, i.e. the 
heat transfer rate 1000 W, the temperature difference of the thermostatic hot water tank and the evaporating 
temperature 40 oC. Table 7 offers the energy consumptions of all the pumps in different alternative experiments. 
Table 6 The valve openness of the adjustable valves in different alternative experiments 

Openness (100%) No.1 No.2 No.3 No.4 No.5 No.6 No.7 
c1 47% 48% 49% 50% 52% 51% 54% 
c2 60% 59% 57% 56% 55% 58% 56% 
c3 48% 52% 54% 55% 50% 54% 57% 

Table 7 The energy consumptions of all the pumps in each alternative experiment 
Case No.0 No.1 No.2 No.3 No.4 No.5 No.6 No.7 
Value(W) 13.82  15.50  14.99  15.03  15.04  14.87  15.29  15.47  

It is shown in Table 7 that the power consumption of the optimized operating condition is lower than those of any 
other alternative ones, which validate our newly proposed optimal control strategy for HENs. 
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9. Conclusions 
Based on the physical models of such components as heat exchangers, pumps and pipelines with adjustable valves 
in a HEN, we determined the characteristic parameters in these models for specific components  experimentally. 
Combination of these physical models and the newly proposed thermal resistance-based optimization method for 
HENs offered a direct valve openness control strategy, which directly control the operation of a HEN with certain 
system requirements and constraints, such as prescribed heat transfer rates, fixed structures of heat exchangers and 
pipelines.
Further experimental results with the optimal valve openness and other alternative ones under the same system 
requirements showed that the total power consumption of all pumps in the optimal experiment was actually the 
lowest one, which validated our newly proposed direct optimal control strategy.  
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1. Abstract
A topology optimization approach is presented to design structures with strict minimum length scale. The idea is
inspired from the work on topology optimization with robust formulations [1, 2, 3], where the optimized nominal
design possess minimum length scale if all the considered design realizations in the problem formulation share a
consistent topology. However, the latter condition may not be satisfied depending on physical problems [2]. In
the current study, two differentiable geometric constraints are formulated based on a filtering-threshold modeling
scheme. Satisfying the constraints leads to designs with controllable minimum length scale on both solid and void
phases. No additional finite element analysis is required for the constrained problem. Conventional topology opti-
mization can be easily extended to impose minimum length scale on the final design with the proposed constraints.
Numerical examples of designing a compliant mechanism and a slow-light waveguide are presented to show the
effectiveness of this approach.

2. Keywords: topology optimization, minimum length scale, geometric constraint

3. Introduction
There has been tremendous interest in prototyping topologically optimized designs without the tedious post-
processing in CAD softwares, thanks to the boosting macro- / micro- 3D printing technology. On the side of
topology optimization, the optimized design must contain no single structural member whose size is below the
resolution of a 3D printer in order to avoid prototype deficiency, such as holes or disconnected parts. One solution
is to achieve minimum length scale in the topology optimization results. Another benefit of doing so is that, if a
compliant mechanism is designed achieving minimum length scale helps guarantee a longer device life-time by
preventing tiny-hinges appearing at structural joints (high-stress regions).

Previous attempts have been made to impose minimum length scale in topology optimization. Within the
density-based approach [4], Poulsen proposed the so-called MOLE (MOnotonicity based minimum LEngth scale)
method [5], which achieves minimum length scale larger than the size of a circular “looking glass”. Guest [6]
suggested projection schemes by projecting the nodal density into the element space of a minimum feature size.
However, it does not resolve the “one-node hinge” problem in designing compliant mechanisms and simple projec-
tion may result in grey scale for some design problems [1]. The robust formulations [1, 2, 3], which take the eroded,
dilated and (one or several) intermediate design realizations into account at the same time, impose length scale on
the intermediate blueprint design only if the considered design realizations share the same topology. However, as
pointed out in [2], the robust formulation does not necessarily guarantee a consistent topology for the realizations
in different physical problems and the length scale can only be checked a posteriori. Another drawback of using
a robust formulation is the high computational cost, that finite analysis is basically required for each design re-
alization in every iteration. A perturbation based technique [7] proposed by Lazarov et. al is a computationally
efficient solution. However, due to the locality of the approximation, it cannot provide a clear length scale control
for compliant mechanism problems. Recently, a skeleton-based idea, which is similar to that in [8] with the level
set method, is implemented using a density based method in [9]. Both minimum and maximum length scale are
considered in their works [8, 9]. However, the sensitivity regarding the change of the medial-zone is neglected in
the sensitivity analysis. Possible shortcomings of this approach are discussed in detail in [10]. Within the level set
based method [11], Chen et al. [13] applies a quadratical energy functional to design a thin elongated structural
layout with length scale. However, there is no explicit way to define the exact length scale with this formulation.
A rigorous mathematic approach for imposing minimum and maximum length scale in level set based topology
optimization is proposed in [10, 12]. Besides the above approaches, predefined engineering features with length
scale can be designed and optimized using a CSG based level set approach as discussed in [14]. Another op-
tion is to directly consider the manufacturing characteristics in the optimization process, which can always ensure
manufacturable designs of optimized performance [15, 16].
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Figure 1: Re-designing a filtered field (from the solid to the dashed curve) to satisfy the conditions (i)− (ii)
according to Eqs. (1) and (2). Minimum length scale is achieved on the physical field thresholded by ηi for the
dashed curve.

In this study, a new approach is proposed based on a filtering-threshold topology optimization scheme [17],
which utilizes a design field ρ (0 ≤ ρ ≤ 1), a filtered design field ρ̃ and a projected (physical) field ρ̄ . The
idea is inspired from the work on topology optimization with robust formulations [1, 2, 3], where the optimized
nominal design possess minimum length scale if all the considered design realizations ρ̄η thresholded in a range
η ∈ (ηd ,ηe) (0< ηd < ηi < ηe < 1) share a consistent topology. One sufficient condition to the latter is as follows:

(i) ρ̃(x)≥ ηe, ∀x ∈ Ω1 = {x|ρ̄ηi(x) = 1 and ∇ρ̃ = 0}; (1)

(ii) ρ̃(x)≤ ηd , ∀x ∈ Ω2 = {x|ρ̄ηi(x) = 0 and ∇ρ̃ = 0}; (2)

where Ω1 and Ω2 represent the inflection region of the filtered field in the solid and void phase of the physical
field, respectively. Fig. 1 illustrates this idea with a 1D example. The solid curve represents an initial filtered field,
for which the physical fields thresholded at ηd ,ηi,ηe possess different topologies. Re-designing it into the dashed
curve as shown in the figure to satisfies (i) and (ii), a solid phase is ensured in Ω1 for all the physical realizations
thresholded by η < ηe and a void phase remains in Ω2 within η > ηd . As a result, all the physical realizations
thresholded by η ∈ (ηd ,ηe) share a consistent topology and minimum length scale is expected on the blueprint
design ρ̄ηi for both solid and void phases. In this work, two geometric constraints are proposed to meet the above
condition. By solving a constrained optimization problem, minimum length scale is realized without additional
finite analysis, which alleviate the computational burden of using a robust formulation. This approach is purely
geometrical and problem independent. Existing topology optimization framework can be easily extended to have
minimum length scale in final optimized design by incorporating the proposed geometric constraints.

4. Geometric constraints for minimum length scale
The filtering-threshold topology optimization scheme [17] consists of a design field ρ , a filtered field ρ̃ and a
physical field ρ̄ , whose relations are defined as follows:

ρ̃i =
∑ j∈Ni ω(x j)v jρ j

∑ j∈Ni ω(x j)v j
, ω(x j) = R−|xi− x j|, (3)

ρ̄i =
tanh(β ·η)+ tanh(β · (ρ̃i −η))
tanh(β ·η)+ tanh(β · (1.0−η))

. (4)

where Ni is the set of elements in the filter domain of the element i, R is the radius of the filter, v j is the volume of
the element j, β controls the steepness of the approximated Heaviside function and η is the threshold.

In order to fulfill the two requirements in Eqs. (1) and (2), two structural indicator functions are first defined to
capture the inflection regions Ω1,Ω2 defined in Eqs. (1-2):

Is = ρ̄ · exp(−c · |∇ρ̃|2), (5)

Iv = (1− ρ̄) · exp(−c · |∇ρ̃|2), (6)

where the subscripts s and v stand for the solid and void phase, respectively. The exponential term in Eqs. (5)
and (6) annotates the inflection region of a filtered field (|∇ρ̃| = 0) with value 1, while the parameter c controls
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the decay rate of Is and Iv wherever |∇ρ̃| �= 0. Because of numerical errors in calculating the gradient value (∇ρ̃),
the parameter cannot be set arbitrarily large. Numerical experience implies that setting c = r4 (where r = R/h
and h represents the element size) is effective in practice in capturing the inflection region during the optimization
process. Based on the indicator functions, the geometric constraints are proposed as:

gs =
1
n ∑

i∈N
Is
i · [min{(ρ̃i −ηe) , 0}]2 = 0, (7)

gv =
1
n ∑

i∈N
Iv
i · [min{(ηd − ρ̃i) , 0}]2 = 0, (8)

where n is the total number of elements. Satisfying these two constraints results in the value of the filtered field
being larger than the threshold ηe at the inflection region Ω1 and smaller than the threshold ηd at Ω2. Therefore,
the sufficient condition is satisfied and minimal length scale is expected over the nominal design. The proposed
geometric constraints are differentiable w.r.t. the design variable ρ and computationally cheap. They can be
obtained from the value of the physical field ρ̄ , the filtered field ρ̃ and its gradient ∇ρ̃ , which are directly available
during the optimization process.

In practice, the equality constraints Eqs. (7-8) cannot be strictly satisfied due to numerical errors. It is pertinent
to apply an relaxed version to a topology optimization problem:

min : F(u(ρρρ),ρρρ),
s.t. : g j ≤ 0, j = 1 : m,

: gs ≤ ε,
: gv ≤ ε,
: 0 ≤ ρρρ ≤ 1.

(9)

where F and g j are the objective functional and constraints of the original problem respectively and ε is a small
number. The minimum length scale on the final result is determined by the radius of the filter, the considered
threshold range (ηd ,ηe) and the threshold ηi for the blueprint design. Readers are referred to [2, 18] for predicting
the minimum length scale using the linear-hat based filtering.

5. Numerical Examples
In this section, the proposed approach is applied to two benchmark examples. The constrained problem (9) is
solved by the method of moving asymptotes (MMA) [19].

The first example is to design a compliant inverter with minimum length scale. The optimization problem is
to maximize the output displacement, of which the direction is opposite to that of the external force. The detailed
problem formulation and parameter definitions can be found in [2]. Fig. 2(a) shows a standard topologically
optimized inverter containing tiny hinges at structural joints. The tiny hinges will cause high stress when the
mechanism deforms and thus they shall be prevented in the blueprint design. Fig. 2(b,c) shows two such im-
proved designs by applying the proposed geometric constraints. Different minimum length scales are achieved by
adopting different threshold ranges (ηd ,ηe) = (0.4,0.6) and (0.3,0.7), respectively. As the minimum length scale
increases, the deforming capability (the absolute displacement) of the inverter reduces from F = 3.81 to 3.61. In
this example, the design domain is discretized into 150×300 quadrilateral elements and the following parameters
are implemented: E0 = 1, Emin = 10e−9, V ∗ = 0.2, kin = 0.2, kout = 0.005 and r = 10 elements.

(a) F = 3.81 (b) F = 3.77 (c) F = 3.61

Figure 2: Optimized compliant mechanisms with different minimum length scale: (a) without length scale control,
containing tiny hinges at structural joints; (b) with minimum length scale (equals to the size of the dashed and solid
circles), considered threshold range η ∈ (0.4,0.6); (c) η ∈ (0.3,0.7).
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Figure 3: Optimized slow light waveguide by using both a robust formulation and geometric constraints. (a) the
waveguide composed of 8 repeated cells; (b) contours in a single cell, the blueprint (in black bold lines), dilated (in
blue dashed lines) and eroded design realization (in red dash-dotted lines); (c) performance of different realizations.

The second problem studies the design of a dispersion engineered slow light waveguide, which is obtained by
minimizing the errors between actual group index ng and a prescribed group index n∗g = 25 in a given wavenum-
ber range k ∈ [0.3875, 0.4625] · 2π/a, where a is the width of the single cell shown in Fig. 3(b). The original
problem formulation can be found in [20]. It is known that using a robust formulations cannot always guarantee
the same topology for all the considered design realizations [20]. Here, by incorporating the proposed geometric
constraints into the robust formulation, Fig. 3(a) shows the new optimized result containing 8 cells, in which
minimum length scale in both solid and void phases are clearly identified. As shown in Fig. 3(b), the contours
of the eroded, blueprint and dilated designs indicate a same topology. Equally optimized performance is achieved
for the considered three designs as shown in Fig. 3(c). However, because the robust formulation here only takes
three designs into account, the other intermediate realizations (e.g. η = 0.45,0.55) still do not behave as well as
the blueprint. This issue may be alleviated by including more realizations in the formulation. In this example, the
design domain (one cell) is discretized into a 512× 32 quad mesh. The following parameters are implemented:
filter radius r = 3.75 elements, ηd = 0.35, ηi = 0.5 and ηe = 0.65, ε = 10−6 and β = 50.

6. Conclusions
This paper introduces a novel approach to control minimum length scale in topology optimization results by us-
ing geometric constraints. Two numerical examples from different physical problems are presented to show the
general applicability of this approach. Further investigations will be carried out on extending the current idea into
maximum length scale control.
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1. Abstract
Automotive crashworthiness design is a highly expensive and non-linear problem. In metamodel-based crash 
design problem, the prediction error of the metamodel may induce a local or a wrong optimum. In the past few 
years, the multi-point objective-oriented sequential sampling methods have been demonstrated an efficient way to 
improve the fitting accuracy and find the true optimum. However existing infilling criteria are restricted to specify 
the number of the sequential samples obtained in each iteration. It is not practical for complex engineering design 
problems. In this paper, a new adaptive multi-point sequential sampling method is developed. The sequential 
sample size is determined by the prediction states of the fitting metamodels. To demonstrate the benefits, the new 
proposed method is applied to a highly nonlinear crashworthiness design problem. Results show that the proposed 
method can mitigate the effect of the prediction error, and more efficiently identify the crashworthiness design 
solution compared to the conventional approach. 
2. Keywords: Metamodel-based optimization, objective-oriented sequential sampling method, adaptive 
multi-point strategy, crashworthiness design. 

3. Introduction 
Finite element (FE) simulations have been a useful tool for replacing the physical tests in crashworthiness design. 
However, high fidelity FE models are often computationally intensive, taking hours and even days to complete one 
computation cycle. A common approach to address this challenge is to employ metamodeling method predicting 
the simulation responses. The metamodel provides a cheap-to-run surrogate model to approximate the complex 
simulations [1]. The effectiveness of different metamodeling techniques vary based on the different modeling 
criteria, amount of available samples, and the behavior of the simulation responses [2].
However in complex engineering optimizations, the primal challenge is how to determine the number of samples 
required and how to allocate samples. Comparing to traditional one-stage DOE methods (Orthogonal experimental 
design, Uniform Design, Latin Hypercube Design et. al), sequential sampling methods have been identified as a 
more efficient strategy. In previous investigations, the sequential sampling criteria can be classified into two 
categories: model-oriented and objective-oriented. The model-oriented methods focus on the goal of creating a 
globally accurate metamodel, while the objective-oriented sequential sampling strategies have been demonstrated 
to have a higher efficiency of finding the global optimum [3]. The most widely used objective-oriented sequential 
sampling criteria, Efficient Global Optimization (EGO) algorithm, is first developed by Jones [4].  
The EGO method only finds one point in one iteration, resulting in many sequential cycles before reaching 
convergence. To take advantage of the parallel computation capability and save the total amount of iterations, a 
multi-point sampling strategy is needed. Schonlau [5] defined the concept of multi-point sequential sampling 
method. Viana [6] extended the Probability of Improvement function to include multiple points at the same time. 
Zhu and Zhang [7] developed a new double-loop strategy to find q samples via Kriging Believer method.
However existing infilling criteria are restricted to specify the number of the sequential samples obtained in each 
iteration. It is not practical for complex engineering design problems. In this paper, a new adaptive multi-point 
sequential sampling method is developed. The following section reviews the concept of multi-point sequential 
sampling methods, and introduces the proposed adaptive strategy. A new infilling criterion is developed to 
determine whether there is a need to find one more sample. In Section 5, to demonstrate the effectiveness, the 
proposed adaptive multi-point sequential sampling method is applied to an automotive crashworthiness design 
problem. Finally, the discussions and conclusion are summarized in Section 6. 

4: Adaptive multi-point sequential sampling methodology for complex engineering optimization 

4.1. Multi-point Sequential sampling method for constrained optimization problem 
For a constrained engineering optimization problem, the mathematical formulation can be defined as:  

kig
y

ii ,...,2,1,)(:s.t
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x                                                                  (1) 
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where x is the design variables; y and gi represent the objective response and constraint responses; i is the ith
constraint threshold. When the objective and constraint responses are replaced by metamodels ( )(ˆ xy and )(ˆ xg ),
considering the metamodeling imperfection, the prediction error affects the optimization accuracy and constraint 
feasibility, especially in high-dimensional and highly-nonlinear engineering problems.  
The objective-oriented strategy can spread new samples to balance the optimization exploration and accuracy 
improvement. Evaluating the effects of prediction error on the objective responses )(ˆ xy  and the constraints )(ˆ xig ,
the generalized expected improvement function (GEI) of a constrained optimization problem can be defined as [7].
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where k is the number of constraint responses; ymin is the minimal objective response of the sampled points; )(ˆ xy
and )(ˆ xg indicate the predicted value of the objective and constraint response respectively; )(x and )(x
represent the probability density function and cumulative density function of a standard normal distribution. 
It is an efficient way to choose the global and quasi-local optimums of the GEI function as the sequential [8]. It 
should be noted that existing multi-points methods are developed to obtain a constant number q of sequential 
samples. But in real engineering problems, it is difficult to guess how many samples are needed in each cycle. A 
complex problem with a small q still needs many iterations, while with an over large q may induce intensive 
simulations. The following section will introduce a new adaptive multi-point sequential sampling method. The 
number q in each iteration is decided by the prediction states of the optimization problems adaptively.  

4.2. Adaptive multi-point sequential sampling method for complex engineering optimization problem  
The infilling criterion is the most important factor in sequential sampling process. In order to improve the 
sequential sampling efficiency, the weighted contribution of a new point is developed to replace the conventional 
generalized Expected Improvement function. The modified qGEI function is formulated as: 

>

=

=
1,

GEI
GEI

1GEI,
GEI

1

q
q

q
q

m                                                               (3) 

where q is the number of the sequential samples obtained in each iteration; qGEI1 represents the qGEI value of the 
1st sequential sample (q = 1); m is the power number. After the first point is found, the power function m of GEI 
downplays the relative contributions of the new points. As shown in Figure 1, when m = 1, the qGEI function 
represents the relative GEI value. As the m value increases, the regions with small GEI will be diminished. If m is
set to 2, the point where the GEI value is less than 10% of the qGEI1 will be neglected. If m is set to 4, the point 
where the GEI value is less than 35% of the qGEI1 will be neglected. Using the qGEI function in the sequential 
sampling process, more efforts will be made in the regions with higher contribution.  

   Figure 1: The influence of the m value                  Figure 2: The flowchart of the proposed adaptive
                     in the qGEI function                                                  multi-point sequential sampling process 
The true solution is likely to be near the inferior optimum of the infilling criterion, rather than the global optimum 
with the largest EI functionError! Reference source not found.. In this paper, the concept of the Kriging Believer 
strategy is adopted in the adaptive sequential sampling method. Different from any strategies in previous studies, 
the Kriging Believer strategy treats the predicted response as the true response during the sequential sampling 
process. The sequential samples obtained in each iteration are allocated to the global and quasi-local optimums. 
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The flowchart of the proposed method is shown in Figure 2.  
Step 1: Generate a set of samples, and extract the simulated responses of these N training samples. 
Step 2: Update the DOE matrix of the n samples (N initial DOE samples and all sequential samples). 
Step 3: Based on the true observations at xn and predicted responses at xq, the Kriging models of the objective 
responses )(ˆ xy  and constraint responses )(ˆ xic  are constructed. xq is the sequential samples in the qth iteration. 
Step 4: Maximize the infilling criterion qGEI and find the next sequential sample xq.
Step 5: Check the convergence. If the 1st stopping criterion is satisfied, go to Step 8.
Step 6: Evaluate the predicted response )(ˆ xy and )(ˆ xic  of the newly added point xq, and set q = q+1.
Step 7: Add the sample xq into the training DOE samples. 
Step 8: Check the convergence. If the 2nd stopping criterion is satisfied, the sequential sampling process is 
converged and goes to Step 10.
Step 9: Simulate the obtained samples xq by FE models, and add these points into the training samples n.
Step 10: After the sequential sampling process is terminated, the final design solution will be found. 

5. Engineering application in a crashworthiness design problem  
In this section, the benefits of the proposed adaptive sequential sampling method are demonstrated in a complex 
crashworthiness design example. Two different strategies are considered in this section: 

Conventional multi-point sequential sampling method with a constant q (GEI_cq): the sequential sampling 
method found q samples in each iteration. The sequential infilling criterion is defined by Eq. (2). 
Proposed adaptive multi-point sequential sampling method (GEI_aq): the sequential samples found in each 
iteration are determined by the prediction states, and the infilling criterion is defined by Eq. (3). 

5.1. Crashworthiness design application
In the automotive crashworthiness design, FE simulations are used to predict crash performances. Since full size 
automotive simulation models are computationally expensive, metamodeling techniques are widely utilized to 
build surrogate models. In this section, a frontal impact design problem is utilized to demonstrate the effectiveness 
of the proposed adaptive multi-point sequential sampling method in real engineering design. The FE model is 
shown in Figure 3. The average mesh size is 5 mm. For the frontal impact investigation, the regulations and test 
configurations in the China National Crash Legislation of frontal impact (GB11551-2003) are followed. 
Considering the strain rate sensitivity of the sheets in high speed impact, stress versus plastic strain curves under 
different strain rates are defined in a load table. These curves are obtained from physical tension experiments. 

Figure 3: Full-size finite element model of frontal impact simulation 
The frontal side rail is the critical part in absorbing frontal impact, as shown in Figure 4. The sheet gauge and the 
component shape are important for absorbing the impact energy. Considering the symmetry of the rail structure, 11 
sheet gauges and 16 shape variables are chosen as the design variables, as shown in Table 1. In this 
crashworthiness design problem, the Effective Acceleration facc is defined as the objective response, while ten 
crash performances (Efficiency geff, structural Intrusions gint1 ~ gint9) and mass gM, are treated as the constraints. 

(a) Gauge variables                                                 (b) Shape variables 
Figure 4: Design variables of the crashworthiness design 
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Table 1: Design variables of the automotive crashworthiness design 

Component Variables DV Original/mm LB/mm UB/mm 

Gauge
DVs 

Upper Reinf. 1 Dv1 x1 1.20 0.60 1.60 
Upper Reinf. 2 Dv2 x2 1.20 0.60 1.60 
Upper Reinf. 3 Dv3 x3 1.20 0.60 1.60 
Upper Reinf. 4 Dv4 x4 1.20 0.60 1.60 

Frontal side rail outer Dv5 x5 1.40 1.00 1.80 
Lower Reinf. 1 Dv6 x6 1.20 0.60 1.60 
Lower Reinf. 2 Dv7 x7 1.20 0.60 1.60 
Lower Reinf. 3 Dv8 x8 1.20 0.60 1.60 
Lower Reinf. 4 Dv9 x9 1.20 0.60 1.60 

Frontal side rail inner 1 Dv10 x10 1.40 1.00 1.80 
Frontal side rail inner 2 Dv11 x11 1.50 1.00 1.80 

Shape
DVs 

Upper Reinf. 1 SP1 Dv12 x12 0.00 0.00 15.00 
Upper Reinf. 1 SP2 Dv13 x13 0.00 0.00 15.00 
Upper Reinf. 2 SP1 Dv14 x14 0.00 0.00 15.00 
Upper Reinf. 2 SP2 Dv15 x15 0.00 0.00 15.00 
Upper Reinf. 3 SP1 Dv16 x16 0.00 0.00 15.00 
Upper Reinf. 3 SP2 Dv17 x17 0.00 0.00 15.00 
Upper Reinf. 4 SP1 Dv18 x18 0.00 0.00 15.00 
Upper Reinf. 4 SP2 Dv19 x19 0.00 0.00 15.00 
Lower Reinf. 1 SP1 Dv20 x20 0.00 0.00 15.00 
Lower Reinf. 1 SP2 Dv21 x21 0.00 0.00 15.00 
Lower Reinf. 2 SP1 Dv22 x22 0.00 0.00 15.00 
Lower Reinf. 2 SP2 Dv23 x23 0.00 0.00 15.00 
Lower Reinf. 3 SP1 Dv24 x24 0.00 0.00 15.00 
Lower Reinf. 3 SP2 Dv25 x25 0.00 0.00 15.00 
Lower Reinf. 4 SP1 Dv26 x26 0.00 0.00 15.00 
Lower Reinf. 4 SP2 Dv27 x27 0.00 0.00 15.00 

5.2. Sequential improvement and optimization results 
All structural performances are interpolated by Kriging method. The optimization formulation is defined as: 

1/
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where i  represents the ith constraint target. Based on 180 samples generated by the Latin Hypercube method, the 
metamodel-based optimization results are shown in Table 2. But when the optimization solution is confirmed by 
the FE simulation model, there has a large discrepancy between predicted and simulated objective response facc.
And two constraint responses (c10, c11) violate the design limits. The prediction error misleads to find an infeasible 
solution. In order to mitigate the prediction error, the multi-point sequential sampling method is used. 

Table 2: The optimization results based on initial DOE samples 

Opt. Result Target Kriging-based Simulation confirmation 
Objective facc min. 0.91 1.04 

Constraints

c1

 1 

0.28 0.33 
c2 0.35 0.48 
c3 0.58 0.77 
c4 0.18 0.25 
c5 0.54 0.66 
c6 0.75 0.81 
c7 0.45 0.61 
c8 0.70 0.62 
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c9 0.82 0.88 
c10 0.99 1.15 
c11 0.95 1.01 

To demonstrate the benefits of the proposed method, the conventional multi-point sequential sampling strategy 
GEI_cq with a constant q is also adopted in this example, formulated as: 
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In this infilling criterion, facc
min represents the minimal objective response value of the sampled points, and q = 5 

samples are newly added in each iteration. The limit criterion is utilized in this crashworthiness design problem: 
when GEI_cq1 is less than 1%, the sequential sampling process will be terminated. 
The GEI_cq method is converged after 5 iterations. The optimization solution is obtained based on initial training 
samples and the newly added samples. The solution is confirmed by FE simulation. Figure 5 illustrates the 
convergence history of the GEI_cq method. The objective response facc and two critical constraint responses c10/c11
are monitored. The objective response facc reduced from 1.00 to 0.92, achieving 8% improvement, while two 
critical constraint response c10 and c11 are successively approaching to the design target 1. It demonstrates that the 
multi-point sequential sampling method GEI_cq can mitigate the prediction error in both objective response facc
and all constraint responses, and ensure the accuracy and feasibility of the design solution. 

(a) Objective response facc (b) Constraint responses c10 and c11
Figure 5: Convergence history of the GEI_cq method 

The newly proposed adaptive multi-point sequential sampling method GEI_aq do not need to define a number q, 
and can find a proper amount of sequential samples based on the prediction states of the fitting models. The 
infilling criterion of the proposed method is defined as:  

( ) >

=
=

1,_GEI/_GEI
1,_GEI

_GEI:max 2
1 iaqcq

icq
aq

　　　
　　　　　　　                                           (6) 

Similar to the GEI_cq method, when the GEI_aq1 value is less than 1%, the sequential improvement process 
terminates. The convergence histories of the proposed GEI_aq method are shown in Figure 6. The confirmed 
objective response reduced from 1.00 to 0.91, while two critical constraints satisfy the design requirements. The 
FE simulated results shows that the proposed GEI_aq can improve the objective response facc, and ensure the 
feasibility of two critical constraints c11 and c11.

(a) Objective response facc                                                         (b) Constraint responses c10 and c11
Figure 6: Convergence history of the proposed GEI_aq method 

The sequential samples obtained by these two methods are compared in Figure 7. In the 1st sequential iteration, the 
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GEI_cq with a constant q explored and found 5 new samples to improve the fitting states. But when the proposed 
adaptive method GEI_aq is used, 8 samples are allocated in the design space. It demonstrates that based on initial 
180 training samples, the fitting responses of the crashworthiness design problem has large prediction error, and 
the number q used in the GEI_cq method is not enough. After the 1st iteration, the interpolation accuracy of the 
crash responses has been improved. Fewer points are needed in the next iterations. The conventional GEI_cq 
method with a constant q allocated more and more samples on the points with lower contribution. In summary, the 
proposed method is converged in the 4th iteration and 16 sequential samples are newly added. Comparing to the 
conventional GEI_cq method, the proposed strategy converge to the true crashworthiness solution faster. It 
demonstrates a higher efficiency in the complex engineering design problem.  

Figure 7: The samples obtained by two different sequential sampling methods 

6. Discussions and conclusions 
A few observations are made: 

The proposed adaptive multi-point sequential sampling method can decide the sample size by the prediction 
states of the design responses. It is beneficial for the problems where simulation models are computationally 
expensive and the parallel computing ability can be utilized to calculate many simulations at the same time.
The crashworthiness design is a highly nonlinear problem. It is found that comparing to conventional 
sequential sampling method, the proposed adaptive strategy not only can improve the objective response 
(Effective Acceleration facc) and ensure the feasibility of ten crash constraint responses, but also can converge 
to the true solution in fewer iterations. It demonstrates the effectiveness and the efficiency of the newly 
proposed method. 
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1. Abstract
Mathematical optimization theories are employed for the design of structures in structural optimization.  These 
days, structural optimization is widely utilized for practical problems due to well-developed commercial software 
systems.  Three representative general-purpose structural optimization systems such as Genesis, MSC.Nastran and 
OptiStruct are investigated and evaluated by solving various test examples in different scales.  The performance of 
structural optimization depends on the quality of the optimum solution and the computational time, and these 
aspects are compared from the application viewpoint.  For fair comparison, the same formulations are defined, and 
the same optimization methods are adopted for each example.  Also, the same system environment is prepared, and 
the same optimization parameters are used.  Linear static response size, shape and topology optimizations are 
applied to the examples and the results are compared.  No system seems to be the best in all the cases and each 
system has advantages and drawbacks depending on the application.  In general, Genesis is excellent in the 
computational time while OptiStruct gives excellent solutions, especially in topology optimization.  Meanwhile, 
MSC.Nastran presents excellent solutions in shape optimization. 

2. Keywords: Structural Optimization, Design Software, Performance comparison 

3. Introduction 
Optimization generally finds design variables to maximize/minimize an objective function, while design 
constraints are simultaneously satisfied.  In structural optimization, the optimization problem is defined for the 
design of a structure.  Nowadays, structural optimization is widely accepted due to the development of the finite 
element method (FEM) [1-3].  Structural analysis and optimization techniques have been continuously developed 
based on FEM.  Recently, commercial design software systems are also well-developed to solve structural design 
problems, and they have their own FE analysis modules.  They are MSC.Nastran [4], Genesis [5], OptiStruct [6], 
ANSYS [7], TOSCA [8], etc.   
As the FE models become more complex and larger, designers are interested in the decision on the choice of a 
structural optimization software system.  One of the reasons is that the systems give different performances.  It is 
natural that a designer wants to use an appropriate system for her/his applications.  However, there is no 
comparison study for the structural optimization systems.  Some researches were performed with regard to the 
performance of structural optimization methods.  Structural optimization is classified into the direct method and 
the approximation method.  The direct method directly applies nonlinear programming (NLP) to a structural 
optimization problem; therefore, an NLP algorithm controls the overall process.  On the other hand, the functions 
are approximated to explicit functions of design variables and an NLP algorithm is applied to the approximated 
problem.  An approximation method is generally employed by commercial systems for structural optimization 
while the direct method is generally used in the academic sites.  The performances of the direct method and the 
approximation method were compared [9].  The efficiency of an NLP algorithm is not very critical in the 
approximation method while it is crucial in the direct method.  A comparative study of the optimization software 
systems, which have various NLP algorithms, was performed in [10].  
In this research, three popularly used commercial structural optimization software systems such as Genesis, 
MSC.Nastran 2013.1 [4], Genesis 13.1 [5] and OptiStruct 13.0 [6] are investigated and evaluated.  These software 
systems provide optimum solutions based on a gradient based optimization method and have their own FE analysis 
modules.  Also, they have all the capabilities for size, shape, topology optimizations.  The systems that do not have 
these conditions are excluded in this study.  Linear static response size, shape and topology optimizations are 
explored and compared by various test examples.  The examples cover small, medium and large scale problems.  
Evaluations of the systems are made for the quality of the optima and the computational cost.   

4. Environment for comparison 
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Various factors can have influence on the performance of the structural optimization software system.  They can be 
classified into the optimization environment and the system environment.  The optimization environment consists 
of optimization formulation, convergence criteria, utilized optimization method, move limit strategy, constraint 
screening method, etc.  Meanwhile, the system environment is determined by the performances of the computer 
such as the operating system, CPU, amount of memory usage, etc.  It should be assured that the same conditions 
are used for a fair comparison.  Some conditions are controllable in one software system but uncontrollable in 
another system.  In that case, unification of the variables is made as much as possible.  If the unification is 
impossible, default values of the software systems are used.   

4.1 Optimization formulation 
The formulation of linear static response structural optimization is represented as follows [11-12]:

Find   1, ,n l  R R Rb z
to minimize  ( )f b,z,
subject to  ( ) =K b z f                                                                        (1) 

       ( ) ( ) 0=K b y M b y
( ) 0, 1g =b,z,j j ,...,m

L Ub b b

where is the design variable vector,  are the state variable vector, and  and y  are the eigenvalue and 
eigenvector, respectively.   is the number of the design variables,  is the number of the state variables, and  is 
the number of the constraints, respectively.   and  are the lower bound and the upper bound of the design 
variable vector , respectively.   is the objective function and  is the th constraint.  is the stiffness matrix, 
can be either the mass matrix or geometry matrix, respectively.  Each example uses an identical optimization 
formulation for all the software systems for a fair comparison. 

4.2 Optimization method 
An optimization algorithm has to be selected, but this selection is not very important because an approximation is 
used for the software systems.  Modified method of feasible directions (MMFD), sequential linear programming 
(SLP) and sequential quadratic programming (SQP) are commonly supported by the three software systems.  In 
MSC.Nastran, an optimization method can be automatically selected for a better performance.  However, the 
utilized optimization method is unified by MMFD [13-14].  Each software system supports a separate optimizer 
for topology optimization and large scale problems. IPOPT [15], BIG-DOT [5] and Dual-Optimizer [16] are the 
optimizers in Genesis, MSC.Nastran and OptiStruct, respectively.  These are based on the sequential 
unconstrained minimization technique (SUMT) [14]. 

4.3 Others 
The convergence criteria of the optimization may affect the performance.  In this research, the relative change of 
the objective function is used for a convergence criterion and the bound of the value is set by 0.001.  Meanwhile, 
the normalized maximum constraint violation is used as another convergence criterion and set by 0.01.  Because 
OptiStruct does not allow changing this criterion, the default value of OptiStruct is adopted.  The move limit 
strategy is considered.  A move limit is defined for the change of the design variables in an approximation 
problem.  The value of the move limit can be defined in the three software systems.  The lower and upper bounds of 
the move limit can be defined by a user in MSC.Nastran and Genesis; however, they cannot be defined by a user in 
OptiStruct.  Therefore, the default values of the bounds are used.  The same active set strategy for constraints is 
considered for large scale problems.
The system environments are also unified.  The utilized operating system is MS Windows x64 Ultimate (version 
6.1, Build 7601) that is commonly supported by the three software systems.  The hardware system is 16.0GB 
Memory, 8 CPU and Intel core i7-3770 at 3.40GHz.  The amount of memory usage has a significant impact on the 
performance of a software system.  Three software systems support memory control options in different ways; 
however, the total amount of memory usage can be commonly determined.  The amount of memory usage is 
unified as 8GB.
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a) 200 bar truss        b) Solid crank beam   c) Engine mount                  d) Plate                      e) Car hood 

Figure 1: Finite element model of the structural optimization examples 

5. Structural optimization 
Structural optimization is classified into size, shape, topology, topometry and topography optimizations [4-6].  
Size, shape and topology optimizations are classical optimization methods.  On the other hand, topometry, 
topography optimizations are non-classical optimization methods.  Structural optimization is classified based on 
the characteristics of the design variables [12].  The domain of FE analysis is not changed by design variables in 
size and topometry optimization.  However, the domain of shape and topography optimization can be changed by 
the design variables.  In the case of topology optimization, the distribution or existence of materials is determined 
by the design variables.  In topometry optimization, each designable element has an independent design variable.  
Likewise, normal perturbation vectors are defined at all designable grids in topography optimization.  Structural 
optimization examples are explored regarding each optimization.  

5.1 Structural optimization examples 
Many structural optimization examples are solved for the comparison of performance.  However, only the 
representative examples, which show distinct characteristics of the software systems, are presented here.  They are 
a 200 bar truss example [17], a solid crank example [18], an engine mount example [19], a plate example [20], and 
a car hood example [5] for size, shape, topology, topometry and topography optimization, respectively.  The 
examples are illustrated in Figure 1.  The detailed optimization formulation of each example is in [21].  The 
characteristics of each problem are summarized in Table 1. 

5.2 Results of optimization 
The optimization results for each example are shown in Table 2.  The initial and final objective function values are 
compared.  In topology optimization, the final objective function value, which is evaluated after an additional 
post-processing, is shown.  The initial objective function values of the plate example are different for each 
software system, because the initial plate thickness is automatically determined by using the lower and upper 
bounds of the design variables.  CPU time means the computational time for the optimization process and the 
elapsed time means the total time that includes the time for writing results and checking the license, etc.   

Table 1: Structural optimization problems 

Example Design variables Objective function Constraints Loading
conditions Remark

200 bar truss 96 Mass 
Stress and 

displacement
constraints

Multiple loading 
conditions Size optimization 

Solid crank 
beam 9 Mass Stress constraints A single loading 

condition Shape optimization 

Engine
mount 57,280 Compliance Fraction mass 

constraint
Multiple loading 

conditions
Topology

optimization 

Plate 3,200 Compliance Volume constraint A single loading 
condition

Topometry
optimization 

Car hood 2,069 Compliance . A single loading 
condition

Topography
optimization 
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Table 2: Results of structural optimization problems 

Objective Function value 

Iterations Func.
calls

CPU
Time (s) 

Elapsed 
time (s) Initial

Final
[Final after post 

processing]

200 bar 
truss

MSC.Nastran 5.082E+04 1.380E+04 18 18 10.84 31.20 

Genesis 5.082E+04 1.390E+04 13 13 0.82 1.00 

OptiStruct 5.082E+04 1.354E+04 25 25 1.40 21.56 

Solid
crank
beam 

MSC.Nastran 1.396E-02 1.439E-02 25 25 182.10 387.48 

Genesis 1.396E-02 1.440E-02 12 12 32.00 45.00 

OptiStruct 1.396E-02 1.448E-02 8 8 22.90 28.22 

Engine
mount 

MSC.Nastran 3.560E+06 4.033E+05
[4.986E+05] 64 64 2232.00 4329.27 

Genesis 3.561E+06 4.839E+05
[3.517E+05] 21 21 1449.00 1869.00 

OptiStruct 3.561E+06 3.455E+05
[3.456E+05] 82 82 2304.01 3277.05 

Plate
MSC.Nastran 1.229E+01 1.186E+01 16 16 8.47 23.65 

Genesis 1.096E+01 1.032E+01 11 11 4.76 5.00 

OptiStruct 1.799E+01 7.898E+00 17 17 6.46 14.57 

Car hood 
MSC.Nastran 3.6071E+04 2.822E+04 8 8 131.96 311.961 

Genesis 3.6054E+04 2.876E+04 15 15 15.00 24.00 

OptiStruct 3.5336E+04 2.975E+04 7 7 5.87 10.55 

In size, topology and topometry optimizations, it seems that OptiStruct gives the best objective function value 
although more CPU time is necessary.  Genesis gives solutions with the shortest CPU time.  In shape and 
topography optimization, the optimum value from MSC.Nastran looks the best.  However, the computational time 
is quite long compared to the other software systems.  Figure 2 shows the results of shape, topology and 
topography optimization, respectively.  There is no big difference in shape and topography optimization results 
among the three software systems.  However, the final shapes from MSC.Nastran are different from those of other 
software systems, especially in topology optimization.

6. Structural optimization of a large scale structure 
As the FE models of the structures become more complex and larger, the performance comparison of large scale 
structures is quite important.  The scale of the problem depends on the size of the FE model and the number of 
design variables.  The number of constraints is not considered in the decision of the scale if an active set strategy 
for constraints is used.  Actually, topology, topometry and topography optimizations can be considered as large 
scale problems, because they are using many design variables.  In this study, a large scale problem means an 
optimization problem with a large FE structure and many design variables.

a) Solid crank beam    b) Engine mount    c) Car hood 
(Shape optimization)           (Topology optimization)                (Topography optimization) 

Figure 2: Results of optimization examples 
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Figure 3: Finite element model of the passenger train 

6.1 Structural optimization of a passenger train 
An optimization of a passenger train is solved [22].  As illustrated in Fig. 3, the width, height and length are 1.5m, 
3.0m, and 23.5m, respectively.  The passenger train model consists of shell and solid elements.  The total number 
of FE elements is 239,020 and the number of design variables is 3,410.  Five loading conditions are applied as 
multiple loading conditions. The design formulation is as follows: 

Find   n
i jb , b   R

to minimize  Mass
subject to  von Mises allow                   (2) 

       , initial , currentz z

lower upper , ( 1 3398)i, i i, b b b i ,...,=

lower upper , ( 1 12)j, j j, b b b j = ,...,

where is the ith size variable,  is jth the shape variable, and  and  are the lower bound and the 
upper bound of the design variable, respectively.   is the von Mises stress,  is the allowable stress, 

 is the initial displacement in the z-axis, and  is the displacement in the z-axis of the currently 
existing model, respectively.  The objective function to be minimized is the mass of the structure while the 
displacement and stress constraints are satisfied.  For this example, the amount of memory usage is extended to 
64GB, because OptiStruct did not work with 16GB memory. 

6.2 Results of the large scale example 
The optimization results are shown in Table 2.  In a large scale problem, the elapsed time is larger than the 
computational time, because there are many other processes in addition to the pure optimization process.  It is 
noted that the optimum values are similar.  That means the three systems can handle large scale optimization 
problems.  OptiStruct is excellent in the computational time, even though it has a memory control issue.  Genesis 
shows a good performance in the computational time.  The computational time of MSC.Nastran is quite long 
compared to the other software systems.  But it has no memory control issue.  Actually, this example can be solved 
with 8GB memory by MSC.Nastran and Genesis.   

Table 2: Results of the large scale example 

Objective Function value 
Iterations Func.

Calls CPU time Elapsed time
Initial Final 

Passenger
train

MSC.Nastran 
(IPOPT optimizer)

4.2739 3.5026 11 11 17h 39min 5d 9h 30min 

Genesis 
(BIGDOT optimizer)

4.2739 3.4972 11 11 1h 16min 3h 28min 

OptiStruct 
(Dual optimizer)

4.2739 3.4449 9 9 26min 46min 
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7. Conclusions 
Linear static response optimizations are explored, and three commercial structural optimization systems are 
compared through various structural examples.  Only representative examples are demonstrated here.  We could 
see some performance distinctions out of the three software systems.  No system is the best in all the cases and each 
system has advantages and disadvantages depending on the application.  In general, Genesis is excellent in 
computational time while OptiStruct provides excellent solutions, especially in topology optimization.  
MSC.Nastran presents good solutions in shape optimization.  In the case of a large scale example, the three 
systems give similar objective function values.  OptiStruct is excellent in computational time; however, there is a 
memory control issue that is not found in Genesis and MSC.Nastran.   
There can be various reasons for performance distinction, because performance is determined by a combination of 
many factors.  The method for approximation is different in each of the three software systems.  The move limit 
strategy is slightly different.  Some parameters can be controllable in one system but uncontrollable in other 
system.  This aspect should be theoretically investigated.  
It is noted that the three systems never fail in any examples.  That means that all of them are quite reliable.  Also, 
even with one system, different results can be obtained when different decisions are made for the selection of the 
parameters.  The authors hope that this paper helps practitioners in the decision of a structural optimization system.   
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1. Abstract  
This paper presents a novel multiobjective optimization strategy for topology optimization of single material 
phononic plates (PhPs), where the achieved topology can be produced by perforation of a uniform background 
plate. The primary objective of this optimization study is to exploit the widest relative bandgap of fundamental 
flexural guided wave modes for maximized phononic controllability. Principally, the optimum topology of such 
porous structure favors isolated scattering domains leading to maximized interfacial Bragg reflections. Hence, the 
widest achievable bandgap depends on assumed topology resolution and relevant topology generally has low 
structural worthiness. Therefore the homogenized in-plane stiffness of phononic unitcell is also incorporated in 
topology optimization as the second objective to explore the gradient of optimum bandgap topology with respect 
to its in-plane stiffness. Consequently, structurally worthy bandgap topologies with desired relative 
bandgap-stiffness performance could be taken from the obtained spread of optimized topologies. Moreover, 
functionally graded PhP with maximized bandgap efficiency and multiscale functionality could be designed 
through integration of optimized PhP unitcells of different stiffness. Nondominated sorting genetic algorithm 
(NSGA-II) is adopted for this multiobjective problem and fitness evaluation of topologies is performed through 
finite element method. Specific topology assessment is performed for convergence of the solution towards 
optimum feasible bandgap topology without penalizing the efficiency of genetic algorithm (GA). A set of Pareto 
topologies is selected and variation of bandgap width and in-plane stiffness across the two Pareto extremes is 
studied.  Arbitrarily selected intermediate Pareto topology shows superior bandgap efficiency as compared with 
the relevant optimized topologies reported by other researchers. Moreover, the frequency response of a finite 
phononic plate structure of selected intermediate Pareto topology confirms high attenuation of flexural waves 
within its calculated bandgap frequency.  
2. Keywords: Phononic; Bandgap; Plate; Topology Optimization 

3. Introduction 
Phononic crystals (PhCr) are heterogeneous acoustic meta-materials produced by periodic modulation of acoustic 
impedance in a lattice structure through either integration of two or more contrasting materials, or making 
porosities in a uniform background. The main feature of PhCrs is the existence of frequency ranges over which 
propagation of vibroacoustic waves is prohibited. This phenomenon is caused by constructive reflection and 
superposition of waves at the interface of periodic heterogeneities i.e. Bragg and Mie resonant scatterings. 
Moreover, introducing any kind of defect in phononic lattice e.g. by altering the features of a few adjacent cells, 
leads to advent of local resonance modes within phononic bandgap frequency. This capability is used to trap and 
guide waves inside defects specially tuned for desired frequencies.  Flat and concave wave fronts below bandgap 
frequency are other promising characteristics of PhCrs applicable for self-collimation and steering of waves. 
Consequently, it is worthwhile to adjust the phononic properties so that the width and location of bandgap is 
optimized for application of interest. Essentially topology with maximum relative bandgap width (RBW) between 
subsequent modes of interest is desired [1]. RBW is the ratio of bandgap width over midgap frequency, and so 
seeking maximum RBW results in a topology which can provide widest bandgap at lowest frequency range for 
specific unitcell size. Consequently, the relevant topology supports phononic wave manipulation over the widest 
frequency range through miniature unitcells compared to wavelength. 

The efficiency of PhCr is principally defined by the topology of its irreducible representative element 
(Unitcell). Most of topology optimization studies in relation to 2D periodic PhCrs have been concerned with 
bandgaps of in-plane and/or anti-plane bulk waves while only few works have been devoted to bandgaps of guided 
waves through PhCr plate (PhP). Guided waves are structural waves confined by traction free surfaces of thin 
walled structures, so called plate waves when guided by parallel faces of plates. In-plane symmetric (S) and 
anti-plane asymmetric (A) Lamb waves as well as symmetric shear horizontal (SHS) and asymmetric shear 
horizontal (SHA) in-plane waves are the well-known guided wave modes generated in a plate structure. The plate 
wave energy is predominantly conveyed by the asymmetric (flexural) wave modes (S+SHA) under a general 
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lateral disturbance.  Special characteristics of guided waves confined by finite thickness of such structures, make 
them ideal for non-destructive evaluation purposes [2] as well as production of low loss resonators, filters and 
waveguides [3].  

Halkjær, Sigmund [4] studied the optimum topology of porous Polycarbonate PhP with rhombic unitcell for 
maximized RBW of first couple of flexural plate waves. The Mindlin plate theory was implemented for definition 
of band structure of bending waves and gradient based optimization was performed through method of moving 
asymptotes. The discontinuities of optimized topology were locally modified for satisfactory stiffness and 
manufacturability. In another investigation by Bilal and Hussein [5] the optimum topology of thin porous silicon 
PhPs for maximized RBW of basic flexural waves was studied. The Mindlin plate’s theory was implemented and 
topology of square unitcell was optimized through genetic algorithm (GA) as an evolutionary based method.  

Bandgaps of such porous materials are governed by wave reflection and scattering at the interface of 
inhomogeneities produced by perforation profile. Therefore the search for highest RBW naturally results in 
topologies with nearly isolated domains or in other words thin connectivity for strengthened interfacial reflections. 
The finer the topology resolution the thinner connectivity in the optimized topology for maximized bandgap. So 
largest achievable RBW is extremely dependent on assumed unitcell’s resolution and relevant topology generally 
has low structural worthiness. Nevertheless, none of earlier works on topology optimization of porous PhCrs [4-6] 
took into consideration the structural worthiness of achieved topologies.  

Therefore, the focus of this paper is to investigate the contribution of this fact in optimum topology of PhP 
unitcell with 2D periodicity for maximized bandgap width of fundamental flexural waves (A0+SHA0). To serve 
this purpose, the homogenized in-plane stiffness of phononic unitcell is also incorporated in topology optimization 
as the second objective and structurally worthy bandgap topologies are explored. The gradient of optimum 
bandgap topology with respect to in-plane stiffness is also defined by which functionally graded PhP with 
maximized bandgap efficiency and multiscale functionality can be designed. Nondominated sorting genetic 
algorithm (NSGA-II) is adopted for this multiobjective problem and fitness evaluation of topologies is performed 
through finite element method. Relatively thin phononic unitcell of transversal aspect ratio (width to thickness) of 
10 is modelled and square symmetric topology with no through thickness variation is assumed. Specialized 
filtering is applied to the topologies in order to incline the search space towards feasible bandgap topologies 
without compromising its diversity and randomness. 

4. Modelling and analysis of PhP unitcell 
2D PhP unitcell with square symmetry is assumed which is uniformly perforated through the thickness h  (along z 
axis) to produce planar heterogeneity in x-y plane. The topology (i.e. perforation profile) of this porous PhP 
defines its bandgap efficiency caused by constructive reflections of wave at the interface of heterogeneities. 
Relatively thin plate unitcell with transversal aspect ratio (width over thickness) of 10/ ha is considered. 3D 
FEM model of the unitcell is constructed in ANSYS APDL (ANSYS® Academic Research, Release 14.5) using 
SOLSH190 elements, for fitness evaluation of individual topologies during optimization procedure. Polysilicon 
with elastic modulus )(169 GPaEs , Poisson’s ratio 22.0s and  density )/(2330 3mkgs   is taken as the 
base solid material of PhP  widely used for fabrication of micro-devices like micro PhCrs [7]. 

4.1. Modal band analysis and bandgap objective 
The FEM notation of equation of motion for a loss free elastic medium in the absence of external forces is: 

0KqqM (1)
where K  is stiffness matrix and M  is mass matrix of FEM model. q  is vector of nodal displacements by which 

the  displacement vector wvu ,,U  is defined through matrix of shape functions N :

NqU (2)

Based on the Bloch-Floquet theory[8] the general solution for displacement filed U in 2D PhP with infinite 
periodicity in x-y plane can be formulated by harmonic modulation of a periodic displacement filed as follows: 

t)i()e(,t)( kx
p XUXU (3) 

where zyx ,,X  is the location vector, PU is an a  periodic function in x-y plane according to the PhP square 

lattice periodicity, f2 is circular frequency and yx kk ,k  is the in-plane wave vector and 1i . After 
applying Bloch-Floquet periodic boundary condition on the plate unitcell with traction free upper and lower 
surfaces, we arrive at: 

aikxeXX UU   ,    aik yeyy UU (4) 

78

Leo
Rectangle



3

where subscripts x+ and x- stand for corresponding points at two unitcell’s faces parallel to y-z plane at 0x  and 
ax , respectively. Similarly subscripts y+ and y- stand for corresponding points at two unitcell’s faces parallel 

to z-x plane at 0y  and ay . So the Bloch-Floquet boundary condition is in complex format and in order to 
handle it by ANSYS FEM solver two identical FEM models are superimposed so that one represents the real term 
and the other one imaginary term of complex displacement domain [9]. Due to the periodicity in Bloch-Floquet 
condition and the assumed square symmetry of topology the wave vector can be limited to irreducible Brillouin 
zone.  However, according to the common practice searching only the border of irreducible Brillouin zone [1] 
suffices for evaluation of bandgap properties. By substituting the harmonic definition of nodal displacement 

tie0qq in Eq.(1) and solving for nontrivial solutions, the modal frequencies of unitcell are calculated by Eigen 
value analysis of  Eq.(5):  

0)(2 kKM (5)
where stiffness matrix  )(kK is a function of wave vector k corresponding to applied Bloch-Floquet boundary 
conditions. In order to decouple the modal band structure of flexural plate waves,  just half of unitcell through the 
thickness from midplane 0z  to top plane 2/hz   is modelled and appropriate boundary conditions are 
applied to the mid-plane to enforce asymmetric modes [10]. 

Regarding bandgap efficiency of PhP unitcell, it is fundamentally desired to manipulate the largest wave 
length possible through specific unitcell size. Hence the first objective function of optimization 1F  to be 
maximized is defined as: 

))(max)((min5.0

)(max)(min
2

1
2

11
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(6)

Actually 1F   is the gap width over mean value of gap between Eigen values 2  of two subsequent modal 

branches jth  and (j+1)th  of interest over the kn  discrete search points ik  on the border of irreducible Brillouin 
zone. Since the bandgap of fundamental flexural modes is desired, the first couple of modal branches are taken into 
account and so 1j .

4.2. Numerical homogenization and stiffness objective 
The strain energy compliance of PhP unitcell under particular loading condition is defined as the second objective 
function of optimization concerning the in-plane stiffness.  It is well known that the strain energy of the unitcell 
under specified loading condition represents its relevant stiffness. Higher strain energy implies lower stiffness or 
higher compliance. The strain energy stored per volume of a finite element subjected to in-plane stress in x-y plane 
is theoretically defined as: 

)(
2
1

xyxyyyxxS (7) 

where xyyx ,,  and xyyx ,,  are corresponding in-plane stress and strain tensors, respectively. As for 

loading conditions the general stress state of 2/xyyx  with shear and biaxial normal components 
is assumed uniformly throughout the unitcell. So with regard to linear elastic stress-strain relations, the Eq.(7) 
turns to: 

)11(2

ee

e

GE
S (8) 

where eE , eG  and e  are the equivalent in-plane orthotropic elastic modulus, shear modulus and Poisson’s ratio 
of assumed square symmetric PhP unitcell, respectively. Then the stiffness objective function 2F , in order to 
attain maximum in-plane stiffness, is defined as strain energy compliance of unitcell based on its homogenized 
properties, to be minimized: 

ee

e

GE
F 11

2 (9) 

So the assumed relative magnitude of shear and normal stresses leads to an stiffness objective which equally 
accounts for normal and shear compliances (first and second terms of Eq.(9), respectively). However appropriate 
stress state could be assigned for any particular application .The numerical homogenization is employed and 
periodic boundary condition is applied to define the equivalent elastic properties of PhP unitcell and calculate 2F .
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4

An overall test strain is prescribed for the unitcell and the equivalent orthotropic stiffness is derived based on 
average stress filed of elements over the entire unitcell. Detailed information regarding numerical homogenization 
of composite materials using FEM and periodic boundary condition can be found in Bendsoe and Sigmund [11]. 

5. Optimization approach 
Non-dominated sorting Genetic algorithm (NSGA-II) [12] is employed for present multiobjective topology 
optimization problem. Basically a coded string of topology is processed by the algorithm to be mapped into the 
discretized design domain. Genetic algorithm (GA) mimics the process of natural selection: searches over a 
population of potential solutions, reproduces better generations using crossover and mutation functions and 
iteratively produces better and better approximations to the solution. Earlier works on topology optimization of 
PhCrs through GA have proved its competency in this area [5, 13-19]. Multi-objective GA was implemented by 
the authors to study the optimum topology of 1D PhPs with respect to filling fraction of constituents and gradient 
1D PhP structures were introduced [20]. NSGA-II sorts GA population based on non-dominated fitness and 
crowding distance. In this way the designs with the most dominated fitness are placed at the first rank (Pareto 
front) and among them those with highest crowding distance are preferred [12].  

A binary bit-string design space is considered for defining the material type of any pixel of topology. For 
simplicity in FEM evaluation of topologies, the void elements corresponding to perforated region of unitcell are 
assigned a very compliant material. Following specialized topology initializing, filtering and modifications are 
applied to eliminate interrupting modes of disconnected segments and make optimized porous topologies converge 
towards feasible connected ones without disturbing the randomness and diversity of search domain. An identical 
fully solid population is randomly mutated with specified probability to deliver an initial population of likely 
connected topologies. All individual topologies are morphologically checked and the feasible connected segment 
only (if any) is delivered for analysis. The population is sorted and parent pool is created through tournament 
selection. Then the offspring population is defined by single point crossover and mutated with certain probability. 
The checkerboard problem is alleviated by the well-known technique of inversing randomly selected pixel (i.e. 
void to solid and vice versa) if surrounded by more than 2 dissimilar adjacent face to face pixels out of 4. Finally 
the idle disconnected segments of topology (where applicable) are faded out through a random-progressive 
manner. For this purpose a randomly selected disconnected segment is eliminated by specified probability which 
increases as the GA progresses. Due to rarity of perfectly connected topologies showing bandgap properties 
defined during population initialization and reproduction stages, the aforementioned algorithm is a robust 
approach for degrading invalid individuals while maintaining the diversity of search domain.  

6. Results and discussion 
PhP unitcell is modelled by element (i.e. topology) resolution of 3232  in x-y plane leading to a design domain 
of 136 independent design variables for prescribed square symmetric topology. A population size of 200 is 
considered for this problem size, and from the total number of topologies delivered in Pareto front 12 topologies 
(Figure 1(a)) are selected and presented containing a variety of alternative optimized topology modes with 
different RBWs and in-plane stiffness.  

Since RBW is defined as the gap width over midgap value of either Eigen values ( 1F ) or Eigen frequencies (
/ ) of desired mode branches in different works both quantities are obtained and included in the results. In 

order to evaluate the relative effective stiffness of optimized topologies with respect to stiffness of constitutive 
solid material, relative elastic modulus ser EEE / and relative shear modulus ser GGG / are calculated.   

The gradient of RBW (both 1F  and / ) and logarithm of relative elastic modulus with respect to selected 
Pareto front topologies are given in Figure 1(b) and Figure 1(c), respectively. Accordingly, almost uniform 
reduction of RBW across the Pareto front is observed with simultaneous increase of both elastic and shear modulus 
by around 2 orders of magnitude. As expected, the stiffness of PhP unitcell penalizes its bandgap efficiency and the 
bandgap of extreme topology number 12 with highest stiffness is almost closed. Hence, the choice of optimum 
Pareto topology depends on desired relative bandgap-stiffness performance. In order to compare the performance 
of obtained topologies with preceding works on bandgaps of asymmetric waves, the intermediate Pareto topology 
number 6 (Figure 1(a)) is arbitrarily chosen and remodeled with Polycarbonate solid material of elastic modulus 
2.3 GPa, density 1200 kg/m3 and Poisson’s ratio 0.35  and aspect ratio 11r  as per work by Halkjær, Sigmund 
[4]. Accordingly the relevant frequency RBW of this topology is 328.0/  which is significantly higher 
than  that of optimized connected topology reported by Halkjær, Sigmund [4] with 16.0/ . Furthermore, 
the Eigen value RBW of topology number 6 remodeled with Polycarbonate solid material and 11r is

639.01F  which is around 13% higher than 5639.01F  reported for optimized topology obtained by Bilal 
and Hussein [5]. 
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1 2 3 4 5 6

7 8 9 10 11 12
(a)

(b) (c)
Figure 1: (a) Selected optimized topologies, and gradient of (b) RBW and (c) elastic properties across Pareto front 

It is worth to emphasize that bandgap performance of an intermediate Pareto topology (Number 6), and even not 
the one with widest RBW (Number 1), was compared with results of other works aimed at topology with 
absolutely maximized RBW. Moreover, the topologies of present study are optimized based on marginally lower 
aspect ratio 1110r .

(a) (b) (c)
Figure 2: (a) Modal band structure of topology number 6 with 1 mm thickness, (a) harmonic response of its finite 
square PhP structure at bandgap frequency 27.5 kHz and (c) transmittance to selected measurement points 

Finally the steady state harmonic response of a finite PhP structure of selected topology number 6 is defined in 
order to evaluate its bandgap performance compared with its modal band structure calculated for an infinitely 
periodic lattice. Unitcell of width mma 10 and thickness mmh 1  is modeled and the corresponding modal 
band structure is shown in Figure 2(a). Accordingly, a bandgap is opened within first couple of flexural modes 
from just above 20 kHz to around 30 kHz. A square lattice of 2020 unitcells with free boundaries is considered 
to be transversally loaded at the center for predominant excitation of asymmetric modes. Due to symmetry of the 
model, the top right quarter of plate is modelled only as shown in Figure 2(b). The plate is harmonically excited at 
central point O in the range 0-60 kHz corresponding to first two modal branches. Then the wave transmittance to 
the straight points A and B and diagonal ones C and D is measured as shown in Figure 2(c). It is evident that the 
transmittance of elastic wave is highly attenuated within bandgap frequency 20-30 kHz with highest damping of 
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6

around -100 dB at the most distant point D in 27.5 kHz and lowest damping of -40dB at closest point A in 30 kHz.  
The contour of wave transmittance corresponding to the bandgap frequency 27.5 kHz as presented in Figure 2(b) 
confirms the omnidirectional attenuation of wave up to -130 dB throughout the modelled finite PhP structure. 

7. Conclusion 
Topology optimization of porous phononic plates for widest bandgap of fundamental flexural waves was 
competently performed through specialized genetic algorithm. Multiobjective study was carried out and as a result 
the variation of bandgap performance with respect to effective in-plane stiffness of optimized topologies was 
explored. Specific topology processing was implemented to get feasible porous topologies without compromising 
the efficiency of genetic algorithm and diversity of design space. A broad range of Pareto topologies was delivered 
enabling the designer to select supreme topology based on required bandgap-stiffness performance. Arbitrarily 
chosen intermediate Pareto topology had excellent bandgap efficiency as compared with relevant results of other 
researchers, and omnidirectional attenuation of flexural waves through its finite square structure within calculated 
bandgap frequency was computationally observed.  
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1. Abstract
The paper concerns optimum design of elastic moduli corresponding to: i) nonhomogeneous isotropy, or to ii)

cubic symmetry, aimed at minimization of the total compliance. Similarly to the Free Material Design the cost of

design is assumed as the integral of the trace of the elastic moduli tensor over the feasible domain. A proof is given

that both the optimum design formulations discussed reduce to auxiliary problems being tensorial counterparts

of the Monge-Kantorovich scalar problem. The paper comprises numerical analysis of the mentioned auxiliary

problems and puts forward case studies concerning isotropy design. A characteristic feature of optimal isotropic

designs is emergence of auxetic properties, where Poisson ratio attains negative values.

2. Keywords: Free material design, compliance minimization, anisotropy, cubic symmetry.

3. Introduction
The Free Material Design (FMD) of structures subjected to a single load case leads to optimal material designs

being singular, viz. the optimal Hooke tensor occurs to have only one non-zero eigenvalue λ1. Thus in 3D case the

eigenvalues (or Kelvin moduli) of the optimal Hooke tensor are (λ1,0,0,0,0,0), while in 2D the optimal Kelvin

moduli are (λ1,0,0), cf. [1, 4, 5, 8]. One of the methods to make the optimal Hooke tensor non-singular is to

optimize the structure with respect to multiple loads, cf. [4, 5]. To arrive at positive values of all Kelvin moduli

in the 3D case one should optimize the structure with respect to at least six independent load variants. For the 2D

case three load cases suffice, see [4, 5].

A non-singular result can also be achieved by imposing isotropy, as shown recently by Czarnecki [6]. In this

version of FMD -called IMD or the isotropic material design- the main unknowns are two scalar fields k and μ
subjected to the isoperimetric condition expressed by the integral of the trace of Hooke tensor equal to 3k+10μ . A

less restrictive assumption, like cubic symmetry, leads to optimal values of the moduli among which one becomes

zero, see [7]. This version of FMD will be called CSMD (cubic symmetry material design). The aim of the present

paper is to publish these theoretical results and augment it with a numerical analysis. It occurs that the problems

IMD and CSMD reduce to auxiliary problems similar to those known from the theory of materials with locking

and having much in common with Monge-Kantorovich equation. The auxiliary minimization problems (in which

test stress fields run through the set of statically admissible stresses corresponding to the given load) are solved,

upon discretization, by representing the solutions via singular value decompositions (SVD) and then by performing

minimization over free parameters; hence the numerical method developed is similar in spirit to the force method

known from structural mechanics.

The paper puts emphasis on the links between FMD, IMD, CSMD and the minimum compliance problem as

set by Bouchitté and Buttazzo [3].

4. The FMD problem revisited
Let us recall the stress-based setting of FMD, see [5]. Let the linear form f (vvv) represent the work of given loads

on the virtual displacement field vvv = (v1,v2,v3) of the body occupying the domain Ω. Let Σ f represent the set of

statically admissible stress fields τττ = (τi j) such that∫
Ω

τi jεi j(vvv) dx = f (vvv) ∀ vvv ∈V (1)

where V is the space of kinematically admissible displacements while εi j(vvv) = 1
2 (vi, j +v j,i) where (·),i = ∂ (·)/∂xi.

Let ‖τττ‖ be the Euclidean norm or ‖τττ‖= (τi jτi j)
1/2. The Hooke’s law has the form τi j =Ci jklεkl(uuu) with uuu being

the unknown displacement field. This filed depends on the tensor field CCC which will be indicated by uuu = uuu(CCC).

1
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Let H1
Λ(Ω) be the set of positive semidefinite fields CCC -which locally are elements of the set E4

s of fourth rank

tensors of appropriate symmetries - satisfying the isoperimetric condition which fixes the value Λ of the integral

of trCCC =Ci ji j over the given design domain Ω. In its original setting [1] the FMD problem is formulated as

J = min
CCC∈H1

Λ(Ω)
f (uuu(CCC)) (2)

By expressing CCC by its spectral decomposition and performing minimization over the projectors, keeping the Kelvin

moduli λi as fixed, one rearranges the problem (2) to the form

J = min
τττ∈Σ f

min
λ1≥0∫

Λ
λ1dx=Λ

∫
Ω

1

λ1
‖τττ‖2 dx (3)

Now the minimization over the Kelvin modulus λ1 can be performed analytically, which leads to the formula

J = Z2/Λ , Z = min
τττ∈Σ f

∫
Ω

‖τττ‖ dx (4)

Thus the problem (2) is reduced to the above minimization problem with the integrand of linear growth. The result

(4) has been found in an elementary way, hence needs mathematical justification. The main problem lies in the

property of the integrand in problem in (4); its linear growth implies that the solutions cannot be, in general, sought

in the class of functions; the solutions are measures.

The result (4) can be justified by the methods developed in [3], see Theorem 2.3, p.144 therein. It is worth

showing here a complete proof of the estimate: J ≥ Z2/Λ. The Schwarz inequality is crucial, as seen below. Due

to τττ ∈ Σ f we have

f (vvv) =
∫
Ω

(
1√
λ1

τττ
)
·
(√

λ1εεε(vvv)
)

dx (5)

hence

f (vvv)≤
⎛
⎝∫

Ω

1

λ1
‖τττ‖2 dx

⎞
⎠

1/2⎛
⎝∫

Ω

λ1‖εεε(vvv)‖2 dx

⎞
⎠

1/2

(6)

Let ‖εεε(vvv)‖ ≤ 1 a.e. on Ω. Then

f (vvv)≤
⎛
⎝∫

Ω

1

λ1
‖τττ‖2 dx

⎞
⎠

1/2⎛
⎝∫

Ω

λ1 dx

⎞
⎠

1/2

=

⎛
⎝∫

Ω

1

λ1
‖τττ‖2 dx

⎞
⎠

1/2

Λ1/2 (7)

since now trCCC = λ1. Thus we estimate ∫
Ω

1

λ1
‖τττ‖2 dx ≥ 1

Λ
( f (vvv))2 (8)

for vvv such that ‖εεε(vvv)‖ ≤ 1. Thus (8) implies

inf
τττ∈Σ f

inf
λ1≥0∫

Ω
λ1dx=Λ

∫
Ω

1

λ1
‖τττ‖2 dx ≥ 1

Λ

⎛
⎜⎜⎝ sup

‖εεε(vvv)‖≤1

a.e. on Ω

f (vvv)

⎞
⎟⎟⎠

2

(9)

where the left hand side is equal to J, see (3); this ends the proof of the estimate discussed. In papers [4, 5] the

following identity has been put forward

sup{ f (vvv) | ‖εεε(vvv)‖ ≤ 1 a.e. on Ω}= inf

⎧⎨
⎩
∫
Ω

‖τττ‖ dx | τττ ∈ Σ f

⎫⎬
⎭ (10)

2
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by invoking the arguments of Strang and Kohn [9] concerning the Michell truss problem. Just recently the present

authors have noted that the identity (10) has been proved by Bouchitté and Valadier [2]. Denoting the value of (10)

by Z one can rearrange (9) to the form

inf
τττ∈Σ f

inf
λ1≥0∫

Ω
λ1dx=Λ

∫
Ω

1

λ1
‖τττ‖2 dx ≥ 1

Λ

⎛
⎝ inf

τττ∈Σ f

∫
Ω

‖τττ‖dx

⎞
⎠

2

(11)

which proves J ≥ Z2/Λ.

Derivation (5) - (11) is inspired by some arguments used to prove Proposition 2.1 in [3]. This derivation is of

vital importance, since it shows the passage from the functional (3) having the integrand of the quadratic growth

to the functional with the integrand of linear growth at the right hand side of (11).

Much more subtle arguments are necessary to prove that J ≤ Z2/Λ which would complete the proof of (4).

In paper [3] and the papers cited therein one can find the equality (10) rearranged to the accurate form. The field

vvv should be a Lipschitz function from Lip1,ρ(Ω) being the closure in the space of continuous functions on Ω of

the set of C∞ functions with compact support vanishing on a given subset of Ω and such that ρ(∇vvv) ≤ 1 with

ρ(∇vvv) = ‖εεε(vvv)‖.

Having solved problem (10) one can express the optimal λ1 in terms of τττ∗ being the minimizer of (4) or (10).

The optimal body occupies the subdomain of Ω being the support of this measure, [4, 5].

5. The cubic symmetry material design (CSMD)
The set of admissible Hooke tensors will be restricted to the set of Hooke tensors of cubic symmetry at each point

x ∈ Ω. Thus we assign to each point x a triplet of unit vectors (mmm(x),nnn(x), ppp(x)) and define the tensor

SSS = nnn⊗nnn⊗nnn⊗nnn+mmm⊗mmm⊗mmm⊗mmm+ ppp⊗ ppp⊗ ppp⊗ ppp (12)

for each point of Ω. Let us recall the expression for components of the unit tensor in E
4
s

4
Ii jkl =

1

2
(δikδ jl +δilδk j) (13)

and let JJJ = 1
3 (δi jδkl). Define LLL = III−SSS, MMM = SSS−JJJ. All tensors CCC of cubic symmetry are represented by Walpole’s

formula [10]

CCC = aJJJ+bLLL+ cMMM (14)

with a,b,c being nonnegative moduli. The inverse of CCC equals

CCC−1 =
1

a
JJJ+

1

b
LLL+

1

c
MMM (15)

provided that all the moduli are positive. The trace of CCC equals trCCC = a+3b+2c. The cost of the design is defined

as the integral of trCCC over Ω and is assumed as equal Λ. The set of tensors CCC in Ω represented by (14) and satisfying

the mentioned cost constraint will be denoted by H2
Λ(Ω).

The CSMD problem assumes the form (2) with H1
Λ replaced by H2

Λ. One can prove, see [7], that the compliance

J is still given by (4) with Z = Z2

Z2 = min
τττ∈Σ f

∫
Ω

|||τττ|||2 dx (16)

and

|||τττ|||2 = 1√
3
|trτττ|+

√
2‖devτττ‖ (17)

where trτττ = τii and

devτττ = τττ − 1

3
(trτττ)

2

III ,
2

III = (δi j) (18)

One can prove that |||.|||2 is a norm in E
2
s . Let

|||εεε|||∗2 = sup
τττ 
=0

|τττ ·εεε|
|||τττ|||2 (19)

3
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be the norm dual to (17). The counterpart of the equality (10) reads

sup{ f (vvv) | |||εεε(vvv)|||∗2 ≤ 1}= inf

⎧⎨
⎩
∫
Ω

|||τττ|||2 dx | τττ ∈ Σ f

⎫⎬
⎭ (20)

The trial fields vvv are of Lipschitz class previously mentioned, where now ρ(∇vvv) = |||εεε(vvv)|||∗2
The norm |||.|||∗2 defined by (19) can be expressed explicitly. Appropriate computation gives

|||εεε|||∗2 = max

{√
3

3
|trεεε|,

√
2

2
‖devεεε‖

}
(21)

Thus in the space of principal strains the ball |||εεε|||∗2 ≤ 1 assumes the shape of a cylindrical domain of length 2 and

radius 2
√

3/3.

The problem at the left hand side of (20) is mathematically simpler than the right hand side, but its solution

is of lesser importance. The maximizer vvv∗ does not determine the optimal moduli C∗
i jkl directly. To find them one

cannot omit solving the problem (16).

Let τττ∗ be the minimizer of (16). Then the optimal triplet (mmm∗,nnn∗, ppp∗) coincides with the triplet of eigenvectors

of τττ∗. Moreover, the optimal moduli are expressed by

a∗(x) = Λ√
3Z2

|trτττ∗(x)|
b∗(x) = 0

c∗(x) = Λ√
2Z2

‖devτττ∗(x)‖
(22)

Note that trCCC∗(x) = a∗(x)+ 3b∗(x)+ 2c∗(x) = Λ
Z2 |||τττ∗(x)|||2 which shows that a∗,b∗,c∗ satisfy the isoperimetric

condition.

6. The isotropic material design (IMD)
The set H3

Λ corresponding to isotropy will replace the set H1
Λ in (2). The tensors CCC are now represented by

CCC = 3kJJJ+2μKKK (23)

with KKK =
4

III − JJJ and trCCC = 3k+10μ . As proved by Czarnecki [6], the formula (4) holds good with Z given by (16)

and with the integrand defined as below

|||τττ|||3 =
√

10|trτττ|+5
√

6‖devτττ‖ (24)

Contrary to obvious discrepancies between isotropic materials and cubic crystals the problem (16) differs only in

coefficients in (17) and (24). Assume τττ = τττ∗ is the minimizer of (4) with ‖.‖= |||.|||3.

The optimal moduli are expressed by

k∗(x) =
√

10

3

Λ
Z3

|trτττ∗(x)| , μ∗(x) =
√

3

2

Λ
Z3

‖devτττ∗(x)‖ (25)

Note that the integral of trCCC∗ is now equal to Λ. The support of τττ∗ determines the optimal body. Having the bulk

and shear moduli one can compute the optimal Poisson ratio ν∗. The interesting feature of many solutions is that

in some large subdomains the optimal Poisson ratio approaches -1 and in other parts of the domain it approaches

1/2. Thus the optimal structures turn out to be of auxetic properties.

7. Construction of optimal solutions and exemplary results
The numerical method for constructing the optimal isotropic material and cubic material designs is based on

solving problem (4) with integrands defined by appropriate norms for the trial stress fields. The numerical method

has been developed in [4, 5, 6]; it is based on discretization of the set of statically admissible stresses. This

linear affine set is represented by the solution of the discretized equilibrium equations with using the singular

value decomposition technique (SVD). The free parameters of the representation are determined by performing

minimization in the discretized counterpart of (4); for the details the reader is referred to [5]. The aim of the

present section is to show only exemplary results: the optimal layouts of isotropic moduli found by the IMD

technique outlined in Sec.6.
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Figure 1: Dimensions of the girder considered

Consider the girder of dimensions 3.60 x 0.60 [m] lying on two non-sliding point supports, see Fig.1.

A uniformly distributed vertical load of intensity q = 1.0 [N/m] is applied along the upper edge. The design

cost Λ , see (3), is assumed as equal to E0|Ω|, where Ω represents the area of the design domain. The modulus

E0 is assumed as equal 1.0 [N/m], the optimal values of the designed elastic moduli being proportional to E0 , see

(25). Two optimal designs are constructed: a) for the rectangular design domain without openings, and: b) for the

design domain with six hexagonal openings, as shown in Fig.1. The scatter plots of the Young modulus E∗ and

Figure 2: The layouts of Young modulus E∗ and Poisson ratio ν∗ in optimal isotropic girders: without openings

(case a) and with openings (case b).

Poisson ratio ν∗ of the optimal non-homogeneous isotropic material within the girder domain for both cases a) and

b) are shown in Fig. 2. The results have been found with using the bilinear, isoparametric C2D4 finite elements,

applied for the approximation of the stress fields. In case (a) the mesh of 5400 elements has been used, in case (b)

the number of elements being equal 4555.

For the rectangular design domain the optimal material forms a characteristic arch. The presence of openings
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brings about creation of stiffenings tangent to the openings, a characteristic feature of available optimal solutions

to the scalar Monge-Kantorovich problem, see [3].

A characteristic property of the solution presented is emergence of the domains where the optimal Poisson

ratio attains its lower and upper bounds. In the 2D setting these bounds are: -1 and 1, while in the 3D case they are

tighter: -1, 1/2. In the 2D case considered we expect the former bounds. Note that in domains shown in the purple

color the optimal layout of Poisson ratio reaches its lower bound equal to -1. In contrast, the red color indicates

the domain where the Poisson ratio reaches its upper bound being equal to 1. Let us note lastly that in case of 3D

optimal solutions constructed by the IMD method both the bounds : -1 and 1/2 are reached in typical optimal 3D

designs [6]; selected 3D optimal solutions will be presented during the Conference.

8. Concluding remarks
The three versions of the material design considered come down to the problem (4) with different norms ‖.‖. To

make this problem well posed one should sought the minimizer in the space of measures, as stressed in the paper

[3] on shape optimization. The support of the minimizer determines the shape of the optimal body. Thus the

material and shape optimizations are indissolubly bonded.

Optimum anisotropy becomes singular unless the strongest assumption of isotropy is imposed. The optimal

isotropic bodies exhibit auxetic properties for majority of possible loads.
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[7] R. Czubacki, T. Lewiński, Topology optimization of spatial continuum structures made of non-homogeneous

material of cubic symmetry, submitted 2015.
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1. Abstract
Constraints are inherently present in any real world problem. In the context of multidisciplinary design optimiza-
tion problems, such constraints arise out of physical laws, statutory requirements, user preferences etc. and are
often computed using computationally expensive analysis e.g. FEM, CFD, CEM etc. While population based
stochastic optimization algorithms are a preferred choice for the solution of such class of problems (often with the
aid of approximations), they typically adopt a full evaluation policy i.e. all constraints and objective functions for
all solutions are evaluated. Recent studies have highlighted the possibility of selected constraint evaluation (i.e. a
subset of relevant constraints are only evaluated), although learning the sequence (or the subset) of constraints is
far from trivial. In this paper, we introduce an approach for selective evaluation based on Support Vector Machine
(SVM) models, wherein promising solutions are identified and evaluated based on the trade-off between need to
learn and cost to learn. The performance of the proposed scheme is compared with other state-of-the-art constraint
handling methods using a set of well-studied engineering design optimization problems. The aspect of selective
evaluation has rarely been investigated in literature and the results clearly indicate the benefits selective evaluation
which is of immense value in the context of computationally expensive optimization problems.
2. Keywords: Constraint Handling, Classifiers, Selective evaluation.

3. Introduction
Most real world optimization problems involve constraints and feasible solutions need to satisfy them. A generic
constrained optimization problem can be expressed as:

minimize
X

f(x)

subject to gi(x)≥ 0, i = 1,2, . . . ,q
h j(x) = 0, j = 1,2, . . . ,r

where q represents the number of inequality constraints and r denotes the number of equality constraints. The
equality constraints are replaced by a pair of inequalities. The vector x = [x1 x2 . . .xn] denotes a solution repre-
sented using n design variables.

It is well known that the performance of all stochastic optimization algorithms are affected by the underlying
mechanism of constraint handling. Constraint handling is an active area of research and existing methods can
be classified into three categories i.e. (a) full evaluation policy with feasibility first principle: all constraints and
objectives are evaluated for all solutions and feasible solutions are preferred over infeasible solutions (objective
function value of infeasible solutions are essentially useless information) e.g. Non-dominated Sorting Genetic
Algorithm(NSGA-II) [1] (b) full evaluation policy with marginally infeasible solutions preserved or stochastically
preferred e.g. Infeasibility Driven Evolutionary Algorithm(IDEA) [5], Stochastic Ranking(SRES) [6], Epsilon
Differential Evolution(eps-DEA) [7] (objective function values of infeasible solutions are used in ranking solu-
tions) and (c) partial evaluation strategy e.g. evaluate till you violate[8] where constraints are evaluated in a
sequence (DEACS) until a violation is encountered. In the context of computationally expensive optimization
problems, partial evaluation policy offers the potential to reduce the number of function evaluations.

The evaluation cost can be further reduced if one can (a) screen potentially promising offsprings and (b) eval-
uate relevant constraints. In this paper, support vector machines (SVM) [9, 10] are used to identify promising
offsprings and the relevant set of constraints. In the proposed approach, a SVM classifier is used to estimate the
class label and the associated confidence about the quality of a solution. The use of a SVM classifier to identify
promising solutions appeared in [11, 12]. In this study, we have used SVM ranking [10] models to predict the rank
of a partially evaluated solution.

4. Proposed Approach
We adopt a generational model. The initial population is fully evaluated i.e. objective and all constraints for all
the individuals are evaluated and the information is stored in an Archive. The first set of N parents are identified
using roulette wheel selection, while the second set of N parents are identified using a random selection. A binary
tournament between these N pairs of solutions result in N participating parents and offspring solutions are created
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using simulated binary crossover (SBX) and polynomial mutation (PM). Offspring solutions are screened using
a two-class SVM classifier, trained using the data from the Archive with its inputs being the variables of the
optimization problem (x) and the output being the final rank of the solutions. Offspring solutions predicted with a
class label of 1 are considered as potential solutions.

For any given potential solution, the probability of satisfying its ith constraint is given by Feasibility Indexi. A
value of 1 would indicate that it would satisfy the ith constraint and 0 otherwise. Similarly, for a solution under
consideration, Rank Indexi is computed for each constraint. The term Rank Indexi reflects the confidence that this
solution is among the top 50% in a list based on the ith constraint. To construct a list based on the ith constraint,
solutions are ordered based on the ith constraint values i.e. feasible and furthest from the ith constraint boundary at
the top and infeasible and the furthest from the ith constraint boundary at the bottom. In order to capture the local
behavior, for each potential offspring solution, the classifiers (one for each constraint) are trained using k closest (in
variable space) neighbors from the Archive. The inputs to these classifiers are the variable values and the outputs
are the corresponding ranks based on that particular constraint under consideration. For a potential offspring, the
constraint associated with least Feasibility Index and least Rank Index will be evaluated first. However, in the
situation where Feasibility index of a solution is same in all its constraints, the sequence of evaluation is based on
the following rule: (a) if all neighboring k solutions have all the constraints violated i.e. (Feasibility Index = 0), the
constraint having least Rank Index is evaluated first and (b) if all neighboring k solutions have all the constraints
satisfied i.e. (Feasibility Index = 1), the objective function for this solution is only evaluated since it is most likely
a feasible solution. In the next step, SVM ranking model is utilized to predict rank of the potential offspring in
all other constraints, where it has not been evaluated. In this ranking scheme, a regression model is created using
actual ranks of all the solutions from the Archive based on the evaluated constraint as inputs and ranks based on
other constraints or final rank as outputs. Hence, for any potential offspring solution, ranks based on all other
constraints and its final rank in the population can be predicted. Rank prediction and insertion in the population
are executed taking one offspring at a time instead of taking the whole set. Therefore insertion of one offspring
might affect the position of the previous offsprings.

It is important for any learning based scheme to focus the region of interest and progressively improve its
quality of prediction. To assist this, top solutions in a population undergo full evaluation (i.e. all constraints and
objective function values for these solutions are evaluated). Please note that the final ranking of the population
is based on feasibility first principle. The pseudo-code of the proposed approach is presented below: Classifier
Guided Constraint Selection Mechanism (CGCSM).

5. Numerical Experiments
The success of a constraint handling strategy can be assessed from two different angles (a) ability of the approach
to deliver the first feasible solution with minimal computational cost and (b) quality of the solution delivered
for a fixed computational budget. While the second metric is largely used within the evolutionary computation
community, such a metric does not solely assess the performance of constraint handling schemes. We objectively
evaluate the performance of CGCSM and compare it with IDEA, NSGA-II, DEACS and SRES using 5 well studied
benchmark engineering design problems: Belleville Spring [13], Helical Spring [13], Speed Reducer [14], and Step
Cone Pulley [15]. The properties of the objective functions, nature of constraints, number of active constraints and
the percentage of the feasible space are listed in Table 1.

Table 1: Properties of the Problems (Maximization Problem: max, Minimization Problem: min)

Problem n Obj ρ % LI NE NI NA
Belleville Spring(min) 4 Quadratic 0.2595 7 0 0 -
Helical Spring(min) 3 Polynomial 0.0316 9 0 0 -
Speed Reducer(min) 7 Polynomial 0.0962 11 0 0 -
Step Cone Pulley(min) 5 Polynomial 0.0000 0 3 8 -

where n: number of variable, Obj: Objective function type, ρ: Percentage ratio of feasible space over entire
search space, LI: number of linear inequalities, NE: number of equalities, NI: number of nonlinear inequalities
and NA: number of active constraints.

The relative sizes of the feasible region (feasibility ratio) is based on random sampling of 1,000,000 random
points. The results obtained using the proposed algorithm CGCSM are compared with those obtained using in-
feasibility driven evolutionary algorithm (IDEA) [5], non-dominated sorting genetic algorithm (NSGA-II) [1],
Constraint sequencing (DEACS) [8], and Stochastic ranking (SRES) [6]. A one-to-one comparison of CGCSM
with IDEA, NSGA-II, DEACS and SRES would offer insights on the actual utility of the classifier. Results, pre-
sented in Table 2, indicate the cost of evaluation till first feasible is obtained and Table 3 indicates the quality of
the solution after 1000 function evaluations equivalent to evaluating 1000 solutions during the course of optimiza-
tion using a full evaluation policy). As an example, for a problem involving 7 constraints, full evaluation of 1000
solutions would mean an evaluation budget of 8000. Each objective function evaluation or a constraint evaluation
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Algorithm 1 CGCSM

SET: FEmax{Maximum evaluation budget}, N{Population size}, St{Confidence associated with SVM classifier (exponentially increases
from 0 to 0.8 over FEmax)}, Popbin{Repository of ordered solutions evaluated so far (includes partial and fully evaluated solutions)},
Archive{Repository of all fully evaluated solutions}

1: Initialize the population of N individuals using latin hypercube sampling
2: Evaluate Pop1:N,g1:q+2r , f and order them according to their final ranks (ordered based on feasibility first)
3: Popbin = Pop
4: Update FE, Update Archive
5: Update St
6: while (FE ≤ FEmax) do
7: Generate offspring solutions using BT, SBX and PM from Popbin1:N
8: Construct a binary SVM classifier: Top 100(1-St ) percent solutions of the Archive is assigned a class label of 1
9: Offspring solutions unique w.r.t Archive and with a predicted class label of 1 constitutes the set of C eligible offsprings (Child pop)

10: for i = 1:C do
11: For every member of Child pop, calculate the Feasibility Indexi,1:q+2r and Rank Indexi,1:q+2r based on its k neighbors from the

Archive
12: if Feasibility Indexi,1:q+2r = 1 then
13: Evaluate Child popi, f
14: else if Feasibility Indexi,1:q+2r = 0 then
15: [val, index] = min(Rank Indexi,g1:q+2r ); gindex is the constraint to be evaluated
16: else
17: [val1, list1] = sort(Feasibility Indexi,g1:q+2r

); [val2, list2] = sort(Rank Indexi,g1:q+2r )

18: Find index, where list1 has a preference over list2 and evaluate Child popi,gindex
19: end if
20: Update FE
21: Construct SVM ranking model with inputs being rank of solutions in gindex and outputs being ranks in other constraints and final

rank from Archive
22: Predict rank of Child popi in other constraints and its final rank based on the above SVM model
23: if (Final rank of Child popi ≤ (1−St)|Popbin|) then
24: Evaluate Child popi,g1:q+2r and place it in Popbin based on its actual final rank
25: Update FE, Update Archive
26: else
27: Place Child popi in Popbin according to its predicted final rank
28: end if
29: end for
30: end while
*FE denotes the evaluation cost i.e. 1 unit for each objective and 1 unit for each constraint evaluated

incurs a cost of 1 unit. Please take note that each equality constraints are imposed as two inequalities using all the
algorithms except SRES (kept same as original formulation), however total evaluation budget is kept same for all
the algorithms.

6. Results and discussion
The following parameters were used in this study: population size: 40; total evaluation budget is 1000 times the
total number of constraints and objective for the problem; crossover probability: 0.9; mutation probability: 0.1;
distribution index for crossover: 20; distribution index of mutation: 30; confidence in the classifier varied exponen-
tially from 0 to 0.8 and the number of neighbors (k) was set to 12. We refer the readers to [9, 10] for the details on
support vector machine classifiers. In our study, the standard SVM classifier of MATLAB toolbox was used with
a Gaussian Radial Basis Function kernel with default settings and Karush-Kuhn-Tucker (KKT) violation level set
as 0.05. Also for all the algorithms, same initial population has been used for a fair comparison.

6.1. Performance on Problems
Convergence plots of mean sum of constraint violations (CV) and average number of infeasible individuals (NI)
over the evaluation budget are shown in Figure 1a, Figure 2a, and Figure 3a for Belleville Spring, Speed Reducer,
and Step Cone Pulley respectively. While, for the same problems the convergence plots of the mean objective func-
tion value (Obj) and average number of feasible individuals (NF) versus evaluation budget are shown in Figure 1b,
Figure 2b, Figure 3b. In the context of partial evaluation policy (CGCSM and DEACS), solutions are evaluated
offline to obtain the sum of constraint violation and objective function value for best individual in each genera-
tion. Hence, a fill up cost of 1 unit was assumed (i.e. to account for the case when a partially filled population is
delivered).

The best, mean, worst, median and standard deviation measures of the best solution across 30 independent runs
obtained using CGCSM, IDEA, NSGA-II, DEACS and SRES are presented in Table 3.

The observations from the results can be summarized as follows:
(a) In Belleville Spring problem, Figure 1 indicates that CGCSM has the highest convergence rate when compared
with other algorithms both in the contexts of mean sum of constraint violations and mean objective function value.
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Figure 1: Convergence plot: Belleville Spring
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Figure 2: Convergence plot: Speed Reducer
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Figure 3: Convergence plot: Step Cone Pulley

This problem has relatively larger feasibility ration when compared to others. One can also observe from Table 3
that CGCSM outperforms other algorithms in the terms of the median optimal solution delivered. However, SRES
is the best in terms of its ability to deliver the first feasible solution (Table 2 and Figures 1b). (b) CGCSM is able
to deliver its first feasible solution at minimum cost for the Helical Spring design problem (Table 2). The design
space for this problem is highly constrained. However quality of median optimal solution delivered by DEACS
is best closely followed by CGCSM (Table 3). (c) Speed Reducer is also a highly constrained design problem
which has highest number of linear inequalities among the problems discussed. The spread of the solutions is
within 0.6% of the average objective value for DEACS, while it is 1.1% for CGCSM and much higher for others.
This indicates better quality of convergence for the algorithms having partial evaluation policy in this problem.
CGCSM performs better in terms of convergence (both mean CV and mean objective function value) than others.
(d) Step Cone Pulley is an interesting problem as it has 8 non-linear inequality and 3 equality constraints which
makes the problem highly constrained and difficult to solve. From Figure 3b, it can be observed that none of the
algorithms could deliver feasible solutions within the fixed computational budget. However Figure 3a indicates
better convergence of CGCSM and the final median violation values is also the lowest for CGCSM.
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Table 2: Statistics of evaluation cost till first feasible for Problems

Problems Algorithms Best Mean Median Worst Std Success

Belleville Spring

CGSCM 160.0000 1997.3793 1616.0000 5994.0000 1609.0422 29.0000
IDEA 160.0000 2280.0000 1528.0000 6496.0000 1767.8565 29.0000

NSGA-II 160.0000 2280.0000 1528.0000 6496.0000 1767.8565 29.0000
DEACS 160.0000 1367.5000 1228.0000 3201.0000 792.5307 30.0000
SRES 160.0000 1967.3600 1048.0000 7664.0000 2130.4546 25.0000

Helical Spring

CGSCM 920.0000 2314.8571 2130.0000 4780.0000 991.7325 21.0000
IDEA 1450.0000 3317.0833 2730.0000 7610.0000 1583.5691 24.0000

NSGA-II 1450.0000 3317.0833 2730.0000 7610.0000 1583.5691 24.0000
DEACS 927.0000 3027.7000 2974.0000 6305.0000 1250.3888 30.0000
SRES 530.0000 4978.4615 4740.0000 8760.0000 2762.9267 13.0000

Speed Reducer

CGSCM 336.0000 1622.0000 1428.0000 3204.0000 697.0129 30.0000
IDEA 336.0000 2294.4000 2100.0000 6816.0000 1267.1713 30.0000

NSGA-II 336.0000 2294.4000 2100.0000 6816.0000 1267.1713 30.0000
DEACS 336.0000 1246.0333 1224.0000 2550.0000 601.8644 30.0000
SRES 336.0000 4971.8571 5106.0000 9984.0000 2692.2567 28.0000

Step Cone Pulley

CGSCM NaN NaN NaN NaN NaN 0.0000
IDEA NaN NaN NaN NaN NaN 0.0000

NSGA-II NaN NaN NaN NaN NaN 0.0000
DEACS NaN NaN NaN NaN NaN 0.0000
SRES NaN NaN NaN NaN NaN 0.0000

Table 3: Statistics for Problems

Problems Algorithms Feasibility Best Mean Median Worst Std Success

Belleville Spring

CGSCM
Feasible 2.2507 2.9440 2.6626 6.7106 0.9822 29.0000

Infeasible 0.0000 0.0007 0.0000 0.0205 0.0037 1.0000

IDEA
Feasible 2.4369 3.0897 2.8994 4.9255 0.5972 29.0000

Infeasible 0.0000 0.0006 0.0000 0.0167 0.0030 1.0000

NSGA-II
Feasible 2.2319 3.1649 2.9879 6.4377 0.8304 29.0000

Infeasible 0.0000 0.0006 0.0000 0.0167 0.0030 1.0000

DEACS
Feasible 2.4165 3.1518 3.1642 4.0260 0.4003 30.0000

Infeasible 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

SRES
Feasible 5.9192 5.9192 5.9192 5.9192 0.0000 1.0000

Infeasible 0.0000 232.2841 1.0874 4625.5502 853.9785 29.0000

Helical Spring

CGSCM
Feasible 2.8223 4.0102 3.1356 6.9907 1.4696 21.0000

Infeasible 0.0000 0.0659 0.0000 0.7494 0.1596 9.0000

IDEA
Feasible 2.7684 3.9751 3.3809 7.1769 1.2899 24.0000

Infeasible 0.0000 0.0438 0.0000 0.5380 0.1218 6.0000

NSGA-II
Feasible 2.8068 4.1526 3.4674 7.3881 1.5122 24.0000

Infeasible 0.0000 0.0438 0.0000 0.5380 0.1218 6.0000

DEACS
Feasible 2.7434 2.9800 2.9937 3.1405 0.1057 30.0000

Infeasible 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

SRES
Feasible 3.7105 3.7105 3.7105 3.7105 0.0000 1.0000

Infeasible 0.0000 0.5466 0.5863 1.4689 0.3452 29.0000

Speed Reducer

CGSCM
Feasible 3000.0118 3024.7515 3014.0820 3182.4136 33.0295 30.0000

Infeasible 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

IDEA
Feasible 3005.2093 3073.7129 3033.5242 3578.8939 116.8753 30.0000

Infeasible 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

NSGA-II
Feasible 3007.6698 3138.1983 3042.9740 4152.7143 249.6745 30.0000

Infeasible 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

DEACS
Feasible 3025.9020 3068.4133 3062.5951 3121.7496 18.5588 30.0000

Infeasible 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

SRES
Feasible 3259.1542 3684.9077 3684.9077 4110.6611 425.7534 2.0000

Infeasible 0.0000 0.0207 0.0184 0.0636 0.0175 28.0000

Step Cone Pulley

CGSCM
Feasible NaN NaN NaN NaN NaN 0.0000

Infeasible 0.0005 0.0046 0.0040 0.0118 0.0028 30.0000

IDEA
Feasible NaN NaN NaN NaN NaN 0.0000

Infeasible 0.0018 0.0083 0.0066 0.0304 0.0065 30.0000

NSGA-II
Feasible NaN NaN NaN NaN NaN 0.0000

Infeasible 0.0018 0.0083 0.0066 0.0304 0.0065 30.0000

DEACS
Feasible NaN NaN NaN NaN NaN 0.0000

Infeasible 0.0811 0.3527 0.3624 0.7589 0.1719 30.0000

SRES
Feasible NaN NaN NaN NaN NaN 0.0000

Infeasible 0.2134 0.5110 0.4698 1.0447 0.1959 30.0000

Since only promising solutions are evaluated, use of classifiers would reduce the computational cost. However,
the classifiers need to learn and their assessment needs to be reliable. The process of learning requires information
from the evaluated solutions. Although use of poorly trained classifiers would save computational cost, the search
outcome may not be satisfactory. To achieve this balance, the confidence associated with the classifier is varied
from 0 to 0.8 exponentially during the course of search. In case of high confidence associated with the classifier,
very few solutions would be evaluated and in turn the classifier would not have the opportunity to learn from di-
verse solutions. These observations seems to favor CGCSM for problems having highly constrained search space.
In the context of evaluation cost associated with first feasible identification, performances of CGCSM and DEACS
are nearly similar. However, in terms of convergence (both mean CV and mean objective function value) CGCSM
performs better in 3 out of 4 problems.
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7. Summary and Conclusions
Real life optimization problems often involve objective and constraint functions that are evaluated using computa-
tionally expensive numerical simulations e.g. computational fluid dynamics (CFD), finite element methods (FEM)
etc. In order to solve such classes of problems, surrogate assisted optimization (SAO) methods are typically used,
wherein computationally cheap and less accurate surrogates/approximation models of objectives/constraints are
used during the course of search. In this paper, we explore an alternative path i.e. one where promising solutions
are identified using support vector machine (SVM) based models. The key difference being, SVM models are used
to identify promising solutions without explicitly attempting to approximate objective and constraint functions.
Furthermore, for every promising solution, the approach identifies the constraints that are most likely to be violated
and evaluates them first. In the event the constraints and objectives are evaluated using independent computation-
ally expensive analysis (e.g. multi-disciplinary optimization), such an approach would only evaluate relevant con-
straints and/or objectives that are necessary to ascertain the rank of the solutions. The search behavior of CGSCM
is compared with the following: NSGA-II (algorithm adopts a full evaluation policy), IDEA(algorithm maintains
selected infeasible solutions), DEACS (algorithm evaluates selected set of constraints) and finally SRES (algorithm
stochastically prefers infeasible solutions). The performance of the algorithm is further objectively assessed using
a number of constrained engineering design optimization problems with limited computational budget. The rate
of convergence of CGCSM is better for most of the problems and the final set of results are clearly better on all
problems studied in this paper. We hope that this study would prompt design of efficient algorithms that selectively
evaluate solutions and in particular selected set of constraints on the fly i.e. based on the trade-off between need to
learn/evaluate and cost to learn.
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1. Abstract
It is important for crashworthiness of an aircraft fuselage and its structural components to evaluate the aircraft 
airworthiness in crash-landing scenarios on different terrains (i.e. rigid, soil, and water). In this study, a new 
experimental method by Doppler shift is performed to measure the velocity and thus the water impact loads of a 
rigid sphere bottom structure dropping onto a water surface. Doppler Effect measurements are conducted to 
precisely obtain the water impact responses acting on the structure. And experimental results are validated and 
evaluated with the classical experimental data, as well as numerical simulation performed on the explicit FEM 
code LS-DYNA. A penalty coupling algorithm within the frame of multi-material Arbitrary Lagrangian Eulerian 
(ALE) model is utilized to numerically simulate the experimental cases. It concludes that the Doppler 
measurement is a reliable and effective method to not just obtain the water-impact responses and its great potential 
to be applied to aircraft crashworthiness analysis. 
2. Keywords: Crashworthiness, Water impact; Drop tests; Doppler measurement; Finite element analysis 

3. Introduction 
There have been various research programs are conducted by NASA, IDRF and FAA to investigate fixed-wing 
aircraft and rotorcraft crashworthiness in order to improve survivability in the event of a crash [1]. During a crash 
onto ground, soil or water, the structures must be able to absorb the kinetic energy and limit the impact forces and 
deceleration that are transmitted to the occupants to tolerable levels. While considerable research has been 
performed on testing of aircraft impacting hard surfaces and soft soil, few studies have been focused on impacting 
onto water surface. There are some differences between impacting onto water and rigid surfaces. Water impact 
loads depend on the fluid-structure interaction and contrarily rigid surface impact loads depend only on structural 
characteristics. Due to the complex crash event, the wetted surfaces will strongly influence the loads path changes 
and the floating time for the damaged structure because of the water pressure. It is necessary to develop a reliable 
experimental method to measure the water impact responses and become a part of methodologies used to water 
crashworthiness analysis. 
Recently some analytical, experimental, and finite element methods have been available to water impact domain, 
such as ship slamming, aircraft ditching, space capsule water landing, and torpedo water entry and so on[2, 3]. Th. 
von Karman and H. Wagner were the pioneers to theoretically study water impact problem for the purpose of 
estimating the impact forces and pressures based on the conservation of momentum [4, 5]. The history of 
crashworthiness studies can be traced back to the 1910s. Miloh [6] solved the displacement, velocity, and 
acceleration histories of a rigid sphere analytically, by employing the matched asymptotic method. Generalized 
Wagner Model (GWM) was created using the linearization analysis on the exact boundary condition around the 
intersection between the body and the free surface [7, 8] and can thus obtain satisfactory results. 

4. Experiment methodology and verification 
R. Araki, A. Takita, et al [9, 10] used the Doppler shift and the modifying Levitation Mass Method (LMM) [11] to 
conduct a water impact experiment analysis of a rigid sphere impact on water at School of Science and Technology, 
Gunma University, Japan. In the paper the experimental drop test is simply introduced and test data are certificated 
with some classical water impact data and a close correlation is observed through the numerical simulation. 

4.1 Experimental setup 
The impact of a stainless sphere on the clam water surface with initial downward velocity with variable 
water-entry height and then plunging into the water is tested in this study by the Doppler measurement. The 
experimental setup (Figure 1) divides into four systems, including water pool, the laser Doppler measurement 
module, quick-releasing facility, and high-speed camera. 
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Sphere diameter

30.2×10-3m

Air

Room Temperature 

Drop Height 

Water 

Water pool 

Figure 1  Experimental setup arrangement. 
Code: CC=cube-corner prism, PBS=polarizing beam splitter, NPBS=non-polarizing beam splitter, GTP=Glan-Thompson 

prism, PD=photodiode, LD=laser diode, ADC=analogue-to-digital converter, DAC=digital-to-analogue converter. 

Water pool is made of transparent acryl resin. During the test, it allows to adjust the variable dropping height 
which is between the bottom of the test article and water surface. The quick-releasing facility is equipped with a 
hollow-circular electromagnet to guarantee the test articles quick-release manually without any vibration. In this 
experiment, the test article is a tempered stainless sphere, which is punched a hole on the top and inlaid a cube 
corner prism. The total mass of the entire body is approximately 93.88 g. A high-speed camera (NAC Memrecam 
GX-1, NAC Image Technology, USA) is used to capture the images around the impact region with a resolution of 
135 424 pixels and a frame rate of 15 000 fps. The digitizer and the high-speed camera are initiated by a sharp 
trigger signal generated using a digital-to-analogue converter (DAC). This signal is activated by means of a light 
switch, which is a combination of a laser diode and a photodiode. 
The laser Doppler measurement module utilizes the laser Doppler interferometer to measure the velocity. A 
digitizer (NI PCI-5105, National Instruments Corp., USA) records the output signals of PD1 and PD2 with a 
sample number of 5M for each channel, a sampling rate of 30M samples per second, and a resolution of 8 bit. A 
Zeeman-type two-wavelength He-Ne laser in is used as the light source. Each beam has different frequency and 
orthogonal polarization. Differentiating the body’s velocity which is calculated from the measured value of the 
Doppler shift frequency of the signal beam of the interferometer, the acceleration is calculated. 

4.2 Experiment results and verification 
Here only a test-run is conducted by the predetermined dropping position about 136mm from the water surface. In 
an effort to guarantee the reliability of measures and accuracy of test data, 7 drop measurements are taken in each 
set of measurements. The Levitation Mass Method (LMM) is developed to precisely measure the motion-induced 
time-varying beat frequency. Other water impact parameters, such as displacement, velocity and acceleration and 
impact force, are numerically calculated from the beat frequency. The results of the 7 drop measurements coincide 
well, indicating a high reproducibility of the measures [10]. In order to verify the experimental results, especially 
water impact force, the acquired water impacting acceleration is made to nondimensional impact drag coefficient 
as shown in Figure 2 in order to compare with some classical experimental data. 
Comparing the new measures to the other classical experimental data, the repeatability and the reliability of the 
tests of impact accelerations are showed the effectiveness of the crashworthiness design for the sphere-bottom 
structures.

5. Numerical modelling and analysis 
The main interest of the numerical simulations has been compared with the Doppler measure to estimate the 
efficiency of the nonlinear explicit codes to predict dynamic response of the structure. The fluid are defined as the 
ALE Multi Materials which is most versatile and widely using 1 point ALE multi-material element, the structure is 
modelled with the classical Lagrangian approach by the default Belytschko-Tsay element formulation. 
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Figure 2  Comparison of Doppler measurement results with the experimental ones.

In order to reduce the computer time-consumption, only a quarter of the model is established with symmetric 
boundaries on XOY and YOZ planes, as shown in Figure 3. A cylindrical hole is embedded into the body in order 
to insert a cube corner prism. Meanwhile it demands the optical center coincide with the center of gravity of the 
sphere. For all the analysis cases the properties of the spherical body are taken as below. The mass of the impactor 
is 93.88 g. the density of the stainless steel body is 7650 kg/m3; Young’s modulus is 2.0×1011 N/m2; and Poisson’s 
ratio is 0.3. The Poisson’s ratio and Young’s modulus of the material do not change the behavior of the sphere part 
because of its rigidity. 

Water

Air

Figure 3  Three view of water impact model including air and water domain 

The constitutive model and equation of state (EOS) model are simultaneously utilized to describe the nonlinear 
properties of a fluid or fluid-like deformation material in explicit dynamic codes LS-DYNA [12]. Material model 
*MAT_NULL and EOS model *EOS_LINEAR_POLYNOMIAL were contemporary used to model air. And 
then, the water was modeled using the Mie-Gruneisen EOS based on a cubic shock velocity-particle velocity. The 
penalty based coupling treats the FSI problem between a Lagrangian formulation modeling the structure and an 
ALE formulation modeling the fluid. The coupling mechanism between the MMALE and the structure is 
controlled by the keyword *CONSTRAINED_LAGRANGE_IN_SOLID (*CLIS). To get the proper numerical 
model and reach more correct solutions, convergence studies should be performed based on the convergence 
theorem, with respect to some parameters study. The selection of the contact stiffness based on the penalty 
coupling algorithm is required here. The coupling stiffness via the parameter PFAC, the penalty factor, in *CLIS 
should be analyzed in detail. 
Numerical models of the experiment scenario are created and employed. Figure 4 show the comparison of the 
experimental, theoretical and numerical drag coefficient. The most concerned result is the maximum impact forces 
in the early-water entry. In the view of the acceleration peak and the overall shape of the curve, the prediction of 
nonlinear LS-DYNA codes coincides very well with one derived from the analytical MLM and shows a quite 
satisfactory agreement. 
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Figure 4  Numerical-analytical-experimental correlation for the impact drag coefficient 

6. Conclusions 

The present work is mainly to develop and verify a new suitable measurement of dynamic responses in water 
impact domain and its application is to be faced with aircraft crashworthiness analysis. The drop tests utilized by 
Doppler measurement are performed to precisely obtain acceleration, displacement and inertial impact force acting 
on the sphere bottom structure. The impact drag coefficient time histories are compared with other classical 
experimental results, together with the analytical method and numerical results. The results have been shown that 
Doppler measurement demonstrates the accuracy for predicting dynamic responses in water impact on a sphere. 
And it is feasible for other structures and it deserves further development for other crash-landing scenarios. The 
numerical simulation tests are efficiently carried out using a MMALE formulation and a penalty coupling 
algorithm to duplicate the experimental cases. And the verified numerical model can estimate the efficiency of the 
nonlinear explicit codes to predict the dynamic responses. They provide the opportunity to develop water impact 
analysis criteria for aircraft crashworthiness analysis. 
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1. Abstract
The article presents the optimization of trusses subject to natural frequency constraints. Three planar trusses 

(10-bar, 37-bar and 200-bar structures) and three spatial trusses (52-bar, 72-bar and 120-bar structures) are 
surveyed. Differential Evolution method combined with finite element code is employed to find the optimal 
cross-section sizes and node coordinates. Constraint-handling technique is only based on a clear distinction 
between feasible solutions and infeasible solutions. The obtained results are equivalent to or better than solutions 
in literature. 
2. Keywords: Truss optimization, natural frequency, differential evolution 

3. Introduction 
Truss optimization is one of the oldest developments of structural optimization. There were many 

publications on this field. However, except for simple problems that have been solved analytically, the search 
space and constraints are quite complex in most of actual structures. Consequently, there might not have explicit 
functions of constraints and closed-form solutions of stress, strain or natural frequency for these structures. In 
addition, due to the efficiency and capability of optimization methods, the so-called “optimum result” is often 
revised and improved with various approaches and algorithms. Structural optimization can be classified into three 
categories: cross-section size, geometry and topology. Depending on requirements, the study can include from one 
to all of the above types. This article only considers two types of optimization: the cross-section size and the 
geometry of trusses with natural frequency constraints. Six planar and spatial trusses are surveyed in this work. 
These structures are very common in literature and there are similar studies in [1-6]. However, the differences in 
this article are the quality of results and new groups of elements in 200-bar and 52-bar structures. 

Although Differential Evolution (DE) has been proposed by Storn and Price [7] since 1997 and attracted 
many studies, there is not much application of DE to truss optimization with natural frequency constraints. Kaveh 
and Zolghadr [5] have compared nine algorithms but without DE. Recently, Pholdee and Bureerat [6] have 
considered DE in their comparison of various meta-heuristic algorithms for these problems.

4. Differential Evolution 
Differential Evolution is a non-gradient optimization method which utilizes information within the vector 

population to adjust the search direction. Consider D-dimensional vectors xi,G, i = 1, 2,…, N as a population for 
each generation G, xi,G+1 as a mutant vector in generation (G + 1) and ui,G+1  as a trial vector in generation (G + 1).
There are three operators in DE as follows. 

• Mutation: 
vi,G+1 = xr1,G + FM(xr2,G – xr3,G)  i = 1, 2,…, N           (1a) 

Another variant uses the best vector and two difference vectors for mutation. In this variant, Eq. (1a) becomes 
vi,G+1 = xbest,G + FM(xr1,G + xr2,G – xr3,G –  xr4,G)            (1b) 

where r1, r2, r3, r4 are random numbers in [1, N] and integer, which are mutually different and different from 
the running index i; and FM is mutation constant in [0, 2]. 

In this research, the variant with Eq. (1b) will be adopted. 
• Crossover:

ui,G+1  = (u1i,G+1, u2i,G+1,…, uDi,G+1)                      (2) 

where ,...D,  ,    j 
 kCR) and j r      if (x
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where CR is the crossover constant in [0, 1]; r is random number in (0, 1); and k is random integer number in 
[1, D], which ensures that ui,G+1 gets at least one component from vi,G+1.
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where f is the objective function. 
The DE was originally proposed for unconstrained optimization problems. For constrained optimization 

problems, a constraint-handling technique suggested by Jimenez et al [8] is supplemented. In this technique, the 
comparison of two solutions complies with the rule: (i) for two feasible solutions, the one with a better objective 
function value is chosen; (ii) for one feasible solution and one infeasible solution, the feasible solution is chosen; 
and (iii) for two infeasible solutions, the one with a smaller constraint violation is chosen. This technique requires 
no additional coefficient and gives a natural approach to the feasible zone from trials in the infeasible zone. 

5. Problem Formulation and Results 
Generally, the optimization problem can be defined as follows: 

Minimizing  
=

=
N

i
iii ALW

1

               (4) 

Subject to:  i   i,min     i = 1..K 
Ai,min  Ai  Ai,max i = 1..N

    xi,min  xi  xi,max i = 1..M 

where, W is the truss weight; i, Li and Ai are the density, length and cross-section area of the ith element, 
respectively; i and i,min are the ith natural frequency and corresponding frequency limit; Ai,min and Ai,max are the 
lower bound and upper bound of the ith cross-section area; xi,min and xi,max are the lower bound and upper bound of 
the ith coordinate; N, K and M are the number of elements in the truss, number of frequencies subject to limits  and 
number of nodes subject to coordinate constraints, respectively. 

This study surveys three planar trusses (10-bar, 37-bar and 200-bar structures) and three spatial trusses 
(52-bar, 72-bar and 120-bar structures). For brevity, the basic parameters of problems and the optimal results 
compared with those in the literature are listed in table 1. Parameters of DE are as follows: population N = 50 
(except N = 150 for 200-bar truss), crossover constant CR = 0.9, mutation constant FM = 0.5, number of iterations 
I = 150. Each problem is performed in 50 independent runs (except 100 runs for 200-bar truss). Other details are 
described in each problem. 

Table 1: Parameters and the minimal weight of trusses 

Parameters Unit Data of problems 
10-bar 37-bar 200-bar 52-bar 72-bar 120-bar 

Modulus of 
elasticity, E N/m2 6.98

×1010
2.1

×1011 2.1×1011 2.1×1011 6.98×1010 2.1×1011

Material 
density , kg/m3 2770 7800 7860 7800 2770 7971.81 

Frequencies
constraints Hz

1  7 
2  15 
3  20 

1  20 
2  40 
3  60 

1  5 
2  10 
3  15 

1  15.916 
2  28.648 

1 = 4 
3  6 

1  9 
2  11 

Cross-section 
bounds m2 [0.645×10-4 ,

40×10-4] [10-4,10-3] [0.1×10-4,
30×10-4] [10-4, 10-3] [0.645×10-4,

30×10-4]
[10-4,

129.3×10-4]
Nodes

coordinate
bounds

m n/a 
See

details in 
5.2

n/a See details 
in 5.4 n/a n/a 

Minimal 
weight Wmin

kg 524.56 359.45 2296.38 191.28 324.36 8710.90 

Wmin [1] kg 529.09 n/a 2298.61 197.31 327.51 9046.34 
Wmin [2] kg 535.61 n/a n/a n/a 326.67 n/a 
Wmin [3] kg 524.88 364.72 n/a 193.36 324.50 n/a 
Wmin [4] kg 535.14 363.03 n/a 207.27 n/a n/a 
Wmin [5] kg 532.34 360.56 n/a 195.62 334.66 8886.92 
Wmin [6] kg 524.49 359.25 n/a 195.19 324.32 n/a 
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Table 2: Optimal results of planar trusses 

10-bar truss 37-bar truss 200-bar truss 

Parameters  Results Parameters  Results Parameters Results 

A1 (cm2) 35.0930    Y3,Y19 (m) 0.9736 A1 (cm2) 0.2789 
A2 (cm2) 14.8802    Y5,Y17 (m) 1.3372 A2 (cm2) 0.2725 
A3 (cm2) 35.3906    Y7,Y15 (m) 1.4965 A3 (cm2) 5.7222 
A4 (cm2) 14.7917     Y9,Y13 (m) 1.6024 A4 (cm2) 0.5423 
A5 (cm2) 0.6450     Y11 (m) 1.6834 A5 (cm2) 1.4830 
A6 (cm2) 4.5550    A1, A27 (cm2) 2.9844 A6 (cm2) 3.1676 
A7 (cm2) 23.6841    A2, A26 (cm2) 1.0570 A7 (cm2) 4.8800 
A8 (cm2) 23.5333    A3, A24 (cm2) 1.0806 A8 (cm2) 7.9840 
A9 (cm2) 12.5161    A4, A25 (cm2) 2.6508 A9 (cm2) 18.7813 
A10 (cm2) 12.2117 A5, A23 (cm2) 1.3097 A10 (cm2) 0.1000 

1 (Hz) 7.0002    A6, A21 (cm2) 1.0469 A11 (cm2) 0.1000 

2 (Hz) 16.2058    A7, A22 (cm2) 2.6815 A12 (cm2) 0.1000 

3 (Hz) 20.0003 A8, A20 (cm2) 1.3132 A13 (cm2) 0.1000 
Wmin (kg) 524.56 A9, A18 (cm2) 1.4278 A14 (cm2) 0.2326    
 A10, A19 (cm2) 2.6826 A15 (cm2) 0.8481

A11, A17 (cm2) 1.1798 A16 (cm2) 1.2137    
A12, A15 (cm2) 1.2232 A17 (cm2) 1.6352    
A13, A16 (cm2) 2.3931 A18 (cm2) 2.0476
A14 (cm2) 1.0000 A19 (cm2) 4.3721

1 (Hz) 20.0565 1 (Hz) 5.0004
2 (Hz) 40.0129 2 (Hz) 12.3446
3 (Hz) 60.0983 3 (Hz) 15.0018

Wmin (kg) 359.45 Wmin (kg) 2296.38

5.1 Planar 10-bar truss 
The truss is shown in figure 1 where the added mass of 454 kg is attached at nodes 3– 6. Only cross-section 

sizes are optimized in this problem. The optimal weight is Wmin = 524.56 kg and converges after 150 iterations. 
Sizes of optimal cross-sections and natural frequencies are presented in table 2. 

5.2 Planar 37-bar truss 
The truss is shown in figure 2 where the added mass of 10 kg is attached at lower nodes. The lower bars have 

a fixed cross-section area of 0. 004m2. For this problem, both cross-section sizes and y-coordinate of upper nodes 
are optimized. Upper nodes can move symmetrically in vertical direction. The optimal weight is Wmin = 359.45 kg 
and converges after 150 iterations. Sizes of optimal cross-sections and coordinates of nodes are listed in table 2. 

Figure 1:  (a) Model of 10-bar truss 
(b) Optimal cross-section sizes (b)
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5.3 Planar 200-bar truss 

5.4 Spatial 52-bar truss 
The truss is shown in figure 4 where the added mass of 50kg is attached at free nodes 1–13. Both 

cross-section sizes and coordinate of nodes are optimized in this problem. Free nodes can move in range of ±2m 
from their initial positions such that the symmetry is reserved. It notes that elements are divided to 9 groups which 
differs from 8 groups in [1]. The optimal weight is Wmin = 191.28 kg and converges after 150 iterations. Sizes of 
optimal cross-sections, coordinates of nodes and natural frequencies are listed in table 3. 

5.5 Spatial 72-bar truss 
The truss is shown in figure 5 where the added mass of 2270 kg is attached at nodes 17–20. Only 

cross-section sizes are optimized in this problem. Elements are divided to 16 groups, as seen in table 3. The 
optimal weight is Wmin = 324.36 kg and converges after 150 iterations. Sizes of optimal cross-sections and natural 
frequencies are listed in table 3. 

Figure 2:  (a) Model of initial 37-bar truss, (b) Optimal shape,  
(c) Convergence of the optimal result 

 (a)

The truss is shown in figure 3 where the added 
mass of 100 kg is attached at nodes 1–5. Only 
cross-section sizes are optimized. In comparison with 
the others, this problem has the high static 
indeterminacy, large number of element and wide 
range of cross-section size. This makes the 
optimization more difficult. Our approach is to use 19 
groups of elements instead of 29 groups in [1].  Thus, 
the search space decreases one third. 

For this structure, it notes generally that the 
lower storey, the bigger cross-section size. For 
example, the cross-section sizes gradually increase in 
groups of elements (1, 2, 3), (4, 5, 6, 7, 8, 9), (10, 11, 
12, 13, 14), (15, 16, 17, 18, 19). In the article, we use 
this characteristic for the initialization of random 
values in DE algorithm. The optimal weight is Wmin = 
2296.38 kg. Sizes of optimal cross-sections and 
natural frequencies are presented in table 2. 

Figure 3:  (a) Model of 200-bar truss 
(b) Convergence of the optimal result 

(c)

(b)
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5.6 Spatial 120-bar truss 
The truss is shown in figure 6 where the added masses are attached at nodes as follows: 3000 kg at node 1, 

500 kg at nodes 2– 3, and 100 kg at nodes 14–37. Elements are divided to 7 groups, as seen in table 3. The optimal 
weight is Wmin = 8710.90 kg and converges after 150 iterations. Sizes of optimal cross-sections and natural 
frequencies are listed in table 3. 

6. Conclusion 

Table 3: Optimal results of spatial trusses 

52-bar truss 72-bar truss 120-bar truss 
Parameters  Results  Parameters  Results Parameters  Results 

A1 – A4 (cm2) 1.0000    A1 – A4 (cm2) 16.9972 A1 – A12 (cm2) 19.4686   
A5 – A8 (cm2) 1.5406    A5 – A12 (cm2) 7.9173    A13 – A24 (cm2) 40.6526   
A9 – A12 (cm2) 1.0889    A13 – A16 (cm2) 0.6450    A25 – A36 (cm2) 10.7573   
A13 – A16 (cm2) 1.2652    A17 – A18 (cm2) 0.6503    A37 – A60 (cm2) 21.0849   
A17 – A24 (cm2) 1.0339    A19 – A22 (cm2) 12.5286 A61 – A84 (cm2) 9.7139    
A25 – A32 (cm2) 1.2461    A23 – A30 (cm2) 8.0249    A85 – A96 (cm2) 11.6176   
A33 – A40 (cm2) 1.3722 A31 – A34 (cm2) 0.6454    A97 – A120 (cm2) 14.8947 
A41 – A44 (cm2) 1.0000    A35 – A36 (cm2) 0.6450    1 (Hz) 9.0013    
A45 – A52 (cm2) 1.6035    A37 – A40 (cm2) 7.9920    2 (Hz) 11.0001   
Z1 (m) 6.0710    A41 – A48 (cm2) 8.0029    Wmin (kg) 8710.90 
X2 (m) 2.6047    A49 – A52 (cm2) 0.6450                           
Z2 (m) 3.7267    A53 – A54 (cm2) 0.6479    
X6 (m) 4.1584    A55 – A58 (cm2) 3.6988    
Z6 (m) 2.5000 A59 – A66 (cm2) 7.8182    

1 (Hz) 15.2070   A67 – A70 (cm2) 0.6450    
2 (Hz) 28.6487   A71 – A72 (cm2) 0.6450    

Wmin (kg) 191.28 1 (Hz) 4.0002  
3 (Hz) 6.0008  

Wmin (kg) 324.36 

Figure 4:  (a) Model of initial 52-bar truss 
(b) Convergence of the optimal result 

For six considered problems, Differential 
Evolution gives better or equivalent results 
compared with other methods in the literature. The 
convergence is rapid in round first 50 iterations. 
Especially, the different number of element groups 
in 52-bar truss and 200-bar truss also makes the 
minimum weights improved. 

(a)

(b)
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(b) Convergence of the optimal result 

Figure 6:  (a) Model of 120-bar truss,  
(b) Convergence of the optimal result 
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Abstract

Engineering design often involves simultaneous minimization/maximization of multiple conflicting objectives. The
optimum solution of such problems comprises a set of designs representing best-tradeoff among objective values,
known as Pareto optimal front (POF). It is well known that the existing multi-objective optimization algorithms can
find POF for 2-3 objective problems successfully, but their performance deteriorates significantly for problems with
4 or more objectives, which are termed as “many-objective” optimization problems. There has been a significant
recent interest in solving them. In this paper, we present a decomposition based approach for solving many-
objective optimization problems. Further, we demonstrate that this improved capability can be exploited to solve
various other intractable classes of problems. Two such classes presented are robust design optimization and
“re-design” for robustness. In addition to the above, we also illustrate the benefits of multiobjective formulation
for a special class of problems, where an user is interested in solving single objective optimization problems with
different parameter values. We present numerical examples from various domains including mechanical, civil and
aerospace industry to demonstrate the approaches and corresponding benefits.

1 Introduction

Optimization is an integral tool in engineering design used for pushing the boundaries of performance subject to
several practical constraints. Multi-objective (MO) optimization algorithms are required where more than one con-
flicting objectives are simultaneously being optimized, for example, maximization of strength and minimization
of weight of structural components, minimization of travel time and maximization of payload for space missions,
maximization of engine efficiency and minimization of emissons etc. Optimum solutions of such problems is a
set of designs representing best trade-off among the objectives, known as Pareto Optimal Front (POF). Population
based methods such as Evolutionary Algorithms (EAs) [1] are commonly used to solve such problems, which
“evolve” a population of solutions (designs) through a process similar to the Darwinian principle of natural selec-
tion. EAs simulate the evolution process through use of mathematical crossover and mutation (to generate new
designs from “fitter parents”), ranking (to prioritize them based on performance) and reduction (to choose the de-
signs to be retained for next generation). It is now well established in literature that the existing EAs can efficiently
solve MO problems with 2-3 objectives but their performance deteriorates severely for problems with 4 or more
objectives [2]. Such problems are referred to as “Many-objective” (MaO) optimization problems.

The poor performance of such algorithms for MaO problems is attributed to the ranking procedure based on
Pareto-dominance. For MaO problems, most (or all) solutions in the population become non-dominated early in
the search and hence there is no pressure to drive the solutions towards convergence. To deal with this challenge,
a few different approaches have been reported in the literature. Some studies have focused on modifying the
dominance relations [3] or adding a secondary ranking apart from Pareto dominance using various criteria such
as sub-vector dominance, fuzzy dominance, ε-dominance etc. [4]. These methods may often result in reduced the
diversity of solutions in POF in exchange for good convergence. Alternatively, the solutions can be ranked using an
indicator such as hypervolume [5]. However, the calculation of hypervolume itself is computationally expensive.
Interactive EAs [6, 7] have also been proposed, where a decision maker is asked to provide inputs/choices of
preferred solutions during the search in an attempt to deliver designs in areas of interest. However, such user
information may be hard to come by or at times misleading in absence of prior knowledge about the nature of
the POF. For certain problems, reduction of original set of objectives to a manageable number has also been
suggested [8]. Although each of these methods have their advantages and applicability, obtaining a well spread
and converged POF for MaO problems still remains a challenge. In this regard, decomposition based methods
[9, 10] have been most promising so far, which generate a set of diverse reference directions in the objective space
and optimize linear combination of objectives along these directions to deliver diverse solutions on the POF.
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It is to be noted that all the studies mentioned above have been presented in the context of determinis-
tic optimization, i.e., the original problem formulation itself had many objectives and no uncertainties in vari-
ables/objectives are considered. However, certain other useful classes of problems may also be modeled as MaO
problems. For example, when a robust optimum is sought instead of deterministic optimum, the metrics for ro-
bustness could be added as additional objectives to the problem, resulting in an MaO problem. Similarly, one can
also consider the problem of re-design for robustness of an existing product as an MaO problem. However, such
extensions of many-objective optimization have only recently been proposed by the authors [11].

In this paper, an enhanced Decomposition Based Evolutionary Algorithm (DBEA) is presented for solving
MaO problems in Section 2. Thereafter, its applications are demonstrated using three different classes of problems
– deterministic, robust and re-design in Section 3. An additional special case is also illustrated in Section 3.
Numerical experiments are presented on examples from civil, mechanical and aerospace engineering domain to
highlight the benefits of the proposed approach. A summary of the work is given in Section 4.

2 Decomposition based Evolutionary Algorithm (DBEA)

The proposed algorithm is referred to as Decomposition Based Evolutionary Algorithm (DBEA). It generates a set
of uniform reference direction through systematic sampling. The quality of solution a solution is measured by its
distance from an associated direction and the distance from ideal point (in scaled objective space). While the first
version of the algorithm [10] used a steady state model, it has been continually improved and the DBEA presented
here uses generational model which is amenable to parallelization and has a number of enhancements over its first
version. The pseudo-code of DBEA is presented in Algorithm 1 and the details of its key components are described
below.

Algorithm 1 Decomposition Based Evolutionary Algo-
rithm (DBEA)
Require: Genmax (maximum number of generations), W (number of reference

points), pc (probability of crossover), pm (probability of mutation), ηc (crossover
index), ηm (mutation index)

1: i=1;
2: Generate W reference points using Normal Boundary Intersection (NBI)
3: Construct W reference directions; Straight lines joining origin and W reference

points
4: Initialize the population using LHS sampling Pi;

∣∣Pi∣∣ = W
5: Evaluate Pi and compute the ideal point zI and Nadir point zN

6: Scale the individuals of Pi using zI and zN

7: Compute d1 and d2 for all individuals in Pi

8: Assign individuals of Pi to the reference directions;
9: while (i ≤ Genmax) do

10: Create C offspring from Pi via recombination;
11: Evaluate C and compute Ideal point (zI ) and Nadir point (zN )
12: Scale the individuals of Pi+C using zI and zN

13: Compute d1 and d2 for all individuals in C+Pi

14: Replace individuals in Pi using C
15: Pi+1 =Pi

16: i=i+1
17: end while

Generate: A structured set W reference
points is generated spanning a hyperplane
with unit intercepts in each objective axis
using normal boundary intersection method
(NBI) [12]. The approach generates W
points on the hyperplane with a uniform
spacing of δ = 1/s for any number of ob-
jectives M with s unique sampling loca-
tions along each objective axis. The ref-
erence directions are formed by construct-
ing a straight line from the origin to each
of these reference points. A population
size equal to the number of reference points
is used, generated using Latin Hypercube
Sampling (LHS).
Scale: The objective values are scaled be-
tween between 0 and 1. If any coordinate
of the ideal point matches with the corre-
sponding coordinate of the Nadir point, the
scaled value of the corresponding objective
is set to 0.
Compute: Two measures d1 and d2 are
computed for all feasible solutions. The
first measure d1 is the Euclidean distance between origin and the foot of the normal drawn from the solution
to the reference direction, while the second measure d2 is the length of the normal. Mathematically, d1 and d2
are computed as d1 = wT f′(x); d2 = ‖f′(x)−wT f′(x)w‖, where w is a unit vector along any given reference
direction. A value of d2 = 0 implies that the solutions are perfectly aligned along the required reference directions
ensuring good diversity, while a smaller value of d1 indicates superior convergence.
Assign: If all solutions in the population are infeasible, solutions are randomly assigned to the reference directions.
Since the population size is equal to the number of reference directions, every direction has an associated solution.
If the population has one or more feasible solutions, the feasible set of solutions are randomly shuffled (to avoid
any bias). Each solution is assigned to a reference direction for which its d2 is minimum. The assigned direction is
removed from the list of available reference directions and feasible solutions are sequentially assigned following
the shuffled list. Subsequently, infeasible solutions are randomly assigned to the remaining directions.

2
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Create: The process of offspring creation involves two steps, i.e., identification of participating parents for recom-
bination and the recombination process itself. Two participating parents are recombined using simulated binary
crossover (SBX) and polynomial mutation (PM). The first offspring (out of two) is considered as a member of C.
Thus to generate W offspring solutions, W participating parents and their corresponding mating partners need to
be identified. The selection of participating parents and their corresponding mating partner depends on the state of
the population. If all the solutions in the parent population P are infeasible, the participating parents are identified
via binary tournament, where their fitness measure is based on their sum of constraint violation. If all the solutions
in the population are feasible, the first set of participating parents are the members of P itself, while their partners
are identified using a roulette wheel selection. The use of roulette wheel induces a stochastic selection pressure to
prefer partners that are close to a reference direction. In the event there is a mix of feasible and infeasible solutions
in the population, mating partner selection for a feasible individual follows the schemes described above. To iden-
tify the rest of participating parents and their partners, the following strategy is adopted. The infeasible solutions
in the population are first sorted based on their sum of constraint violation values and assigned to the set of weight
directions (take note that these weight directions had infeasible solutions associated with them and this process
alters the previous assignment). Following that, binary tournaments are conducted among all individuals in the
population to identify the remaining participating parents and their mating partners. Such a process encourages the
recombination between feasible and infeasible solutions.
Replace: The above Create process will result in C, i.e., a set of W offspring. Since the individuals in P are
already assigned to reference directions, such a process essentially looks through the list of C to identify potential
candidates for replacement. In the event there are infeasible solutions in P, a sequential replacement scheme is
adopted, wherein a solution from C with better fitness replaces the worst infeasible individual in P. Such a process
will continue till all members of P become feasible. In the event all individuals in P are feasible, a sequential
replacement scheme is once again adopted. In such a process, an individual from C replaces a dominated individual
of P. In the event the offspring solution fails to dominate any individual in P, the replacement is carried out based
on their fitness computed using the d2 measure (smaller d2 preferred). The process also adopts a single replacement
policy, wherein an offspring can only replace one individual of P.

The constraint handling approach used in this work is based an on epsilon level comparison and has been
reported earlier in [10]. The process adaptively controls an allowable constraint violation measure, which offers
the marginally infeasible solutions to be selected as opposed to a feasibility first principle.

3 Numerical Experiments

In this section, numerical experiments are conducted using the proposed DBEA on a number of engineering prob-
lems. As mentioned previously, three different kind of problems are considered, namely deterministic, robust and
re-design problems; along with an additional special case. These experiments are discussed next. For each of the
experiments, the parameters chosen are: Genmax = 100, pc = 1 , pm = 0.1 , ηc = 30, ηm = 20.

3.1 Deterministic optimization
For deterministic MaO optimization, two problems are chosen, which are discussed below.

The water resource management (WRM) problem was proposed in [13] in the context of urban planning and
has emerged from the environmental engineering domain. The problem has three design variables: local detention
storage capacity , maximum treatment rate and the maximum allowable overflow rate. The objective functions to
be minimized are f1 = drainage network cost, f2 = storage facility cost, f3 = treatment facility cost, f4 = expected
flood damage cost, and f5 = expected economic loss due to flood.

The general aviation aircraft (GAA) is an example from aerospace engineering, first introduced by Simpson
et al. [14]. The problem involves 9 design variables: cruise speed, aspect ratio, sweep angle, propeller diam-
eter, wing loading, engine activity factor, seat width, tail length/ diameter ratio and taper ratio and the aim is to
optimize 10 objectives: Minimize f1 =takeoff noise, f2 =empty weight, f3 =direct operating cost, f4 =ride rough-
ness, f5 =fuel weight, f6 =purchase price, f7 =product family dissimilarity and maximize f8 = the flight range,
f9 =lift/drag ratio and f10 =cruise speed.

Thirty independent runs are conducted on the above two problems. Population sizes chosen for WRM and
GAA are 210 and 715, respectively. Two standard metrics are used for measuring the quality of non-dominated
set of solutions obtained by the algorithm, namely Hypervolume and Inverse Generational Distance (IGD). Both
of these measures provide a quantification of overall convergence and diversity of the solutions obtained and are
hence commonly used for benchmarking MO algorithms [15]. A high value of hypervolume and low value of IGD
indicates better quality of the POF obtained by an algorithm.
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The results are compared with a well established decomposition based algorithm called MOEA/D (Multiob-
jective Evolutionary Algorithm Based on Decomposition) [9], shown in Table 1. It is observed that the best, mean
and median metric values (both Hypervolume and IGD) across 30 runs achieved using DBEA are better than those
obtained using MOEA/D. Furthermore, the standard deviations (Std.) obtained using DBEA is also lower than
MOEA/D for all cases except Hypervolume for GAA, which reflects its consistency in obtaining the competitive
results. For the case of Hypervolume of GAA, the reason for DBEA’s standard deviation being higher is that the
Hypervolume values themselves are significantly higher than those from MOEA/D. In terms of magnitude of Std.
relative to mean values, DBEA performs much better.

Table 1: Performance metrics values for deterministic problems across 30 runs

Water resource management
Algorithm Metric Best Mean Median Worst Std

DBEA Hypervolume 0.43913 0.43628 0.43613 0.43378 0.00131
MOEA/D 0.35660 0.29864 0.29803 0.22559 0.03601

DBEA IGD 0.08324 0.09417 0.09084 0.11909 0.01038
MOEA/D 0.07773 0.13413 0.13386 0.18848 0.02925

General aviation aircraft
Algorithm Metric Best Mean Median Worst Std

DBEA Hypervolume 0.03460 0.02583 0.02582 0.01647 0.00450
MOEA/D 0.01011 0.00303 0.002722 0.00094 0.00180

DBEA IGD 0.28656 0.30918 0.30514 0.38737 0.02019
MOEA/D 0.30685 0.41841 0.41088 0.51788 0.05346

3.2 Robust design optimization
In the previous section (and in most literature), the optimization problems are considered deterministic, i.e., it
is assumed that performance estimates are exact and variable values can be achieved to an arbitrary precision.
However, in practice, most engineering designs operate under uncertainties that may emerge from varying ambient
conditions, material imperfections, inaccuracies in analyses/simulations, manufacturing precision etc. This work
considers uncertainties in design variables only. For practical implementation, designs need to be robust, i.e., less
sensitive in the presence of uncertainties.

To obtain robust solutions, the deterministic problem needs to be transformed to a robust formulation by using
expected values for performance and constraints instead of deterministic values. Two kinds of robustness measures
need to be considered under uncertainty: feasibility robustness (the design should not become infeasible) and
performance robustness (the performance should not deteriorate). They are quantified in terms of sigma levels, a
terminology used in industry to judge the reliability of design [11]. Most of the past studies have either considered
these measures as constraints rather than objectives, or have only considered one of these robustness measures
instead of both. This has been partially motivated by lack of good techniques for solving MaO problems, because
even if the original problem has only 2-3 objectives, the reformulated robust problem will become a MaO problem.

Using the robustness as constraints requires one to set the level of desired robustness level (say > 4σ ) before
optimization, which delivers only a partial solution set for the problems. Furthermore, it is not possible to predict
the robustness levels expected from the optimization exercise without a priori knowledge about optimum solutions,
in which case the optimization may not return any solutions (as there may not exist any 4σ designs). Only by con-
sidering the robustness measures as objectives can one obtain a full range of solutions with all possible trade-offs
among the performance objectives, feasibility robustness and performance robustness. Towards this goal, in this
paper, the deterministic problem is reformulated as an MaO problem as shown in Equation 1. This formulation is
referred to as Feasibility and Performance Robust (FPR) formulation. For illustration of the concept, a mechanical
design example from automotive industry is considered next.

Minimize: f ′i (x) = μ fi(x), i = 1,2, ......M {expected performance objectives; M= no. of objectives}

Maximize: f ′M+1(x) = Min(sigmag,Rc) {feasibility robustness}
Maximize: f ′M+2(x) = Min(sigma f ,R f ) {performance robustness}
Subject to: sigmag ≥ 0

where: sigmag ≡ Min(μg j(x)/σg j(x)), j = 1 . . .K (no. of constraints)

sigma f ≡ Min(σ0, j/σ f j(x)), j = 1 . . .M (no. of objectives)

σ0, j, j = 1 . . .M are allowable performance variations in each objective

(1)
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Figure 1: Robust solutions ob-
tained for VCOP using DBEA.
Here, Sigma is overall, i.e., both
feasibility and performance robust-
ness achieve the indicated level

Vehicle Crash worthiness Optimization Problem (VCOP): VCOP has
been studied in various works including Sun et al. [16]. A modified bi-
objective formulation of the problem is studied in this paper which seeks to
maximize the post-impact energy absorption (U) of the vehicle structure and
aims to minimize the structural weight (Ms), subject to the constraint on peak
deceleration (a). The calculations for U , M and a are done as suggested in
[16]. A higher energy absorption lowers the risk to the occupants of the car.
However, increase in energy absorption often leads to unwanted increase in
the structural weight. To limit impact severity, a constraint on maximum
deceleration is imposed in this formulation which is assumed to be 40 g (g
= 9.81 m/s2). Part thicknesses of three key members – inner rail, outer rail
and the cradle rails – of the vehicle front end structure have been chosen as
design variables for the crash worthiness optimization problem. For each
variable, the uncertainty is assumed to follow a Gaussian distribution with
σ = 0.05. For each objective, maximum allowable σ f ,0 is set as 2.1. The
results obtained using DBEA on the problem are shown in Figure 1. It can
be clearly seen that the delivered set of designs span a range of sigma levels achievable, between 0 and 6σ . This
gives the user a choice to select the design which is most suitable for the application.

3.3 Re-design for robustness
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Figure 2: Solutions obtained for FPRR formulation of CSIP us-
ing DBEA.

Next, the applicability of presented DBEA
is considered for “re-design for robustness (RDR)”.
RDR is an endeavor to improve the robustness
of an existing design by doing minimal changes
to it. This need could arise, for example, in
case operating conditions of the product have
changed due to unforeseen circumstances. In
such situations, instead of discarding all in-
ventory of components for the product and re-
designing it from scratch, it would be of great
value to investigate whether only a few compo-
nents could be replaced for making the prod-
uct robust. In order to solve this problem, apart
from the objectives considered in previous sub-
section, one more objective, fM+3, is added for
minimization, which is the number of components different from the base design. This formulation is referred to
as FPRR formulation (FPR for Re-design), and contains M +3 objectives, where M is the number of objectives in
the deterministic formulation. To evaluate the objective fM+3, a binary string is maintained in which 0 indicates
the variable value is same as base design, whereas 1 indicates it’s different. This binary string is also evolved along
with the variable vectors. For illustration of the concept, a mechanical design example from automotive industry is
considered next where the objective is to reduce the weight of a car subject to constraints on satisfaction of several
safety criteria in the event of side impact [17].
Car Side Impact Problem (CSIP): In CSIP, the uncertainties associated with 7 (out of 11) variables are modeled
as Gaussian distribution with σxi = 0.0408, i = 1,2 . . .7, and σ f ,0 is set as 2.5. The base design is taken from [18] as
{1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.345,0.192,0,0}, with a weight of 29.05 units; whereas the deterministic optimum for
the problem is reported to be 23.59. The base design is actually infeasible, violating two of the constraints (lower
rib deflection and pubic force criteria) marginally. The results obtained using DBEA on the FPRR formulation of
CSIP are shown in Figure 2. It can be seen that by merely changing 2 variables out of 7, one can achieve up to 6σ
designs, at the cost of corresponding weight values going up to 33.2 units. As the number of changed components
increase, the same can be achieved with lower compromises in weight values.

3.4 Special class of single objective optimization problems with varying parameters
Lastly, we consider a special case where the original problem contains only single objective (SO), but this neces-
sitates it being solved for several parameter settings according to the specific design case. Instead, it can be solved
as multi-objective problem to get entire range of solutions for all parameter settings in one run. This is illustrated
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using a reinforced beam design example.
The reinforced concrete beam design problem (RCB) has been studied as a constrained, single objective opti-
mization problem in [19]. The problem was also solved for various values of a parameter a6 (minimum allowable
width)[19].
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Figure 3: Optimal designs for
RCB problem

Instead of independent runs of SO optimization with different parameter values,
we reformulate the problem and solve it as a bi-objective optimization problem,
i.e., minimize −a6 (minimum allowable width) and minimize total cost. The
results using DBEA for a single run are presented in Figure 3 for various values
of the minimum allowable width parameter. The values are in agreement with
those reported in [19] for minimum allowable width of 30. While most studies
focus on the ability of MO formulations to deliver a set of trade-off solutions for
problems involving conflicting set of objectives, the principle presented here can
be exploited for problems such as above to deliver solutions spanning the region
of interest (different parameter values) when objectives are not conflicting.

4 Summary

In this paper, we have introduced an improved generational form of a decom-
position based evolutionary algorithm for the solution of optimization problems
involving many objectives. Apart from its ability to efficiently solve determin-
istic MaO problems, we have highlighted its extended use for two other important class of problems i.e. robust
optimization and re-design for robustness. Numerical examples have been selected from various domains (me-
chanical, civil and aerospace) to highlight the benefits of proposed approach.
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Lightweight design of vehicle structure with tailor rolled blank under crashworthiness  
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Abstract 
Unlike existing uniform thickness structures, tailor rolled blank (TRB) which allows continuous metal thickness 
charges has been recently gaining comprehensive attention due to its excellent lightweight potential. The aim of 
this study is to combine the advantages of the TRB manufacturing technology with the structural optimization 
methodology to design the front longitudinal beam under impact load. First, a simplified frontal impact FE model 
was extracted from the full vehicle finite element model and experimentally verified. Then, the conventional 
uniform thickness inner panel was replaced with the TRB. Finally, the -SVR surrogate with artificial bee colony 
(ABC) algorithm was used to obtain the optimal thickness distribution of TRB. The results show that weight of 
TRB front longitudinal beam was reduced by 16.10%, while the crashworthiness was significantly improved. 

Keywords: Tailor rolled blank (TRB); Front longitudinal beam (FLB); Crashworthiness optimization; 
Lightweight design 

Introduction 
Lightweight and crashworthiness design have being two challenges for automotive industry due to more and 

more strict safety regulations and environmental pressures. The conventional uniform thickness structures mainly 
use single material and uniform wall thickness. In fact, automotive components often bear very complex loading, 
implying that different regions should have different roles to maximize usage of materials. Obviously, potential of 
crashworthiness and lightweight of the conventional uniform thickness structures has not been fully exploited. In 
order to address the issue, some advanced manufacturing processes, such as tailor welded blank (TWB) and tailor 
rolled blank (TRB) have been presented and widely applied in automotive industry. For example, the inner door 
panel [1], B-pillar [2] and frontal side rail [3] are some typical examples for TWB structures adopted in vehicles. 
Compared with TWB, TRB varies the blank thickness with a continuous thickness transition, which leads to have 
better formability and greater weight reduction [4]. Due to the advantage of TRB, some researchers do some 
investigation to promote the application of TRB in vehicle industry.  In this regards, Jeon et al. [5] developed a 
vehicle door inner panel using TRB. Sun and co-authors [6-7] studied the crashworthiness of TRB thin-walled 
structures under axial impact, and further compared comparatively the energy absorption characteristic between 
TRB columns and tapered tubes withstanding oblique impact load. Lately, Sun et al. [8] investigated the 
crashworthiness of TRB tubes under dynamic bending load. Though the TRB structures have excellent 
crashworthiness, it is by no mean easy to obtain the optimal thickness distribution. As an effective alternative, the 
structural optimization methodology is used to design the TRB parts. For example, Chuang et al. [9] adopted a 
multidisciplinary design optimization methodology to optimize the underbody parts considering multiple impact 
modes, seatbelt pull analysis and NVH. 

It is well known that front longitudinal beam (FLB) is the most significant deformable part under vehicle 
frontal impact and its deformation pattern can greatly influence the vehicle safety [10]. To be authors’ best 
knowledge, there have been very limited reports available on the crashworthiness design of front longitudinal 
beam with TRB (FLB-TRB). Therefore, the paper aims to performing the lightweight design of the FLB-TRB 
under crashworthiness criteria. 

1. Frontal impact modeling and experimental verification 

1.1 Proposed simplified frontal impact model 
A single run of crashworthiness simulation for a full-scale vehicle often needs to spend more than 10 hours 

on some powerful computers [11]. Design optimization is an iterative process, which needs a lot of runs. Obviously, 
it is impractical to conduct design optimization using a finite element model of full-scale vehicle.  Consequently, it 
is critical to construct an equivalent simplified FEM to largely reduce the expensively computational burden.  
Figure 1 shows these parts whose energy absorption (EA) ratios are large than 1% under 100% frontal impact. 
                                                           
1 Corresponding Author: Telephone: +86-731-8882 1445; Email: gyli@hnu.edu.cn.
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From which, it is easily found that the EA of FLB is more than half of energy dissipation of full-scale vehicle. 
From the perspective, the FLB is the most significant part under frontal impact. The other components such as roof, 
B-pillar, C-pillar, doors, rear frame, windscreen etc. have little effect on the crashworthiness, so these parts can be 
neglected to improve the computational efficiency. As we all known, the load transfer path has a significant effect 
on the deformation model and crashworthiness of parts. In order to maintain the original load transfer path after 
removing many unimportant parts, some equivalent square columns are added in the simplified frontal impact 
model. The full-scale vehicle and the corresponding simplified frontal impact model are impacted on a rigid wall 
with an initial velocity of 50 km/h, shown as in Figure 2. 

Figure 1: EA Ratio of key parts under frontal impact 

(a) (b) 

Figure 2: Physical model and FE model under 100% frontal impact: (a) full-scale vehicle; (b) simplified frontal 
impact model 

1.2 Experimental verification of numerical model 
To conveniently describe the dynamic responses of the simulation and physical test, the following criteria 

are used: (1) the structural deformation; (2) the acceleration vs. time curve; and (3) the peak value and its 
corresponding time point. Figure 3 compares the structural deformations between the simulation and 
corresponding physical tests at t=120ms. The simulation results are agreed well with the results of physical tests 
regardless of the full-scale vehicle or the simplified frontal impact model. The deformation models of simulation 
and test for FLB are given in Figure 4. Figure 5 plots the deceleration histories of the numerical simulation and 
physical test at the left rocker of B-pillar. The pulses were filtered with CFC 60 Hz according to the standard of 
Society of Automotive Engineers (SAE) J211. It shows that the numerical simulations regardless of the full-scale 
vehicle or the simplified frontal impact model can very well capture the responses of test including the peak 
accelerations and the corresponding times. In addition, the results of the simplified frontal impact model are 
agreement with that of full-scale vehicle. According to the aforementioned analysis, the simplified frontal impact 
FEM can replace the full-scale vehicle FEM effectively to perform the subsequent design optimization. 

(a) (b) 

Figure 3: Comparison of deformation patterns between tests and numerical simulations at t=120 mm: (a) full-scale 
vehicle, (b) simplified frontal impact model. 
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(a) (b)

(c) (d)

Figure 4: Comparison of FLB deformation patterns: (a) Left FLB of full-scale vehicle; (b) Left FLB of simplified 
frontal impact model; (c) Right FLB of full-scale vehicle; and (d) Right FLB of simplified frontal impact model 
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Figure 5: Acceleration history on the left sill of B-pillar 

2. Finite element modeling of FLB-TRB 
The deformation of the FLB has a mixed axial and bending mode under frontal impact. Compared with 

bending mode, the axial deformation will be a more appropriate mode for energy absorption and stability. 
According to the performance requirements, the FLB is divided into 4 different crush spaces (shown in Figure 6) in 
this study, where space A and space B are expected to generate a relatively uniform and progressive axial collapse, 
space C is defined by the dimensions of the engine compartment and space D expects high bending stiffness to 
resist bending deformation. Among these crush spaces, the spaces A, B and C belong to the crush zone, which are 
used to absorb kinetic energy, while the space D belongs to the transition zone, whose main aim is to transfer 
impact load. 

Figure 6: Crush spaces for front end structure 
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This work focuses on the lightweight design of FLB by combining the advantages of TRB manufacturing 
technology to maximize its weight reduction without compromising vehicle crashworthiness performances. Figure 
7 show the schematic diagram of the whole manufacturing process of FLB-TRB, whose thickness customized can 
continuously vary along the rolling direction by adjusting the roll gap. The different roll spacing will produce 
different strain hardening, which directly results in different material properties. As a result, the variability of 
thicknesses and material properties in different local zones has to be considered in the numerical simulation of 
FLB-TRB. In order to address the issue, effective plastic stress-strain field should be constructed firstly. Then FE 
model of the FLB-TRB is modeled using 8-nodes thick shell elements (T-shell in LS-DYNA) [11].

Figure 7:  The schematic diagram of manufacturing process for FLB-TRB. 

2.1 Material constitutive model for TRB  
The material of FLB-TRB is HSLA340. Up to today, there is not material constitutive model for TRB 

available. In order to establish a relationship of strain vs. stress for the HSLA340 material of TRB, four specimens 
with thickness of 1.00, 1.17, 1.56 and 1.95mm are cut along the initial rolling direction to conduct uniaxial tensile 
tests on an INSTRON-5581 electronic universal testing machine. The effective stress-effective strain curves 
derived from test results are given in Figure 8. From which, it is easily found that the material properties of 
HSLA340 has a significant difference among the different thicknesses. Due to the expensive cost and time 
consuming of experimental tests, it is impractical to obtain the material characteristics of any thickness by 
experimental method. To address the issue, the piecewise linear interpolation method is used to interpolated the 
material performance of thickness from 1.0mm to 2.0mm. 
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Figure 8: Effective stress-effective strain curves of HSLA340 
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2.2 Finite element modeling of FLB-TRB 
Figure 10(a) depicts the geometry model of the inner of TRB front longitudinal beam (TRB FLB-inner). To 

model the variable thickness of TRB, the 8-nodes thick shell element (T-shell in LS-DYNA) [11] was adopted. In 
which, the element of the constant thickness zone (CTZ) which has uniform mechanical property is organized into 
the same component, while the thickness transition zone (TTZ) needs to be divided into several components due to 
it has the non-uniform mechanical property, shown in Figure 10(b). The number of the components is decided by 
the modelling accuracy. In generally, the more the number of components are, the higher the modelling accuracy is.  
The material model used in the finite element modeling is piecewise linear plasticity material law (Mat 24 in 
LS-DYNA). The material performance of every component is calculated according to its thickness from Figure 9. 
The “automatic single surface” and “automatic surface to surface” contact are used in this model.  

            
(a)                                                                             (b) 

Figure 10: (a) Geometry model of TRB FLB-inner; and (b) FE model of TRB 

3. Lightweight design of FLB-TRB under crashworthiness
Though the FLB-TRB has excellent potential of lightweight and crashworthiness, it is by no mean to obtain 

the optimal thickness distribution of FLB-TRB. Herein, structural optimization method was used to design the 
FLB-TRB. In the optimization progress, first, the conventional uniform thickness FLB panel is replaced with the 
TRB. Second, optimal Latin hypercube sampling (OLHS) [12] technique is used to generate sampling points and the 
objective and constraints function values are calculated using commercial software LS-DYNA. Following this the 
-SVR technique [13] is used to construct the surrogate models for the highly nonlinear impact responses. Finally, 

the Artificial Bee Colony (ABC) algorithm [14] is used to minimize the weight of TRB FLB-inner under the 
constraint of crashworthiness. The whole optimization procedure is shown in Figure 11. 

Figure 11: Flowchart of optimization process 
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3.1 Design responses and variables 
In general, the crashworthiness of FLB can be evaluated by peak acceleration, energy absorption (FLB_EA), 

dash panel intrusion and FLB dynamic intrusion (Left and Right) [15, 16]. Hence, they are chosen as crashworthiness 
indicators of the simplified frontal impact model, represented by A(x), E(x) S1(x), S2(x) and S3(x), respectively. In 
addition, the weight of the TRB FLB-inner is regarded as the objective function, denoted by M(x). The following 
three kinds of parameters are chosen as design variables: (a) thicknesses of constant thickness zone (CTZ), (b) 
length of thickness transition zone (TTZ) and (c) position of TTZ. Figure 12 shows the initial geometry parameters 
of the TRB FLB-inner with four different thickness segments. The design variables and their ranges are shown in 
Table 1.  

Figure 12:  Geometry parameters of TRB FLB-inner  

Table 1 Table 1 Geometry parameters of FLB-inner for dynamic impact (Unit: mm) 

Variable Description Lower Bound Upper Bound Baseline Design 
x1 Thickness of CTZ 1.0 2.0 1.6 
x2 Thickness of CTZ 1.0 2.0 1.6 
x3 Thickness of CTZ 1.0 2.0 1.6 
x4 Thickness of CTZ 1.0 2.0 1.6 
x5 Length of TTZ Max(40, 100*(x2-x1)) 120.0 40.0 
x6 Length of TTZ Max(40, 100*(x3-x2)) 120.0 40.0 
x7 Length of TTZ Max(40, 100*(x4-x3)) 120.0 40.0 
x8 Position of TTZ 150.0 260.0 230.0 
x9 Position of TTZ 330.0 410.0 370.0 
x10 Position of TTZ 570.0 690.0 650.0 

3.2 Optimization mathematical model 
According the description mentioned above, the optimization mathematical model can be written as:  

1
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where the constraint values are the responses of baseline design. 
3.3 Optimization process 

To establish high accuracy surrogates, OLHS technique is adopted to generate 300 sampling points and the 
output responses are calculated using commercial software LS-DYNA. Then, the  support vector regression 
( -SVR) technique is used to construct the surrogate models for M(x), A(x), E(x), S1(x), S2(x) and S3(x), respectively.  
The error measures applied for evaluating the model fitness, the squared correlation coefficient 

2
5CVR  and the root 

mean square error RMSECV-5 are calculated as follows: 
2

5
2 1

5
21

1

ˆ( )
1 1
5 ( )

l

i i
i

CV l
j

i i
i

y y
R

y y
(2)

117

Leo
Rectangle



7

5
2

5
1 1

1 1 ˆ( )
5

l

CV i i
j i

RMSE y y
l

(3)

where l is the number of data points at each validation set, yi is the observed response value, ˆiy  is the 

predicted value and y  is the mean value of yi, respectively. 
Table 2 lists the optimal parameters and the error results of the -SVRs. From which, it is easily found that the 

surrogates have a very high accuracy and can be used to the following  design optimization.  

Table 2 Optimal parameters and error results of -SVRs 

Responses C 2
5CVR 5CVRMSE

M(x) 23.4581 0.0986 2.2529 0.9929 0.0213 
A(x) 0.6422 0.1961 1.5969 0.9688 0.0477 
E(x) 34.7902 0.2438 1.4322 0.9728 0.0331 
S1(x) 1.5631 0.1331 1.9379 0.9810 0.0504 
S2(x) 2.9360 0.0436 3.3871 0.9631 0.0556 
S3(x) 18.1769 0.2322 1.4674 0.9867 0.0494 

3.4 Optimization results and discussion 
To obtain the optimal thickness profiles of FLB-inner without compromising vehicle crashworthiness, the 

ABC algorithm is used to solve the mathematical model. The iterative process of M(x) is shown in Figure 13. From 
the Figure 13, it is easily found that the optimization progress was converges after 35 iterations. The optimal 
results are listed in Table 3 and the corresponding thickness profile of the TRB FLB-inner is shown in Figure 14. 
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Figure 13: Iterative process of the weight of TRB FLB-inner 

Table 3 Optimal results 

Description x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
Baseline 1.60 1.60 1.60 1.60 40.0 40.0 40.0 230.0 370.0 650.0 
Optimum 1.15 1.64 1.00 1.73 75.6 70.5 58.3 242.6 391.7 643.5 

0 100 200 300 400 500 600 700 800 900 1000
0.80

1.00

1.20

1.40

1.60

1.80

2.00

2.202.20

FLB-inner X Coordinate(mm)

T
hi

ch
ne

ss
(m

m
)

 Initial thichness distribution
 Optimal thichness distribution

Figure 14: Thickness profile of TRB FLB-inner 
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Table 4 Improvements of vehicle performance for lightweight design optimization 

Description Baseline design Optimal design Improvement (%) 
M(x) 6.77 5.68 -16.10% 
A(x) 57.47 54.83 -4.59% 
E(x) 61527.10 65846.79 7.02% 
S1(x) 136.24 106.81 -14.47% 
S2(x) 197.15 230.39 16.86% 
S3(x) 190.66 225.69 17.54% 
Noted: Optimal design-Baseline designImprovement 100%

Baseline design
The Improvements of crashworthiness of TRB FLB-inner with respect to baseline design are listed in Table 

4. Figure 15 compares the deformation patterns of the FLB before and after optimization. From which, it is easily 
found that the deformation patterns of the FLB can be greatly improved through the redistribution of thickness of 
the TRB FLB-inner. Figure 16 depicts the numerical results of crush pulses for the baseline and optimal design. In 
the baseline design, the space “B” of the front longitudinal beam buckled sideway and the space “D” happened 
sharp bending deformation, which greatly decrease the resistance load of the FLB. In the optimal design, the space 
“A” and space “B” occurred relatively uniform and progressive axial collapse and the previous sharp bending 
deformation disappeared in the space “D”, which leads to the reduction of peak acceleration. It is clearly shown 
from Table 4, Figure 15 and Figure 16 that optimal thickness distribution of the TRB FLB-inner can not only 
largely reduce its weight but also enhance vehicle crashworthiness. 

(a) (b) 

(c) (d) 

Figure 15 Comparison of the numerical result before and after optimization: (a) Left FLB of baseline design; (b) 
Left FLB of optimal design; (c) Right FLB of baseline design; and (d) Right FLB of optimal design 

          
(a)                                                            (b) 

Figure 16 Comparison of crash pulses before and after optimization 
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9

4. Conclusions 
In this work, the lightweight design of FLB-inner with TRB concept has been successfully performed under 

100% frontal impact load case. The optimal solution shows that the weight of the FLB-inner can be reduced by 
16.10%, while the crashworthiness is improved compared with the baseline design. It is clearly shown that the 
TRB technique has great potential to realize lightweight.  
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1. Abstract
This paper describes the multidisciplinary design optimization (MDO) process of a flying wing unmanned combat 
aerial vehicle (UCAV) using global variable fidelity modelling (GVFM) algorithm. A developed flying wing UCAV 
design framework combines aerodynamics, weight and balance, propulsion, performance, stability and control, and 
other disciplines. Analysis codes are based on low fidelity analysis and empirical equations. Design problem 
formulation focuses on features of a flying wing aircraft configuration that is known for its good aerodynamics, and 
poor stability and control (S&C). GVFM algorithm is implemented to increase prediction accuracy of analysis for 
important aerodynamic and S&C functions such as, lift-to-drag ratio, parasite drag coefficient, static margin etc. An 
automated high fidelity aerodynamic analysis (CFD) process is developed and integrated into GVFM model. Design 
optimization problems with low fidelity analysis and with implementation of GVFM model are successfully solved. 
The optimum solution obtained with low fidelity analysis shows 18.6% improvement of an objective function, while 
solution obtained with GVFM model about 15.9%. However CFD analysis of a low fidelity optimum solution 
indicates only 14.4% improvement, which means that low fidelity analysis underestimates the value of objective 
function by 4.2%. GVFM model converges to high fidelity value of a function by algorithm definition. The optimum 
UCAV configuration has longer operational range and improved stability and control characteristics comparing to 
the baseline. 

2. Keywords
Unmanned Aerial Vehicle, Multidisciplinary Design Optimization, Variable Fidelity Optimization, Aircraft 
Conceptual Design, Computational Fluid Dynamics 

3. Introduction
Unmanned aerial vehicle (UAV) systems are recently in a great interest. These days an application of UAV systems 
is narrowed down to military and special operations. But civil UAV market is also rapidly growing. Less strict 
design requirements for internal compartment of UAVs lead to development of unconventional configurations. These 
days one of the most promising aircraft schemes is a flying wing configuration. A clean flying wing is sometimes 
treating as theoretically ideal fixed wing aircraft. Lower parasite drag, lower radar cross section makes it fly further 
without risk to be discovered by radar. But stability issues inherent in this type of configuration were limiting it from 
being widely used. The current level of knowledge is high enough to efficiently solve stability and control problem 
by implementation of automatic control and special control devices. A flying wing configuration is becoming more 
popular nowadays.
Aircraft conceptual design is a complex problem that involves multiple disciplines. Multidisciplinary Design 
Optimization provides an efficient ways of treating all disciplines together. High accuracy of analysis methods at 
conceptual design stage narrows down the scope of preliminary and detailed design. Accuracy of analysis can be 
enhanced by implementation of computationally expensive high fidelity analysis methods. However, direct use of 
high fidelity analysis for design optimization faces number of problems. The main problem is huge computational 
time required to perform the analysis. Variable fidelity optimization algorithms tend to combine advantages of low 
and high fidelity analysis methods. Combination of both high and low fidelity algorithms makes it possible to 
achieve accuracy close to high fidelity one within lower computational time. This paper focuses on development of a 
flying wing UCAV conceptual design framework by expansion of existing GVFM algorithm for an MDO problem.  

4. Integrated Design Framework 
An integrated multidisciplinary design framework is developed [1] for a flying wing UAV conceptual design 
optimization.  
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Figure 1 shows the structure of the program. The analysis methods are based on textbook methods, empirical 
equations, and low fidelity aerodynamic analysis codes. Current analysis methods were validated using available 
information about existing aircraft configurations of current category (Flying wing UCAV). Prediction error of 
analysis results comparing to existing aircraft data is less than 10%. This level of accuracy is acceptable to be used at 
conceptual design stage. However analysis accuracy can be increased by implementation of variable fidelity 
algorithms. Increasing analysis accuracy at conceptual design stage may significantly reduce the scope of 
preliminary and detailed design stages and reduce the total cost of the development project.  

Figure 1: Integrated Design Framework Structure with Variable Fidelity Aerodynamic Module 

5. Variable Fidelity Optimization Methodology 

Figure 2: Global Variable Fidelity Modelling Process [2] 
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A variable fidelity optimization algorithm used in this study is the Global Variable Fidelity Modelling [ref] algorithm. 
The general idea of GVFM method is the initial sampling of high and low-fidelity functions over the design space 
and iterative refinement of a scaling model that represents the difference between high and low fidelity functions. 
The scaling model is a radial basis functions (RBF) network constructed using scaling factors at a given point  . 
Scaling factors are calculated as: 

(1)
And approximation of a high fidelity function can be reconstructed as: 

(2)
Where: - High fidelity function 

- Low fidelity function 
- Scaling factor 
- Scaling model 
- Approximation of a high fidelity function 

The sample points for scaling model initialization are uniformly distributed using design of experiments (DOE). The 
scaling model is then iteratively refined using points obtained at optimization. The detailed process of GVFM is 
presented in
Figure 2. 

5.1 Variable Fidelity Aerodynamic Analysis Module 

Figure 3: Variable Fidelity Aerodynamic Analysis 

Aerodynamics, stability and control disciplines are extremely important for a flying wing aircraft configuration. This 
discipline supplies data for almost all other analysis disciplines as shown in  
Figure 1 and it has a large effect on most characteristics of an aircraft. A high fidelity computational fluid dynamics 
(CFD) solver is added the aerodynamic analysis module to increase the accuracy of analysis. Automation of a high 
fidelity analysis process is a complex task. An automated framework for CFD analysis is developed that includes 
generation of a CAD model, generation of a structured computational grid, and pre and post processing of 
aerodynamic analysis results.
Figure 3 shows details about variable fidelity aerodynamic analysis module. Analysis estimates approximated values 
of high fidelity  for given aircraft configuration and flight condition. Module contains four 
scaling functions that are initialized and iteratively updated according to GVFM algorithm. Parameters such as lift-
to-drag ratio and static margin are used directly as objective and constraint functions, while parasite drag coefficient 
and induced drag factor are supplied to performance analysis module. 

6. Unmanned Combat Aerial Vehicle Design 
6.1 Optimization formulation 
Design formulation for a flying wing UCAV aircraft is mostly based on Nicolai [3] and Torenbeek [4] textbooks. An 
objective function of maximizing lift-to-drag ratio is quite common for different aircraft design optimization 
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formulations. Maximizing L/D parameter also leads to an increase of operational range that is constrained to be 
greater than 750 km for suppression of enemy air defenses (SEAD) [5] mission profile. Longitudinal stability of an 
aircraft is constrained by a static margin. It is decided to design aircraft with positive static margin between 5 and 15% 
that is slightly higher than static margin of a conventional fighter aircraft of similar size and weight. Low speed trim 
condition constraints elevator and wing area authority. Maximum trim angle of attack at landing speed of 65 m/s is 
set to 8 degrees with trim elevator deflection to be between -20 and 20 degrees. One of the main issues of a flying 
wing is a directional stability [6] [7] [8] [9]. Level of directional stability similar to that of conventional aircraft is not
achievable without implementation of special control devices. It is decided to keep positive directional stability for 
clean configuration at level of . By summarizing design requirements, optimization formulation can be 
written as shown in Table 1: UCAV Optimization Formulation. 
Two design problems are solved in this study. The first one implements pure low fidelity optimization and the 
second one with GVFM aerodynamic model in an MDO loop. Table 1 shows that 6 of total 14 functions are affected 
by variable fidelity aerodynamics.  

Table 1: UCAV Optimization Formulation 

 Variable  Value Function type 
Maximize:     
 L/D   Variable Fidelity 
Subject to:     
 SM 0.15 Variable Fidelity 
 SM 0.05 Variable Fidelity 

750km Variable Fidelity 
 R/C 125m/s Variable Fidelity 

0.90 Variable Fidelity 
3500kg Low fidelity 
0.003 Low fidelity 
-0.075 Low fidelity 
8deg. Low fidelity 
20deg. Low fidelity 
-20deg. Low fidelity 
5.5m Exact 

Exact

6.2 Baseline configuration 
Boeing X45C UCAV is selected as a baseline configuration. The baseline is a typical low aspect ratio flying wing 
aircraft. The wing has two segments: central and outer. The central segment serves as a fuselage and stores a power 
plant, payload, and avionics. The planform shape of the wing can be parameterized with total 9 design variables. An 
internal space volume is secured by constraints that restrict the intersection of leading and trailing edges of central 
segment with the payload and engine. Longitudinal and lateral control device is joined and located on the outer 
segment of the wing. Elevon to chord ratio is 0.9, 0.85, and 0.8 at root, middle and tip chords respectively. The other 
components are GE F404 turbofan engine, fixed fuel weight of 3000 kg, 300 kg of uninstalled avionics, and 1132 kg 
of drop payload. 

7. Results and Discussions 
Table 2 shows results of MDO with implementation of low fidelity analysis only, and variable fidelity optimization 
using GVFM algorithm adopted for MDO use. In addition baseline and low fidelity optimum configurations were 
analyzed using high fidelity analysis. GVFM optimum is equal to high fidelity by algorithm definition. Figure 4 
shows comparison of the baseline with optimum configurations of UCAV.  
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Figure 4: Baseline and Optimum UCAV Configuration 

Results in Table 2 show that low fidelity analysis overpredicts the value of the objective function (lift-to-drag ratio at 
cruise flight condition). Low fidelity optimization shows 18.6% improvement of the objective function, however 
high-fidelity analysis of the low-fidelity optimum configuration shows only 14.4% improvement. MDO 
implementation of GVFM algorithm has terminated with the objective function value of 18.83 that is 15.9% higher 
than that of the baseline. Finally the combat radius of GVFM optimum configuration is 75 km longer than that of 
low-fidelity optimum. Overprediction of L/D and combat radius by low-fidelity analysis may lead to infeasible 
solution in case of more strict constraints, while variable fidelity model guarantees convergence to a high-fidelity 
result.

 Table 2: UCAV Optimization Results 

  LB UB Baseline Low-fidelity GVFM 
    Low-fi CFD Low-fi CFD  

L/D 16.84 16.25 19.27 18.6 18.83 

C
on

st
ra

in
ts

SM 0.05 0.15 0.1182 0.1258 0.0501 0.0729 0.1123 
0.003 0.0038 0.0030 0.0030 

-0.075 -0.109 -0.09 -0.088 
8 9.75 8.00 8.00 

-20 20 -8.81 -4.92 4.75 
3500 3551 3500 3492

750 688.32 629.63 869.77 809.91 886.44 
R/C 125 139 138.7 143.7 142.9 146.4 

0.9 0.9372 0.9373 0.9439 0.9433 0.9398 

D
es

ig
n 

V
ar

ia
bl

es
 

40 60 55 52.05 49.07 
40 60 55 46.08 49.02 
6 7.5 6.91 6.39 6.28 
3 5.25 4.15 3 3.03 

0.5 1.8 1.1 1.24 0.66 
1 1.8 1.44 1.79 1.79 
3 3.2 3.11 3.13 3.20 
-4 0 0 -1.2449 -0.87 
-4 0 -2 -0.6869 -1.08 
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In terms of computational time, GVFM evaluated high fidelity function 31 times including 25 for scaling models 
initialization and 6 for their refinement. Single run of the high fidelity function takes about 18 hours, and about 1 
hour for optimization loop. Total computational time required to get a converged solution is about 23 full days on a 
desktop computer. This value is quite high comparing to pure low fidelity optimization that converges in a couple of 
hours but also significantly lower than pure high fidelity optimization.  
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1. Abstract
Investigating the fatigue life of support structures of offshore wind turbines is imperative to avoid unexpected
failure. Therefore, in the context of structural optimization, including fatigue constraints is crucial, as the op-
timized design will meet the design criteria early in the design process without the need for extensive manual
post-processing. Ultimately, the optimized design may be lighter and thus reduce both production and installation
cost. The aim of this work is to present such a gradient based optimization method with fatigue constraints of
jacket structures for the preliminary design phase. The key challenge is to efficiently deal with the very large num-
ber of non-linear fatigue constraints and the very large time-history loads that are used in the design of offshore
support structures. In this paper main emphasis will be on the analytical design sensitivity analysis used in the
optimization. Sensitivities determined by the direct differentiation method and by an aggregated adjoint method
will be presented and evaluated.
2. Keywords: Structural optimization, fatigue constraints, sensitivity analysis

3. Introduction
In recent years a clear tendency in wind energy industry is to install larger wind turbines further away from the
coast [4]. Being further away from the coast will, in most cases, mean favorable wind conditions but also deeper
waters. This of course calls for larger and more complex support structures. The dominating type of support
structure is the monopile. However, beyond shallow waters the jacket structure is often applied instead. Currently
the support structures can account for as much as 20% of the total cost of the wind turbine [1, 9]. However, as
the need for more complex jacket structures is inevitable, new and robust methods for designing lightweight and
cost efficient support structures are required. Here, numerical optimization methods that can incorporate a wide
range of design criteria can aid engineers during the design phase. In this work, we focus on developing fatigue
constraints, which can be incorporated into the design optimization process. By including fatigue constraints in
the early design phases, engineers may require less time for manual post-processing while also designing lighter
structures.

Fatigue is already an integral part of the design of jacket structures from the conceptual phase to the final
design. The offshore industry has a readily good statistically understanding of the environmental conditions and
thus the fatigue loads during the expected lifetime. To further incorporate the operational conditions in the design
of support structures for offshore wind turbines, we need rational, trustworthy, and efficient methods to evaluate
and optimize for fatigue loading.

Although optimization with fatigue constraints can be a very powerful tool, it is a relatively unexplored do-
main. Some of the first who contributed to this area of research were Grunwald and Schnack [5], who formulated
a shape optimization method to maximize the crack initiation phase of a simple test specimen. Their method
was restricted to 2D problems under constant amplitude loading, using fatigue constraints based on equivalent
stresses. Their findings were somewhat discouraging; they succeeded in their fatigue optimization but the results
were similar if they applied the much simpler minimum equivalent stress optimization. In addition, their opti-
mization for fatigue was computational inefficient. Computational inefficiency is a key problem in optimization
for fatigue that also applies today. Shortly after, Zeiler and Barkey [11] strongly suggested that optimization
for fatigue was so well-developed that industry could start taking advantage of the method. They used a gradi-
ent based optimization method to optimize stiffness and damping of a greatly simplified six degree-of-freedom
model of an automobile subjected to Formann crack-growth constraints. Their methods are also limited to pro-
portional loading. More recently Martini and Tobias [7] applied non gradient based fatigue optimization on in-
dustrial components, gaining a better result when optimizing for fatigue than when optimizing for stress. The
authors also made clear that fatigue optimization is now so well-established that it should be used in industry.
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Figure 1: The OC4 reference jacket [10]. The
five different colors represent five different
sets of tube dimensions. Two shear forces and
two bending moments are applied in the inter-
section of the red beams located at the jacket
top. The dimensions shown on the figure are
in meters.

In this paper we present a method of gradient based 3D struc-
tural optimization with high-cycle fatigue constraints. The aim
is to reduce the overall mass of a structure, having diameter and
thickness of each member as design variables. The methods are
intended for the preliminary design phase, that is, after the general
topology of the structure has been determined. The constraints
are based on Palmgren-Miners linear damage hypothesis. Compu-
tational efficiency is preserved through the use of gradient based
optimization, where the design sensitivity analysis is performed
using analytical expressions. The optimization is carried out using
Sequential Linear Programming (SLP) with a global convergence
filter [2].

The paper presents a brief insight into the theory behind the
analytical design sensitivities. The implementation of these is later
verified using central difference approximations of the presented
constraint formulations. The optimization algorithm is developed
for support structures of offshore wind turbines, but can easily be
applied to many mechanical components under high-cycle fatigue.
Lastly, a brief discussion of the method in its current state is given
and ideas on how to elevate the current model are presented.

4. Fatigue Analysis
It is important to use an adequate cumulative damage theory when
determining the fatigue damage in variable amplitude loading.
The damage is defined as a fraction of the life of the structure.
To predict the fatigue life, the fractions are summed using an ac-
cumulation rule. Even though many advanced and non-linear ac-
cumulation rules exist, none can fully represent the complicating
aspects of variable amplitude loading [8]. Therefore, Palmgren-
Miner’s linear damage hypothesis is applied in this study. This
rule does not take sequential effects and interaction of events into account, even though it can potentially have a
large influence on the fatigue life of the structure. However, these shortcomings are deemed acceptable for the
preliminary design-phase of jacket structures. Also, this is how the current recommended offshore practice [3]
addresses fatigue. The material data for fatigue is given by Wöhler diagrams. A Wöhler diagram (S-N curves)
represents the number of cycles to fatigue failure in high-cycle regime as a function of the stress amplitude.

4.1 Load Spectrum
Large time-history loads are used in the prescribed standards for design of fatigue life of wind turbine support
structures [6]. This makes the fatigue investigation of support structures of offshore wind turbines very time
consuming, even more so in design optimization, where all iterations may require a new simulation. Including
large time-history loads and reducing the stress and displacement spectra through multiaxial Rainflow counting
can be a good approach, because as a rule of thumb ten percent of the loads cause more than ninety percent of the
damage [8]. However, multiaxial rainflow counting has not yet been implemented.

The current study only includes a load spectrum consisting of one minute of operational time. This is partly
so because the aim of this work is to investigate design sensitivity analysis methods on fatigue constraints and not
to present validated designs for jacket structures. As the time-history load is not reduced through methods such
as Rainflow counting the time-history load is still sufficiently challenging for the problem at hand. One minute of
operational time corresponds to 6,000 load combinations, resulting in 5,999 stress and displacement cycles as no
reduction is done. Henceforth the total number of cycles are referred to as Ni.

The load spectrum in the authors possession does not include the torsional loads Mz and normal loads Fz,
meaning that two shear loads, Fx and Fy, and two bending moments Mx and My represents the wind loads, see
Figure 2. However, the developed design sensitivity analysis is capable of capturing the normal load and torsional
moments if a more detailed time-history load is applied. It is believed that the normal and torsional loads will have
a significant impact on the fatigue analysis, especially as the jacket is designed for large wind turbines in deep
waters. Furthermore, hydrostatic wave loads may have a large impact on the fatigue on deep waters, but they are
not included in this preliminary work.
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Figure 2: The applied shear forces and bending moments.

For every load time-history the displacements and stresses must be determined. In this work, the static stress
analysis is conducted by use of the finite element method with linear assumptions. To apply the varying stresses
and displacements in the fatigue analysis and the design sensitivity analysis, they must be reduced to a set of re-
versals.

4.2 Accumulated Damage
A log-log Wöhler diagram and the Basquin equation are utilized in order to determine the local damage caused by
the loads:

σa(u(x),x) = σ ′
f (2Nfσ )

bσ (1)

τa(u(x),x) = τ ′f (2Nfτ )
bτ (2)

σa and τa represent normal and shear stress amplitudes, respectively. u is the global displacement vector and x
is the vector of all design variables v, that is x = [dgrey,dgreen,dblue,dyellow,dred , tgrey, tgreen, tblue, tyellow, tred ]. Nf is
the number of cycles to failure, σ ′

f is the fatigue strength for one reversal and bσ is the regression slope, called
the fatigue strength exponent, for normal stress. Since the loading conditions are multiaxial, it is very difficult
to predict where the highest accumulated damage will occur. For this reason, the damage must be evaluated at
many local points k for each stress cycle i. Accordingly, the local accumulated damage gk can be calculated using
Palmgren-Miners linear damage rule in combination with Eq. 1-2:

gk(u(x),x) =
Ni

∑
i=1

ni
Nfi

=
Ni

∑
i=1

⎛
⎜⎜⎝ ni

1
2 exp

(
ln(σai (u(x),x)/σ ′

f )

bσ

) +
ni

1
2 exp

(
ln(τai(u(x),x)/τ ′f )

bτ

)
⎞
⎟⎟⎠≤ g (3)

Here ni is the number of reversals the structure is subjected to with the corresponding stresses. Fatigue failure is
expected to occur at g = 1. The subscript k refers to the specific constraint number, as Eq. 3 constitutes the fatigue
constraints.

5. Problem Formulation
The optimization problem under consideration is to reduce the overall mass m of a given preliminary design
taking fatigue constraints into account. All other structural criteria are not included in this preliminary study. The
requirements for the preliminary design are that the topology and choice of material are fixed during the entire
optimization procedure. The design variables are tube diameter d and thickness t. As five symmetry conditions are
enforced to produce a double symmetric jacket design for easy manufacturing, the number of design variables are
kept low. The cost function is defined as:

f (x) =
ne

∑
i=1

ρAi(x)Li = m (4)

Here ρ is the material density and ne is the number of elements. Ai and Li are the cross sectional area and length of
element i, respectively. The finite element mesh is set up such that each element represents a Bernoulli-Euler beam
between two joints. Evaluating the fatigue in the cross section in each end of each element will thus approximate
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the fatigue in the welds where failure is expected to occur. The optimization problem is defined as:

minimize
x

f (x) (5)

subject to gk(u(x),x)≤ g ∀k (6)

d ≤ ds ≤ d ∀s (7)
t ≤ ts ≤ t ∀s (8)

The overline and underline represent the upper and lower limits and the subscript s represents the symmetry group,
or element patch, in which the design variable belongs. As there is a very large number of highly nonlinear con-
straint functions, gk, the optimization can be quite difficult to control. Moreover, as there are 6,000 different load
combinations in the applied time-history load, it is imperative that the number of design iterations is kept to a
minimum in order to reduce the computational demand.

6. Design Sensitivity Analysis
In order to use gradient based methods, design sensitivity analysis (DSA) needs to be performed, that is, the gradi-
ents of the cost function and the constraints with respect to the design variables must be determined. The DSA is
performed analytically to ensure accurate and fast gradient evaluations.

6.1 Derivative of the cost function
As the cost function defined in Eq. 4 is an explicit function of a given design variable xv, it is easily determined as:

d f (x)
dxv

=
ne

∑
i=1

(
ρ

dAi(x)
dxv

Li

)
(9)

6.2 Derivative of the constraint function
The constraint function defined in Eq. 3 is a function of the design variables, and also the displacements which are
in itself a function of the design variables. This relationship will no longer be shown in the equations. Two different
DSA methods will be presented; the direct differentiation method and an aggregated adjoint method. Using the
direct differentiation method, the full derivative of the constraint with respect to a design variable xv is given as:

dgk
dxv

=
Ni

∑
i=1

(
∂gk
∂xv

+
∂gk
∂u

du
dxv

)
(10)

The derivative of the displacement with respect to the design variables is the computational demanding part of this
equation. This part is omitted when using the adjoint method. The partial derivatives are determined using the
chain rule of differentiation:

∂gk
∂xv

=
Ni

∑
i=1

(
∂gk
∂σa

∂σa
∂xv

+
∂gk
∂τa

∂τa
∂xv

)
(11)

∂gk
∂u

=
Ni

∑
i=1

(
∂gk
∂σa

σa
∂u

+
∂gk
∂τa

τa
∂u

)
(12)

The stress sensitivities are found analytically. In the adjoint formulation, a Lagrange multiplier vector, λ , is
introduced to omit the implicit and computational demanding du/dxv. The full derivative using the adjoint method
is given as:

dgk
dxv

=
Ni

∑
i=1

(
∂gk
∂xv

−λ
dK
dxv

u
)

(13)

K is the global stiffness matrix. The Lagrange multiplier vector is solved as:

Kλ =
∂gk
∂u

(14)

The calculation costs of the Lagrange multipliers are severely affected by the very large number of constraints.
The amount of constraints can be reduced to one by aggregation functions, making the adjoint formulation very
effective. The aggregation function sums all nk constraints into a global constraint. The applied aggregation

4
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functions are the Kreisselmeier-Steinhauser, the mean p-norm and the p-norm method. Depending on which
aggregation method used, the global constraint is either an over or underestimate of the highest real constraint
value. In the following, the formulation using the p-norm aggregation function is outlined. The single global
constraint is then given as:

gp−norm =

(
nk

∑
k=1

(
wk(gk − f 0)

)p
)1/p

(15)

wk is a weight factor, f 0 is an ideal value and p is a curve fitting factor. The constraint sensitivity using the adjoint
method and p-norm aggregation is thus given as:

dgp−norm

dxv
=

Ni

∑
i=1

(
∂gp−norm

∂xv
−λ p−norm dK

dxv
u
)

(16)

Where λ p−norm is attained in a similar way as before.

7. Framework
The authors have established a framework for optimization of a 5 MW reference wind turbine jacket from UpWind
[10] to demonstrate the proposed method. The highly idealized jacket is modeled as a Bernoulli-Euler 3D beam
finite element model in MATLAB, see Figure 1. The initial design variables are seen on Table 1. The jacket is
simplified as a fixed-free model and only include wind loads. The wind loads are based on very simplified dynamic
multibody simulations of the wind-induced response of the turbine. These simulations present two shear forces
and two bending moments at the jacket top. A total of 6,000 force and moment combinations are applied in the
analysis. These loads represent a mean wind speed of 10 m/s applied in a constant direction, that is, orthogonal to
the turbine blades.

Table 1: Initial beam dimensions of the jacket.
Symmetry Group Red Yellow Blue Green Gray
Diameter 1.20m 1.20m 1.20m 1.20m 0.80m
Thickness 0.040m 0.040m 0.035m 0.050m 0.020m

7.1 Modeling Limitations
In its current form, the constraints do not take sequential effects, multiaxial effects, environmental effects, and non-
proportionality effects into account. Moreover, the finite element formulation does not take material or geometric
non-linearities into account. As the jacket is in high-cycle regime, the assumption of linear material behaviour is
sound. The applied time-history loads determined by time-marching multibody simulations are very simplified.
The largest errors are that the wind is applied in a constant angle and that the normal loads and torsional moments
are not included. No hydrostatic loads are enforced on the submerged part of the jacket and the soil-structure inter-
action is simplified as fixed-free. Furthermore, the applied loads do not change when the design variables change.
However, for proof-of-concept of the initial method, these assumptions are deemed acceptable.

8. Results
The design sensitivities are verified using central finite difference with a fixed perturbation of 1/100,000 of the
original design variables. Results for two diameter and two thickness sensitivities are shown on Table 2 in root
mean square percentage error. The remaining sensitivities have similar marginal deviations. The author’s find the
results very promising, especially since a fixed perturbation was applied. No optimization results are shown, as
they will not reflect anything realistic until at least more representative time-history loads and the prescribed Det
Norske Veritas design guidelines are applied.

Table 2: Root mean square percentage error compared to central difference approach.
DSA dg/dx1 dg/dx2 dg/dx6 dg/dx7
Direct Differentiation Method 0.0004% 0.0018% 0.0007% 0.0022%
p-norm Adjoint Method 6.5e−7% 0.0004% 6.8e−6% 0.0004%

5

131

Leo
Rectangle



9. Discussion
Two different methods of performing the design sensitivity analysis have been presented. The suggested method
depends entirely on the problem at hand. In the direct differentiation method accuracy is preserved. This method
can, however, be time consuming when the optimization contains many design variables. The aggregated adjoint
method is much faster at the cost of some accuracy. Both methods can, however, be applied for fatigue optimization
of jacket structures for offshore wind turbines.

In its current state of development the algorithm will, to some extent, always favor a high moment of inertia.
This means that the diameter will increase and the thickness will be lowered in each tube member in order to reduce
mass. However, as no buckling constraints are included, poor choices of bounds on the design variables will result
in buckling and ultimately total collapse of the structure. This fatigue optimization should not stand on its own; all
analyses prescribed by Det Norske Veritas should still be carried out to ensure a reliable structure. Optimizations
run by the authors indicate that the damage is currently underestimated. This can be explained by several obser-
vations: The simplified load time-history currently used does not include normal loads or the torsional moments
induced by the wind. Furthermore, only one minute of a load time-history with a mean wind from a constant
angle is used and then scaled to represent the desired lifetime. Including several load time-histories from different
angles with different mean wind speeds will produce far more fatigue damage, and this will result in a better rep-
resentation of the actual accumulated damage. Moreover, including hydrostatic loads and a complex soil-structure
interaction model will also present a higher accumulated damage. Including offshore design guidelines will obvi-
ously also enforce a safety factor on the fatigue damage. Lastly, including additional constraints such as maximum
displacement and eigenfrequency constraints will be very beneficial for the overall method. When the method is
elevated to include some or all of the aforementioned, the authors believe that it can serve as a very powerful and
efficient tool for optimizing a jacket structure under operational conditions. Furthermore, the method can easily be
applied in other fatigue driven structural design problems such as aerospace and automobile industries.
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1. Abstract
In this paper, multi-fidelity surrogate (MFS) frameworks are investigated with the aid of an algebraic example for 
100 different designs of experiments (DOEs). These include three Bayesian frameworks using 1) a model 
discrepancy function, 2) low fidelity model calibration and 3) a comprehensive approach. Two simple frameworks 
using 1) a discrepancy function and 2) low fidelity model calibration which are counterparts of the Bayesian 
frameworks 1) and 2) are also investigated. Their computational cost saving and accuracy improvement over a 
single fidelity surrogate model are investigated as a function of the ratio of the sampling costs of low and high 
fidelity simulations. The maximum cost saving was 85% and the maximum accuracy improvement was 40% when 
the number of low fidelity samples is about ten times larger than that of high fidelity samples for various 
computational costs. We found that the DOE can substantially change the relative standing of the different 
frameworks. Therefore, an important question is how to determine which model works best for a specific problem 
and DOE. The cross validation error appears to be a reasonable candidate for estimating which MFS models would 
perform poorly for a specific problem. 
2. Keywords: Multi-fidelity surrogate framework, Comparison study, Discrepancy function, Calibration, 
Bayesian 

3. Introduction 
Surrogate models have been used as a cheap approximations, which can be built with several dozen data points. 
However, for sophisticated high fidelity models, the cost for obtaining sufficient data for achieving reasonable 
accuracy of a surrogate is high. Multi-fidelity surrogate (MFS) models have been developed to compensate for 
inadequate expensive high fidelity data with cheap low fidelity data by modelling the connection between two 
models. There are Gaussian process (GP) based Bayesian MFS frameworks and simple frameworks using the 
Kriging surrogate model which is a regular surrogate model based on GP, as well as other surrogates. However, the 
performance of different MFS frameworks with different complexities has been rarely compared. 

Building an MFS using a model discrepancy function is a popular framework. An MFS is built by combining 
a low-fidelity surrogate based on low fidelity data set and a discrepancy surrogate based on low and high fidelity 
data sets. This multi-fidelity framework has been used in design optimization to alleviate computational burden. 
For example, non-Bayesian MFS models using linear regression were used by combining coarse and fine finite 
element models for aircraft structural optimization [1,3]. The same approach was used to combine aerodynamic 
prediction from cheap linear theory and expensive Euler solutions for aircraft aerodynamic optimization [2]. A 
Bayesian MFS model based on GP was later introduced by Kennedy and O’Hagan (2000). The Bayesian model 
allows to incorporate prior information [4,5]. Co-Kriging [9,10] provides an equivalent result for the Bayesian 
formulation with a non-informative prior and has good computational characteristics [6,7,8]. 

Model calibration is another MFS model based on tuning model parameters of a low fidelity model. A 
straight forward simple framework is to find parameters that minimize discrepancy between a calibrated low 
fidelity model and high fidelity data [14]. GP based Bayesian calibration frameworks were also introduced 
[11,12,13]. The Bayesian frameworks find best calibration parameters that is most statistically consistent with 
available information [11,15]. A general Bayesian MFS model that uses both calibration and a discrepancy 
function was proposed by Kennedy and O’Hagan (2001) offering greater flexibility. 

The objectives of this paper are: (1) introduce characteristics of multi-fidelity surrogate frameworks, (2) 
investigate the performance of those surrogates in terms of accuracy (3) investigate the performance of the cross 
validation error as a surrogate performance estimator. This paper is organized as follows. Section 2 presents 
multi-fidelity surrogate models. Section 3 describes the methodology of the investigation. Section 4 presents 
results and discussion. 

2. Multi-fidelity surrogate models with different frameworks 
In this paper, we discuss three commonly used Bayesian MFS frameworks: using (1) a model discrepancy function, 
(2) a low fidelity model parameter calibration and (3) a combined approach. Two simpler MFS frameworks are 
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also discussed, which are simplified versions of the Bayesian MFS frameworks using the approach (1) and (2). The 
characteristics of frameworks and the differences between Bayesian and simple frameworks will be described in 
the following sections. 

2.1 Simple MFS framework using a model discrepancy function 
This framework provides a convenient way of fitting an MFS with regular surrogate models. In this framework the 
MFS is described with two surrogates  ˆlowy x and  ˆ x which represent a low fidelity function and a discrepancy 
function, respectively, as 

     ˆˆ ˆH Ly y x x x  (1) 

where  is a regression scalar minimizing      ˆ ˆT
L H H L H Hy yx y x y

Figure 1 illustrates an example with a high fidelity function      26 2 sin 12 4HTy x x x and a low fidelity 

function      25.5 2.5 sin 12 4LTy x x x  and the corresponding data sets with 5 and 24 samples, respectively. 
The high fidelity sampling point set is a subset of the low fidelity sampling point set. 
Figure 2 (a) and (b) show fits by combining the simple MFS framework and the Kriging surrogate model that a low 
fidelity Kriging surrogate is fitted with the low fidelity data set and a Kriging surrogate of the discrepancy function 
is fitted using the difference at the common sampling points. To understand the effect of the regression scalar , we 
fitted the surrogates with and without a condition =1. 

0 0.2 0.4 0.6 0.8 1
-10

-5

0
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20
yLT=(5.5x-2.5)2sin(12x-4)

yHT=(6x-2.5)2sin(12x-4)

Figure 1: Low fidelity function and high fidelity function and low fidelity data (green circles) and high fidelity 
data (black crosses) 

2.2 Bayesian MFS framework using a model discrepancy function 
In the previous section, the simple framework was described. When the framework combined with a Kriging 
surrogate, it is a special case of the full Bayesian framework which was introduced [4,5]. The main differences 
between the simple framework and this Bayesian framework are: 1) the simple framework uses the low fidelity 
data set while the Bayesian framework uses high and low fidelity data sets to update the low fidelity response prior 
model and 2) whole low fidelity data is used to get the discrepancy function whereas the simplified framework use 
low fidelity data at the common points.  
Figure 2 (c) and (d) present fits using the Bayesian MFS framework with and without the condition =1 and the 
corresponding prediction uncertainties for 95% confidence. From a comparison between (a) to (d), the simple 
framework can provide a fit as good as Bayesian framework and the effect of the regression scalar is more 
important than applying the Bayesian framework for this example. 

2.3 Simple MFS framework with model calibration 
The previous two frameworks try to capture the discrepancy between high and low fidelity responses using a 
model discrepancy function. An widely used alternative framework is to tune parameters of a low fidelity model 
which is also known as model calibration. A simple calibration based framework is to build a surrogate of the low 
fidelity response  ˆ ,Ly x q which is a function of the input variables x and the model parameters q to define the 
response as a function of model parameters. Then we can find optimal q minimizing the discrepancy between 
the high fidelity data and the low fidelity prediction.  

134

Leo
Rectangle



3

   ˆ ˆ ,H Ly yx x  (2) 
Figure 3 (b) shows a fit using the Kriging surrogate model and the simple framework with the previous 1-D 
function example with the selection of calibration parameters as       2

1 2 1 2, , sin 12 4LTy x x x . Since 
the low fidelity function has the same function form with the high fidelity function, the calibrated parameters 
should be 1=6, 2=-2, and Fig. 3 (a) shows the sampling points to fit the surrogate. 
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(a) A MFS fitted by simple MFS framework without 
(RMSE=2.11) 

(b) A MFS fitted by Bayesian MFS framework without 
 (RMSE=1.44) 

0 0.2 0.4 0.6 0.8 1
-10

-5

0

5

10

15

20
95% CI
Estimation of yHT(x)
High fidelity data
yHT(x)

0 0.2 0.4 0.6 0.8 1
-10

-5

0

5

10

15

20
95% CI
Estimation of yHT(x)
High fidelity data
yHT(x)

(c) A MFS fitted by simple MFS framework with 
(RMSE=1.40 for =1.72)

(d) A MFS fitted by Bayesian MFS framework with 
(RMSE=1.38 for =1.70)

Figure 2: Multi-fidelity surrogates using a model discrepancy function 

2.4 Bayesian MFS framework with model calibration 
The Bayesian MFS framework makes inference about  HTy x by updating a high fidelity prior model based on low 
and high fidelity data sets [11,15]. A big difference from the previous simple framework is that the Bayesian 
framework captures the model inadequacy of a low fidelity function as well as calibrating the low fidelity model 
while the previous simple framework cannot capture the inadequacy. As Fig. 3 (c) shows, predictions at high 
fidelity data points perfectly match data even with the model inadequacy of the low fidelity model and the 
prediction uncertainties at those points are zero. In Fig. 3 (d), the comprehensive Bayesian framework calibrates 
parameters well but its fit is worse than the Bayesian framework without a model discrepancy function. 

2.5 Comprehensive Bayesian MFS framework 
A comprehensive MFS is a most flexible model that the model discrepancy between low and high fidelity model 
responses is captured by tuning low fidelity model parameters and a model discrepancy function [12,13].  

2.6 Strategies for design of experiments 
Building multi-fidelity surrogates requires a new sampling strategy since MFSs need low and high fidelity data 
sets and it is natural that the low fidelity data set is a super set of high fidelity data set to see the model discrepancy. 
A sampling strategy, which is called nested neighborhood design, is to generate low fidelity sampling points using 
LHS and to select high fidelity sampling points from the generated low fidelity sampling points having optimal 
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coverage [7]. All the examples in this paper use the nested neighborhood design. 
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(a) 24 sampling points on {x, 1, 2}space (b) Simple MFS fit with model calibration 
(RMSE=0.47 for 1=6, 2=-2, =1)
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(c) Bayesian MFS fit with model calibration 
(RMSE=0.10 for 1=6, 2=-2, =1)

(d) Comprehensive Bayesian MFS fit  
(RMSE=0.45 for 1=6, 2=-2, =1)

Figure 3: Multi-fidelity surrogates based on model calibration 

3. Measurements of a surrogate model  
In this section, we describe numerical experiments for assessing the robustness of prediction of the MFS 
frameworks. Since the performance of surrogates varies for different problems and design of experiments (DOE), 
cross validation error has been used as a measure to rank for surrogate models. We investigate whether the cross 
validation error can be employed to detect the worst MFS frameworks for a specific problem and specific DOE. 

3.1 Assessing accuracy using root mean square error  
MFS surrogates are fitted to function values at n points which are generated by the sampling strategy. We can 
measure the accuracy of an MFS using the RMSE which is the square root of square error integrated over the 
sampling domain. We use Monte Carlo integration at a large number of testn test points as 

 2

1

1 ˆRMSE for 1,...
testn

i i test
itest

y y i n
n 

   (3) 

where ˆiy and iy are a prediction and a true function value at the ith test point. 

4. Numerical examples  
We compare the previously described frameworks with the Hartmann 6 function example. Their accuracy was 
statistically assessed since their performances vary for different DOEs. 100 different DOEs were generated using 
nested neighborhood sampling and their accuracies were measured with the median RMSE of 100 RMSEs. 

The computational cost saving for achieving a certain accuracy is main thrust of applying MFS frameworks 
for fitting a surrogate. In this section, we examine the described frameworks in that perspective. There are other 
factors that determine the efficiency of an MFS framework: 1) the ratio of high fidelity sample size to low fidelity 
sample size, 2) the ratio of the high fidelity data point evaluation cost to the low fidelity data point cost and 3) the 
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total computational budget. We also consider those three factors. 
Table 1 shows cases for different factors that we discuss in this paper. The computational budget 56H means 

we have computational budget equivalent to evaluating 56 high fidelity samples. Here we use the high fidelity 
sample evaluation cost as a reference cost since typically we need to fit an MFS for a given high fidelity simulation 
that we have no choice but to choose a low fidelity simulation. Cost ratio 4 means 4 low fidelity samples can be 
evaluated with the budget for evaluating a single high fidelity sample. The cases show combinations of low and 
high fidelity samples for given total budget and cost ratio. For example, 36/80 of the budget of 56H and cost ratio 
4 denotes a case with 36 high fidelity samples and 80 low fidelity samples for fitting an MFS. There are different 
cases for given computational budget and sample cost ratio. For example, the computational budget of 56H and a 
ratio of 4, leads to 36H+80/4H=56H. 

Table 1: Computational budget and a data point evaluation ratio 
Computationa
l budget 

LF sample 
cost ratio 

Sample size ratio 

56H 4 36/80, 26/120, 16/160, 6/200 
10 49/70, 46/100, 42/140, 35/210, 28/280, 21/350, 14/420, 7/490 
30 48/240, 46/300, 44/360, 42/420, 40/480, 38/540, 28/840, 18/1140 

28H 4 18/40, 13/60, 8/80, 3/100 
10 22/60, 19/90, 16/120, 13/150, 10/180, 7/210, 4/240 
30 24/120, 22/180, 20/240, 18/300, 16/360, 14/420, 10/540, 6/660, 4/720 

We use the Hartmann 6 function [16] over [0.1,1] as a high fidelity function and an approximated function of the 
Hartmann function as a low fidelity function. The approximated function uses a different alpha 

 0.5 0.5 2.0 4.0 T
approx  and an approximated exponential function which is expressed as 

    9

exp 44 4exp exp
9 9 9approx

x
f x


   (4) 

We generated 100 different DOEs using the nested neighborhood sampling to check the robustness of MFS 
frameworks. RMSE of each DOE was calculated for each framework based on the same 10,000 test points 
generated by LHS. The medians of 100 RMSEs were obtained for each framework and compared to one another.  
Table 2 shows the effect of cost saving for the best framework for different cases. The RMSEs of single fidelity 
surrogates show RMSE with the corresponding computational budget so that RMSE for the high fidelity fit 
remains the same for all cases. The cost saving is the computational cost saving by using the best MFS framework 
for the cost of the high fidelity fit which achieves the same level of RMSE with the corresponding MFS 
framework. 

Table 2: The effect of cost saving for the best framework for the best sample size ratio 
Computational 
budget

LF sample 
cost ratio 

RMSEs of single 
fidelity surrogates Best RMSE Best sample size 

ratio Cost saving 

56H 4 RMSEL=0.123
RMSEH=0.132

0.095
(Bayesian disc.) [26/120, 16/160] 50% 

10 RMSEL=0.116
RMSEH=0.132

0.072
(Bayesian disc.) [28/280, 21/350] 75% 

30 RMSEL=0.113
RMSEH=0.132

0.06
(Bayesian disc.) [44/360, 40/480] 83% 

28H 4 RMSEL=0.136
RMSEH=0.166

0.125
(Bayesian disc.) 80/8 58% 

10 RMSEL=0.122
RMSEH=0.166

0.1
(Bayesian disc.) [13/150, 7/210] 75% 

30 RMSEL=0.114
RMSEH=0.166

0.08
(Bayesian disc.) [20/240, 14/420] 85% 

5. Concluding Remarks 
In this paper, we present a comparison study of five MFS building frameworks by combining low and high fidelity 
data sets using the 6D Hartmann 6 function: 1) a simple framework based on a discrepancy function approach 
using the Kriging surrogate model, 2) a Bayesian framework based on a discrepancy function, 3) a simple 
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framework based on model calibration using the Kriging surrogate model, 4) a Bayesian framework based on 
model calibration and 5) a comprehensive Bayesian framework. 

We found that the MFS frameworks become useful as the cost of a low fidelity data point becomes cheaper 
than the cost of a high fidelity data point and the MFS frameworks become most beneficial for saving the 
computational cost. Based on the example, computational cost can be saved by 85% for the same accuracy with the 
single fidelity surrogate while the maximum accuracy improvement over the single fidelity surrogate is 60% 
improvement in terms of RMSE. 

For the discrepancy function based frameworks, an interesting observation was that the simple framework 
could perform as well as the Bayesian framework and the use of the regression scalar  could be important. For the 
calibration based frameworks, the framework without a discrepancy function outperformed the comprehensive 
framework and the effect of the regression scalar  was not noticeable. In terms of accuracy, the discrepancy 
function based frameworks showed good performance generally. The calibration frameworks could show reliable 
performance with a few high fidelity samples whereas the performance of the discrepancy function based 
frameworks abruptly decreased for a few high fidelity samples but there were factors that might affect the results 
such as calibration parameter selection and calibration parameter bounds which were not seriously considered in 
this paper. There were optimal ratios maximizing the accuracy but the effect was not significant when sufficient 
number of low fidelity data points were obtained. 
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Abstract In this research, an optimization of vehicle suspension performance under different vehicle speeds is 
studied. Besides finding optimal damping value to achieve a better suspension performance, changing the value of 
stiffness simultaneously and finding the optimal values in variable stiffness control can achieve the best 
suspension performance with utilizing the available information of speed. By optimizing the suspension stiffness 
parameter of quarter-car models subjected to random road excitation with different vehicle speeds, the proposed 
approach ensures the model to have an optimal operating performance. The optimization method applied in this 
paper is Genetic Algorithm, which increases the probability of finding the global optimum solution and avoids the 
convergence to a local minimum. A novel criterion for selecting the optimal suspension parameters is presented in 
terms of the sprung mass acceleration and the dynamic force degenerated between the wheel and the ground. 
Keywords: quarter-car models, genetic algorithm, multi-objective, Magnetorheological damper. 
 
1. Introduction 
Suspension is one of the most important units to a vehicle. The parameters of suspension have a great effect to the 
performance of a car. For conventional passive vehicle suspension with constant parameter value, it is difficult to 
get good overall performance under different road conditions and speeds. With the development of auto industry 
and the increase of customer requirement, the research on optimizing vehicle suspension parameters is becoming 
more and more important. In the suspension parameter optimization progress of traditional vehicle design, the 
optimization goal, such as riding comfort, suspension deflection and tyre dynamic loading [1], is mostly 
considered separately. 
In recent years, researchers [2, 3] have begun to consider the factors simultaneously, namely,  multi-objective 
optimization. As these criteria mentioned above are conflicting, a suitable multi-objective method with weighting 
function should be chosen properly. In this case, a multi-objective optimization methodology is applied in this 
paper, an optimal solution is determined by using the Genetic Algorithm [4]. In order to conduct optimization 
progress for a vehicle suspension parameter, various suspension models were chosen to simulate, including linear 
quarter-car model [5], piecewise linear model [2] and sky-hook model [6], etc. In this paper, besides linear 
quarter-car model, a nonlinear model with Magnetorheological (MR) damper is also chosen to measure. Based on 
this nonlinear quarter-car model, special attention is paid to investigating the optimal suspension stiffness value 
under various vehicle horizontal speeds using Genetic Algorithm method. 
This paper is organized as follows, the mechanical models employed and the corresponding equations are first 
presented. Then, the method to create road excitation [7] is introduced. The optimization criteria imposed are 
outlined and formulated. Next, some typical numerical results are presented. Quarter-car model with MR damper 
running over roads is also examined. The optimization results are presented under different vehicle speed. 
 
2. Modelling and simulation of suspension under random road profile 
 
2.1. Quarter-Car models 
A vehicle suspension is a complex multi-degree freedom vibration system. In order to simplify the model applied, 
simultaneously, to simulate the running state of a car as realistic as possible, the following assumptions can be 
applied: (1) The vehicle suspension is a rigid body with a symmetrical structure. (2) The vehicle keeps running at a 
constant speed. The tyres always keep in contact with road surface. (3) Only vertical vibration should be 
considered in this case. 
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Figure 1: Vehicle model (a) linear model (b) nonlinear model [8] 
 
Based on the assumptions shown above, the vehicle model can be simplified to a two Degree of Freedom (DOF) 
one. The two degrees of freedom are the sprung mass vertical vibration  and the unsprung mass vertical vibration 

, respectively. The simulation in this article applies two quarter-car models [9], one is a linear model, and the 
other is a nonlinear model with MR damper. The models are shown in Figure 1. The linear quarter-car dynamic 
equations can be described by the following differential equations [8]: 

  (1) 

  (2) 

In this equation,  represents a body vehicle mass (sprung mass),  is a wheel vehicle mass (unsprung mass), 
 is the spring stiffness and  is the tire stiffness. In addition,  is the sprung mass displacement, and  

represents the unsprung mass displacement. To better predict a MR damper response in model (b), a modified 
version of the Bouc-Wen model has been proposed by Spencer [10].  
 
2.2. Random road excitation 
Road roughness indicates the deflection between road surface and reference plane. Most studies have 
demonstrated that road roughness is a Gaussian probability distribution with zero mean value. It has smooth 
traversal characteristic if it is transferred to a stochastic process. The road roughness characteristics can be 
presented by power spectral density (PSD) function . Qualitatively, a larger value of exponent n is defined to 
describe the roughness at longer wavelengths, while a smaller value at shorter wavelengths. For this reason, a 
spectra corresponding to the geometrical profile of typical roads can be represented by the following segmented 
function [6] 

  (3) 

Where,  is the spatial frequency,  is a reference spatial frequency, n is the frequency exponent; 
generally,  and  so that the resulting spectrum exhibits a slope discontinuity at  in a log-log 
scale. Moreover, the value  is a power spectral density value under the reference spatial frequencies. For a 
nonlinear quarter-car model, the road excitation can be generated by the spectral representation method [7, 11], as 
shown in Eq.(4). Using the harmonic superposition method, the harmonic component under different frequency 
are added together to generate random road roughness. Supposing that a car is traveling on a given road at a 
constant speed , the road irregularities can be simulated by the following formula 

  (4) 

In the previous equation,  is the random numbers distributed uniformly among , where  is the 
minimum spatial frequency value we considered, which equals . In addition, the value of the 
fundamental temporal frequency  can be determined by 
  (5) 
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Figure 2: Variation of road roughness of Rank A & C vs time (specific speed:10 m/s) 
 
The random road profile was simulated by  under different vehicle speeds, between 10 to 40 m/s. The 
consequence illustrates good-quality road (with ) and bad-quality road (with 

) vs. time respectively, shown in Figure 2. 
 
2.3. Suspension performance objective function 
To optima the parameter of a vehicle suspension, two factors, riding comfort and tyre deflection, should be 
considered simultaneous. Particularly, riding comfort, which can be presented by , can be measured by Sprung 
Mass Acceleration (SMA). Note that in order to normalize the magnitude, SMA should be multiplied by the sprung 
mass to a force. In addition, another objective function  can be represented by the force developed between the 
wheel and the ground, namely Tyre Dynamic Load (TDL). Then, the two sub-objective functions are combined 
into a unified objective function , as defined by Eq.(6-8). Considering the random characteristic of the road 
excitation generated in time domain, the following performance index can be determined by expectations 

  (6) 

  (7) 

  (8) 

where N is the total sampling points. The constants   and   denote the weighting coefficients balancing and 
adjusting the two performance indices, which include ride comfort and road holding. The proportion is determined 
by not only the contribution of the individual performance but also the normalized design. Deposing by the 
aforementioned progress, the weighting coefficients were determined as  and  . 
 
2.4. Simulation progress 
In the simulation, the good-quality road profile was chosen as the road excitation. The length of the road is 100m. 
For the special case of vehicle model with linear properties, the response autospectral density of the linear dynamic 
system can be obtained easily in frequency domain by applying road profile spectral density under exact vehicle 
velocity and the stationary vehicle response matrix through the formula [12] 

  (9) 

In the previous equation,  is the temporal frequency,  and  represent the spectral 
density of the response and the excitation, respectively.  is the frequency response functions of the system 
[13]. Except the linear suspension model presented before, the quarter-car model with MR damper system 
possesses strong nonlinearities. For this case, Genetic Algorithm (GA), in conjunction with appropriate integration 
methodologies developed for nonlinear systems [14], is applied to evaluate the suspension response with 
probabilistic characteristic. 
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Genetic Algorithms belong to the larger class of evolutionary algorithms (EA), which generate solutions to 
optimization problems using techniques inspired by natural evolution. This global optimization algorithm has a 
characteristic that it has less possibility to fall into partial optimal solution in the iterative process. For this reason, 
it has become a powerful tool to calculate complex optimization issues of a nonlinear system. More detailed 
discussion and description of Genetic Algorithm are available such as [4]. In the work presented in this article, 
GADS (Genetic Algorithm and Direct Search Toolbox) in  was applied for optimizations. A fixed 
population size with string length of 50, the generations of 100 are used, crossover fraction is 0.8, and migration 
fraction is 0.2. 
The parameter intending to optimize is the stiffness coefficient of the car suspension. The suspension reference 
parameter value is taken from the literature [6]. Moreover, the classic stiffness values for the specific method is 
taken from the literature [14]. The details can be seen in Table 1. More specific, the parameters for the MR damper 
in the nonlinear model(Figure 1b) were chosen to be , , , 

, , , , , , and . 
 

Table 1: Suspension coefficients for special objective function 
 

Method      
Mixed objective 16000 

200000 1425 375 60 SMA 8045 
TD 15836 

 
 

3. Numerical results 
In terms of a linear model, the suspension response with second moment characteristics in Eq.(4) is readily 
obtained by the digit sum of the corresponding response of the power spectral density function with specific . To 
compare the optimal stiffness values between linear model and nonlinear model, the results are depicted in Figure 
3. A major phenomenon in linear model data can be observed that by increasing vehicle's speed, the changing trend 
of stiffness is getting smaller. 
 

 
 

Figure 3: Linear and nonlinear system optimal stiffness values vs. velocity under mixed objective function 
 
In Figure 3, the thick continuous curve illustrates the tendency of nonlinear model optimal parameter, and the thin 
dash line is obtained from the linear model as a reference.  As a consequence, the trend is observed as the 
dependence of the linear suspension stiffness to the vehicle horizontal velocity, and the value of the nonlinear one 
demonstrates relative irregular trend within the velocity range considered. The result presented is attributed by the 
characteristic of MR damper, which has a strong nonlinearity in the relation between the output force and the 
cylinder's moving velocity.  
In order to observe the effect of optimising stiffness value, verification of the result can be done by analysing the 
performance index of the system using optimal parameters. The normalized performance indexes aforementioned 
are drawn in Figure 4-6. It can be seen from the figures that, almost at the whole range of vehicle speed considered, 
the objective function values with optimal stiffness are smaller than the ones with the classic suspension parameter 
value. More specifically, Figure 4 demonstrates the overall performance of linear suspension. 
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Figure 4: Overall performances for linear model 
 

 
 

Figure 5: RMS overall performances for nonlinear model 
 

 
 

Figure 6: Single object performance of nonlinear model for (a) RMS sprung mass acceleration (b) RMS tyre 
dynamic loading 
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As a comparison, Figure 5 represents the nonlinear system overall performance. The associated nonlinear model 
performance value of sprung mass acceleration and tyre dynamic loading are depicted in Figure 6. For a single 
objective optimization shown in Figure 6, the overlap of optimal and classic data can be observed under specific 
vehicle speeds. The overlap effect can be explained after noting that the optimal stiffness value under specific 
vehicle speeds equals to the classic stiffness value as a reference coincidentally. More specifically, in terms of 
sprung mass acceleration, overlap is happened in the low vehicle speed region, while the overlap of tyre dynamic 
loading data can be observed in the medium vehicle speed area. Whether this phenomenon happens or not depends 
on the reference stiffness value we chosen. In general, after completing vehicle suspension stiffness optimization 
process, it can be predicted that the suspension performance can be improved in most traveling conditions.  
 
4. Conclusion 
Two major factors including improving vehicle comfort and reducing tire dynamic load were considered when 
optimizing the vehicle suspension. A two degree of freedom quarter-car model was established. Then, the 
analytical method was applied to solve the linear model problem. Simultaneously, the response of a quarter-car 
model with MR damper traveling the A level road with constant velocity is considered. The modified Bouc-Wen 
model is applied to evaluate the hysteretic behaviour of the MR damper. It can be seen from the simulation results 
that there is an obvious difference between the suspension performance under optimal stiffness value and the one 
under classic constant stiffness value. Therefore, changing stiffness based on different road profile conditions and 
the vehicle speeds is meaningful in practical application. Further study on real-time control of stiffness and 
damping based on the developed semi-active suspension will be considered and tested in the next step. 
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1. Abstract
A reliability-based vibro-acoustic microstructural topology optimization model taking into consideration the 
uncertainty of several selected design-independent parameters, such as the direction of the load, the frequency of 
the excitation, or their combinations is presented. The design objective is minimization of the sound power 
radiation from the macro vibrating composite structure that is assumed to be constructed by periodic micro unit 
cell filled up with two prescribed isotropic materials. A design process consisting of the serial execution of the 
uncertainty analysis and vibro-acoustic microstructural topology optimization is proposed. Numerical examples 
show that the uncertainty of the excitation frequency plays more important role in the vibro-acoustic 
microstructural design in comparison with the uncertainty of the loading direction. It is also shown that the 
optimum microstructural topology is not so sensitive to perturbation of the loading direction when the normalized 
variable corresponding to the excitation frequency takes the higher value, i.e. the optimum design is robust for 
perturbation of both the excitation frequency and the loading direction. 
2. Keywords: Microstructural topology optimization; vibro-acoustic criteria; reliability index; uncertainty 

analysis; bi-material interpolation. 

3. Introduction 
During the past two decades, several important reliability-based models have been developed and applied to 
structural optimization, such as the (concurrent) RBDO model, RBSO model and RBTO model [1-4]. In the aspect 
of the RBTO model, Kharmanda et al. [4] considered the uncertainty of the material elasticity, structural thickness 
and loading in minimum compliance topology design, and their studies show that the RBTO model normally 
yields more reliable structures in comparison with the deterministic topology optimization model. Maute et al. [5] 
applied the first order reliability analysis method to the topology optimization of the compliant 
micro-electro-mechanical (MEMS) mechanism taking into account the uncertainty of the loading, boundary and 
material properties. Kang et al. [6] studied the non-probabilistic reliability-based topology optimization problem 
of the geometrically nonlinear structure. Applications of the RBTO model in thermal system and multi-physics 
system can be found in the Refs [7-8]. More introduction of the RBTO model may refer to the paper [9]. On the 
other hand, microstructural topology designs have also drawn a lot of attentions and have been applied to the fields 
of multi-physics and multi-scales [10-17]. However, up to now there are very few studies concerning the RBTO 
model combined with the microstructural designs, especially the vibro-acoustic microstructural designs. 

The present paper aims at developing a reliability-based vibro-acoustic microstructural topology optimization 
model taking into account the uncertainty of the load direction, the excitation frequency or their combinations. The 
paper is organized as follows: Section 4 gives a brief introduction of the probabilistic reliability-based 
optimization model, and then the reliability-based vibro-acoustic microstructural topology optimization model and 
the corresponding solution method are presented and discussed in detail in Section 5. Several numerical examples 
are provided in Section 6 to validate the proposed method and some interesting features are discussed. 

4. Optimization Considering Uncertainty 
One way of considering the uncertainty of the model is introduction of the stochastic variables described by 
probability distribution function. A simple way to perform the uncertainty analysis is to introduce a reliability 
index  and meanwhile transform the random variable y from the physical space to the normalized variable  in the 
standard space via probabilistic transformation [4, 18], i.e. ( , )T= x y , by which the optimization problem under 
uncertainty may be stated as a nested optimization problem: 

{ }
1

min ( , )

. . ( ) ( ( ))

where min , . . ( , ) 0
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where  denotes the standard Gaussian cumulated function and ( , )H x corresponds to the limit state function in 
the standard space. If the random variables are dependent on the design variables, which imply that the limit state 
surface ( , ) 0H =x y  may change as the design variables change, solution of problem (1) requires alternating 
iterations between the reliability analysis of the inner layer and the optimization of the external layer. 

5. Reliability-Based Vibro-Acoustic Bi-Material Microstructural Topology Optimization 
5.1. Optimization Model 
In this Section, the SIMP based vibro-acoustic bi-material microstructural topology optimization model including 
uncertainty parameters is established to implement the reliability-based zero-one design at the micro-scale. The 
element material volume density i of the micro unit cell plays the role of the design variable. Each point of the 
macrostructure is assumed to be constructed by periodically arranged identical microstructure, and hereby the 
homogenization method may be used to calculate the equivalent material properties of the macrostructure. 

Two classes of uncertainty parameters are considered and treated as random variables, i.e. the loading 
direction angle and the excitation frequency p. It is noticed that the random variables here are 
design-independent (which is normally true in RBTO problem [4]), and thus the alternating iterations between the 
reliability analysis and the topology optimization may be avoided. Following the similar notations and 
assumptions as the Refs. [16, 19-21], the Reliability-Based Microstructural Topology Optimization (RBMTO) 
model for minimization of the sound power  of the vibrating structure may be formulated in a discrete form as: 
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where the symbol  is the prescribed target value of the reliability index, and the symbols y and are the vectors 
of the random variables and the corresponding normalized variables. The other symbols may refer to [16]. The 
extended bi-material SIMP model [16, 22-23] is applied to the micro unit cell to implement the zero-one 
microstructural design. The adjoint method is employed to perform the sensitivity analysis [16] and the MMA 
method [24] is used to solve the optimization model. 

5.2. Reliability Analysis 
Under the assumption that the random variables satisfy the Gaussian distribution, the reliability analysis may be 
performed in a straightforward way [4], where y is calculated using the following transformation 

( ) ( ) , ( 1, )j j j jy E y y j J= + =   (3) 

and 2

. . ( ) 1
min ( )

J

js t j
d

=

= = .  (4) 

Here ( )jE y  and ( )jy  are the mean value and the standard deviation of the jth random variable yj. For a 

prescribed target value of the reliability index, the normalized variables may be calculated by Eq. (4), and then 
the random variable y may be evaluated by Eq. (3). The normalized variable j takes the same sign as the 

derivative of the objective function with respect to the mean value, i.e. ( )j

d
dE y  in the present paper, which implies 

that the optimization will aim at improving the worst case. 

5.3. Flow Chart of the Design Process 
The design process of the reliability-based vibro-acoustic microstructural topology optimization is given in Fig. 1.  
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Figure 1: Flow chart of the reliability-based vibro-acoustic microstructural topology design 

6. Numerical Examples 
6.1. Example 1 - Minimization of the Sound Power Flow Considering Single Uncertainty Parameter 
The first example concerns design of minimization of the sound power radiated from a simply supported vibrating 
composite beam-like structure subjected to the uniformly distributed harmonic pressure loading with the 
amplitude 1kN/m at the upper surface (see Fig. 2). The micro unit cell and the macrostructure are divided by 40×40
and 10×3 mesh using 8-node isoparametric elements respectively. The uncertainty parameter considered here is 
the excitation frequency p. The mean value of the excitation frequency is E( p) = 600rad/s  and the standard 
deviation is   ( p) = E( p)/10. The Young’s modulus, the Poisson’s ratio and the mass density of the two 
prescribed solid materials are E1 = 210GPa, 1 = 0.3, 1 = 7800kg/m3, E2 = E1/10, 2 = 1 and 2 = 1/10. The upper 
limit of the material volume fraction of the stiffer material is set as 50%. The damping is ignored here. 

Five different values of the reliability index  are tested and the corresponding optimum microstructural 
topologies are given in Table 1. The iteration histories of the objective function corresponding to different values 
of the reliability index  are shown in Fig. 3, where the unit of the sound power is transferred from “W” to “dB” by 

010 lg( / ) , and the reference value of the sound power 12
0 10 W= . It can be seen from Fig. 3 that the 

optimum value of the sound power becomes higher as the reliability of the design increases, i.e. the design of 
RBTO makes a balance between the performance and the reliability. The effect of the material volume fraction on 
the design is also studied. The optimum topologies corresponding to five different values of the material volume 
fraction  are shown in Table 2, where the reliability index takes the fixed value  = 3. 
        Another design case with different boundary and loading conditions (see Fig. 4) are studied. The 
configurations of the mesh, materials and uncertainty parameter are the same as Fig. 2. The optimum 
microstructural topologies corresponding to five different values of the reliability index   are given in Table 3. 

      (a)                                                                        (b) 
Figure 2: Simply supported beam. (a) Configuration, boundary and loading conditions of the macro beam; (b) 

Initial material distribution within the micro unit cell. 

Table 1: Optimum microstructural topologies corresponding to five different values of reliability index ( = 0.5) 
(Uncertainty parameter: excitation frequency, E( p) = 600rad/s, ( p) = E( p)/10)

Optimum 
topology of 
the unit cell 

= 0 
(deterministic

design)
= 0.8 = 1.5 = 2.5 = 3

1 by 1 array 
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Figure 3: Iteration histories of the objective function corresponding to five different values of reliability index 
(Uncertainty parameter: excitation frequency, E( p) = 600rad/s, ( p) = E( p)/10).

Table 2: Optimum microstructural topologies corresponding to different values of material volume fraction ( = 3) 
(Uncertainty parameter: excitation frequency p, E( p) = 600rad/s, ( p) = E( p)/10)

Optimum 
topology of 
the unit cell 

= 0.2 = 0.3 = 0.4 = 0.5 = 0.6

1 by 1 array 

6 by 6 array 

Figure 4: Cantilever beam subjected to bending loads. 

Table 3: Optimum microstructural topologies corresponding to different values of reliability index ( = 0.5) 
(Uncertainty parameter: excitation frequency p, E( p) = 600rad/s, ( p) = E( p)/10)

Optimum 
topology of 
the unit cell 

= 0 
(deterministic

design)
= 0.8 = 2 = 2.5 = 3

1 by 1 array 

6 by 6 array 
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6.2. Example 2 - Minimization of the Sound Power Flow Considering Multiple Uncertainty Parameters 
In this example, two uncertainty parameters, i.e. the excitation frequency p and the loading direction angle are
considered simultaneously in the design. The normalized variables denoted by 1 and 2 correspond to the two 
uncertainty parameters p and . The reliability index takes the fixed value  = 3. The other parameter 
configurations are the same as those associated with Fig. 2 in the first example of Section 6.1. 

The designs with respect to different combination values of the normalized variables but the fixed value 3 of 
the reliability index are performed, and the corresponding optimum microstructural topologies are shown in Fig. 5. 
It is seen that different optimum designs may have the same reliability (i.e. the same value of the reliability index) 
when more than one uncertainty parameters are considered. It can also be seen that when 1 takes a higher value, 
e.g. 1 > 2, the change of the optimum microstructural topology is small since the change of the value of 1 gets 
smaller (from 2 to 3), while the interesting thing is, the change of the value of 2 is larger (from 5  to 0), which 
implies that the uncertainty design in the present stage is dominated by the excitation frequency and the design is 
not so sensitive to the uncertainty of the load. The optimum objective function values corresponding to different 
combination values of the normalized variables are given in Table 4. In order to get an overall sight, the 
interpolation surface of the optimum objective function with respect to ( 1, 2) is also given in Table 4. It can be 
seen that the worst case happens at ( 1=3, 2=0). This implies that the uncertainty of the excitation frequency is 
more important than that of the loading direction for a given value 3 of the reliability index in the vibro-acoustic 
microstructural topology design. 

(a) 1=0, 2=3          (b) 1=1, 2= 8          (c) 1= 3 , 2= 6         (d) 1=2, 2= 5          (e) 1= 2= 3 2 / 2

(f) 1= 5 , 2=2          (g) 1= 6 , 2= 3           (h) 1= 8 , 2=1            (i) 1=3, 2=0
Figure 5: Optimum topologies of the unit cells corresponding to different combination values of normalized 

variables ( = 3; = 0.5); (Uncertainty parameter 1: p, E( p) = 600rad/s, ( p) = E( p)/10; normalized variable 1: 
1); (Uncertainty parameter 2: , E( ) = -90°, ( ) = E( )/10; normalized variable 2: 2)

Table 4: Optimum objective function values corresponding to different combination values of normalized 
variables ( = 3) 

( 1, 2) opt/W
Interpolation surface of objective function: 

opt vs. ( 1, 2)
(0, 3) 0.1358×10-3

(1, 8 ) 0.1779×10-3

( 3 , 6 ) 0.2227×10-3

(2, 5 ) 0.2522×10-3

( 3 2 / 2, 3 2 / 2) 0.2626×10-3

( 5 , 2) 0.2857×10-3

( 6 , 3 ) 0.3277×10-3

( 8 , 1) 0.4121×10-3

(3, 0) 4.7440×10-3

7. Conclusions
The reliability-based vibro-acoustic microstructural topology optimization model is developed and solved. The 
effects of single and multiple uncertainty parameters on the optimum microstructural topologies are studied in 
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detail and several interesting features are revealed. It is found that the uncertainty of the excitation frequency plays 
more important role in the vibro-acoustic microstructural design in comparison with the uncertainty of the loading 
direction.
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1. Abstract 
A new topology optimization algorithm is proposed based on bi-directional evolutionary structural optimization 
(BESO) method in order to design photonic crystals with maximum band gaps. The optimization process starts 
from a simple unit cell without band gap, and the photonic crystals are assumed to be periodically composed of 
two materials with different permittivity. Based on finite element analysis, the BESO algorithm gradually 
re-distributes dielectric materials within the unit cell until the resulting photonic crystals possess a maximal band 
gap at appointed position in the band diagram. Numerical results are presented to demonstrate the effectiveness 
of the proposed optimization algorithm. 
2. Keywords: Topology optimization; photonic band gap; bi-directional evolutionary structural optimization 
(BESO). 
 
3. Introduction 
Photonic crystals are optical structures consist of dielectric materials with different refractive indexes. They have 
lattice constants and periodicity on the wavelength scale in one, two or three dimensions. Photonic crystals are 
also called photonic band gap (PBG) structures because of their ability of prohibiting the propagation of 
electromagnetic waves within certain frequency ranges [1]-[2]. In practice, a broader band gap means broader 
available bandwidth of electromagnetic signals, therefore it is of great significance to design photonic crystals 
with large band gap. The optical properties of photonic crystals depend not only on the properties of dielectric 
materials but also on their spatial distributions. For given materials, the design of photonic crystals becomes a 
typical topology optimization question: how to periodically distribute the materials to maximize the band gap. 
Due to the polarization of electromagnetic waves, both transverse magnetic polarization (TM modes) and 
transverse electric polarization (TE modes) should be considered, respectively or simultaneously. 
The traditional design approach of photonic band gap structures is a trial-and-error process based on physical 
intuitions and parametric study. This process can be inefficient and time-consuming [3]. To get photonic crystals 
with larger band gaps, different topology optimization methods have been introduced, for example, level set 
method [4], genetic algorithm [5], evolutionary algorithm [6] and semidefinite programming method [7]. These 
methods have been proved to be useful and many interesting results have been obtained. However, the 
optimization method starts from an initial design with band gap [6] or a randomly generated initial topology, 
which makes the method less efficient.  
In this paper a new approach based on bi-directional evolutionary structural optimization (BESO) method [9] is 
proposed to optimize the design of 2D photonic crystal. BESO and its former version evolutionary structural 
optimization (ESO) are structural optimization method based on finite element analysis. The basic concept of 
ESO [8] is to achieve the optimal structural topology by gradually removing inefficient materials from initial 
ground structure. In BESO, materials can not only be removed, but also added to the structure based on the 
sensitivity analysis. The BESO algorithm proposed by Huang and Xie [9] has been successfully applied to the 
optimization of mechanical structures, property of electromagnetic materials, and natural frequencies of 
vibrating structures. 
To apply the BESO method, the unit cell of a photonic crystal is meshed into elements and represented by 
discrete design variables respectively. A simple initial topology without band gap is adopted. The ratio of band 
gap between two appointed adjacent bands and midgap value is maximized as the objective function. Then 
sensitivity analysis of the objective function is conducted and a mesh-independency filter is adopted to stabilize 
the sensitivity number. Based on sensitivity numbers, BESO algorithm gradually evolves the topology of the unit 
cell until the assigned band gap is successfully obtained and maximized. 
 
4. Topology optimization problem 
4.1 Finite element analysis for photonic crystals 
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Electromagnetic wave propagation in photonic crystals is governed by Maxwell’s equations. In 2D cases, there 
are two possible polarizations of the magnetic and electric fields, namely TM (transverse magnetic) and TE 
(transverse electric) modes. In TM modes, the magnetic field is confined to the plane of wave propagation and 
the electric field E = (0, 0, E) is perpendicular to this plane. In contrast, in TE modes, the electric field is 
confined to the plane of wave propagation and the magnetic field H = (0, 0, H) is perpendicular to this plane. It 
is assumed that there are no point sources or sinks of electric displacement and magnetic fields in photonic 
crystal, the time-harmonic Maxwell equations can be decoupled and reduce to two independent equations: 

E
c

E
2

 for TM modes        (1) 

H
c

H
21  for TE modes        (2) 

where c is the speed of light,  is the angular frequency of the electromagnetic wave and (x) is the dielectric 
function. Due to the periodicity of the crystal, the dielectric function satisfies (x) = (x+X), where X is the 
lattice translation vector. 
According to Bloch-Floquet theory, the magnetic and electric fields can be represented as the product of a 
periodic function and an exponential factor as H(x) = Hk(x)exp(ikx) and E(x) = Ek(x)exp(ikx). The Maxwell 
equations can be converted to eigenvalue problems within a unit cell and only the wave vector k on the boundary 
of irreducible Brillouin zone needs to be considered for band diagram. 

kk E
c

Eii
2

kk  for TM modes      (3) 

kk H
c

Hii
21 kk  for TE modes      (4) 

By discretizing the unit cell into square elements as in Fig.1, the above equations can be transformed into matrix 
format through the usual finite element method (FEM) procedure: 
 

 
 

Figure 1: Discretization of a unit cell by square elements 
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 for TM modes      (5) 
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where e denotes the number of element, and H and E are the eigenvectors for the magnetic and electric fields, 
respectively. Ke can be expressed by 

4321 KKKKK e         (7) 

where, dA
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Me is expressed by 
dA

A

e NNM T          (8) 

where A denotes the total area of an element. The general form of Eqs. (5) and (6) can be expressed as 

MuKu
2

c
         (9) 

Where 

e

eK K , 
e

e
eM M  for TM modes     (10) 

e

e

e

K K1 , 
e

eM M  for TE modes      (11) 

Through sweeping wave vector (kx, ky) along the boundary of the first Brillouin zone, we can obtain the band 
diagram of a specific photonic crystal. 
 
4.2 Objective function 
Due to the lack of fundamental length scale in Maxwell’s equation, the band gap-midgap ratio, which is 
independent of the lattice constant of the photonic crystal, is more useful than the absolute value of band gap. 
Therefore, the objective function in designing photonic structures is to maximize the band gap-midgap ratio 
between two adjacent bands (referred as band i and band i+1) as 

)(max)(min
)(max)(min2

1

1

kk
kkX

ii

iif        (12) 

Where X = [x1 x2 ... xn] is the design variable, n is the total number of elements. For a bi-material photonic 
crystal optimization, the problem can be stated as 

1or  0   :Subject to
 :Maximize

ex
f X         (13) 

As shown in Fig.1, design variable xe = 0 denotes material 1 with low permittivity and xe = 1 denotes material 2 
with high permittivity. In order to get a stable and reliable optimization process, xe is a discrete value between 0 
and 1 with a custom step size. The permittivity  of element e is interpolated by following functions.  

eee xxx 21 1  for TM modes      (14) 

21 //1
1

ee
e xx

x  for TE modes      (15) 

where 1 and 2 are the permittivity of materials 1 and 2 respectively.  
 
4.3 sensitivity number 
For objective function (12), the sensitivity number for element e can be expressed as 

24
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e
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f X        (16) 

where k
k 1min itop , k

k ibot max . 

For a given frequency i(k), and its corresponding eigenvector ui 

i
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1      (17) 

The derivatives of matrix K and matrix M for the finite element analysis can be calculated from the interpolation 
functions (14) and (15) of design variable 
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K , e

ex 112 MM  for TM modes      (18) 

eeee
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M  for TE modes    (19) 

Based on the eigenfrequency and eigenvector calculated for finite element analysis, combining Eqs. (16)~(19), 
we can obtain the sensitivity number of each element, and then enhance existing topology by them. 
 
5. Numer ical implementation 
5.1 Mesh-independency filter 
Introducing a filtering scheme can effectively alleviate the numerical instabilities of the checkerboard pattern 
and mesh-dependency in the BESO method [11]. The modified sensitivity number of element e is 

n

i
i

n

i
ii

e

w

w

1

1ˆ
          (20) 

where the weight factor wi is defined by 
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rrrr
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 if            ,0

 if  ,         (21) 

where ri
e denotes the distance between the center of element e and i. rmin is the radius of the filter, defined to 

identify the neighboring elements that affect the sensitivity number of element i. rmin is taken as 1/50 of lattice 
constant in this research. 
In order to improve the stability and convergence of solution, elemental sensitivity numbers can be further 
averaged with their corresponding values in the previous iteration as 

k
e

k
e

k
e ˆ~

2
1~ 1          (22) 

where k is the current iteration number. 
 
5.2 Topology evolution 
The BESO process starts from an initial design filled up with material 2 which has a relative high permittivity 
with a pillar of material 1 in the center of the crystal lattice. The total volume of material 2, V, gradually 
decreases to a prescribed value V0, and then increases or decreases until the maximum band gap-midgap ratio is 
achieved. The volume of matrial 2 for the next iteration is calculated by 

ERVV kk 11  when V > V0       (23) 

ER
VVff
VVffVV

kkkk

kkkk
kk

11

11
1 1

XX
XX  after V0 is reached   (24) 

where ER is evolution rate, which is taken as 2% in this paper. 
The design variables are modified according to the relative values of sensitivity numbers and target volume of 
material 2. Based on the relative ranking of the elemental sensitivity numbers ~ , a threshold of the sensitivity 
number, *, is determined by using bi-section method so that the target volume of material w in the next iteration 
is equal to Vk+1. The design variable for each element is modified by comparing its sensitivity number with the 
threshold. 
Different from other topology optimization methods with continuous design variable, BESO method uses 
discrete design variable. In each iteration, the variation of a design variable is a constant x ( x = 0.1 is used in 
this paper). The design variable of element e is updated as: 

*

*

~ if  ,)0 ,max(

~ if  ,)1 ,min(

ee

ee
e xx

xx
x        (25) 

 
6. Numer ical results and discussion 
The 2D photonic crystal with a square lattice is considered in this paper. The photonic crystal consists of 2 
materials: Vacuum background (relative permittivity 1 = 1) and GaAs (relative permittivity 2 = 11.4). The 
model is meshed with 64×64 bilinear square elements. The FE analysis is conducted by COMSOL Multiphysics, 
and the sensitivity analysis is handled in MATLAB. 
The optimization process of the 7th band gap of TE modes is illustrated in Fig.2 as an example. The white color 
denotes air and the black color denotes GaAs. It can be seen that, at the first step, the band gap-midgap ratio is 
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-10.47%, which means there is no band gap at all. With the optimization continues, the band gap-midgap ratio 
gradually increases to a positive value and the filling ratio of GaAs gradually decreases from the initial value 
with almost 100%. At the end of optimization process, the band gap-midgap ratio and volume both tend to be 
stably convergent. The final band gap-midgap ratio is 44.27%, volume is 39.84%. The whole optimization 
process needs 60 iterations which demonstrate the high computational efficiency of the proposed optimization 
algorithm.  

 
(a) iteration 1                       (b) iteration 10 

 
(c) iteration 20                      (d) iteration 30 

 
(e) iteration 40                    (f) final design 

 
Figure 2: Evolution history of topology and band diagrams for the 7th band gap of TE modes 

 
Figure 3 shows the optimized topologies and their corresponding diagrams for the 1st and 10th band gap of TM 
modes and the 1st and the 10th band gap of TE modes. From the same initial topology without band gap, the 
topology evolves and the band ratio increase to 37.94%, 34.64%, 28.40% and 29.56% respectively. It can be 
seen that the proposed BESO algorithm can robustly obtain the optimized results at both low frequency range 
and high frequency range. 
 

 
(a) the 1st band gap of TM modes            (b) the 10th band gap of TM modes 
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(c) the 1st band gap of TE modes             (d) the 10th band gap of TE modes 

 
Figure 3: Optimized topologies of phononic crystals and their corresponding band diagrams 

 
7. Conclusions 
This paper investigates the topology optimization of 2D photonic crystals for both TM and TE modes. A new 
optimization method based on BESO is proposed to find the optimal design of photonic crystals with a 
maximum band gap. Based on the finite element analysis of photonic crystals, BESO gradually re-distrubutes the 
constituent material with the unit cell until the optimized band gap size is achieved. The numerical results 
indicate the effectiveness of the algorithm proposed in this paper for the design of photonic band gap structures. 
This algorithm can be further applied to other optimization problems of photonic crystals. 
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1. Abstract:
Phononic band gap crystals, which could prohibit the propagations of elastic waves in certain frequency, are 
consisted of periodically distributed inclusions embedded in a matrix with high contrast in mechanical 
properties. In recent years, systematic design of phononic band gap crystals has attracted increasing attention 
due to their wide applications such as sound insulation, waveguides, or acoustic wave filtering. Toward an 
efficient and reliable optimization for phononic structures, we present a new topology optimization algorithm 
based on bi-directional evolutionary structural optimization (BESO) method and finite element analysis to 
maximize phononic band gaps. The optimization of maximizing the relative band gap size between two 
appointed neighbour bands starts from a unit cell without any band gap and then gradually adjusts the 
distribution of two materials in the following iteration steps based on the sensitivity analysis and BESO 
algorithm until the convergence criterions are satisfied. Various patterns of optimal phononic structures for both 
out-of-plane shear waves and are in-plane mixed waves presented. Numerical results show that the proposed 
algorithm is very effective and efficient.  
2. Keywords: Phononic Band Gap Crystals, Topology Optimization, Bi-directional Evolutionary Structural 
Optimization (BESO) 
 
3. Introduction 
Sparkled by the remarkable work on the photonic crystals (PtCs) with periodic constructions of two dielectrics 
composite materials, which offer control over the propagation of electromagnetic waves, the study of phononic 
band gap crystals was first carried out by Kushwaha in 1993 [1, 2]. In analogy to photonic crystals, phononic 
crystals (PnCs), which prohibit the propagation of mechanical waves in certain range of frequencies, are 
generally composed of periodically distributed inclusions embedded in a matrix with high contrast in elastic 
properties. Such novel property makes them desirable for a variety of applications, for instance, sound insulation, 
waveguides, acoustic wave filtering, negative refraction, shock isolations well as acoustic cloaking [3]. Thus, 
photonic/phononic crystals have attracted considerable interest during past few decades. 
When PnCs are designed for sound insulation or shock isolation, usually it is best to have the band gap as wide 
as possible. Therefore, how to obtain the optimal band gap structure is of great interest here. A promising mean 
to achieve this goal is to utilize the topology optimization method for systematic and scientific approach of 
designing phononic structures. Topology optimization of phononic band gap structures was first performed by 
Sigmund and Jensen (2003) [4], using finite element method combined with the method of moving asymptotes 
(MMA) to maximize the band-gap sizes. This pioneering work only presented a few examples and lacked the 
analysis of coupled problem of in-plane and out-of-plane waves. Later a genetic algorithm (GA) in conjunction 
with finite element method was proposed for optimizing a two-dimensional phononic crystal for out-of-plane 
waves (Gazonas et. al) [5]. Hussein et al. [6, 7] used GA to conduct a series of optimization of both one-
dimensional and two-dimensional phononic crystals. Rupp et al. [8] developed a gradient-based topology 
optimization to design two and three-dimensional phononic wave filters, including surface waveguides. Dong et 
al.[9] reported a more detailed work on topology optimization of two-dimensional phononic crystals using a 
two-stage GA and FEM for both out-of-plane waves and in-plane waves with and without volume constraint. 
Liu et al. [10] used a two-stage GA in conjunction with fast plane wave expansion method to optimize the band 
gap width of phononic crystals for in-plane coupled mode, out-of-plane acoustic mode and mixed mode. It 
should be noted that aforementioned algorithms often cost significant computations. Taking GA in combination 
with FEM for example, it usually would take more than several hundreds of steps before the optimal design was 
achieved [9, 10]. Though parallel computation could reduce the computational cost more easily than before, it is 
still lack of efficiencies.  
Toward an efficient and reliable optimization for phononic structures, in this paper we propose a new topology 
optimization algorithm based on the bi-directional evolutionary structural optimization (BESO) method and 
finite element analysis to maximize phononic band gaps. The rest of the paper is organized as follows: 
governing equations and BESO optimization approach to optimize the band gap width between two adjacent 
bands are presented in section 4. In section 5, various patterns of optimal phononic band gap structures are 
presented for both out-of-plane shear waves and in-plane mixed waves. This is followed by conclusions. 
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4. Formulations 
4.1 Analysis of phononic crystals 
The propagation of mechanical waves in an elastic inhomogeneous medium is governed by 
 [ ( ) 2 ( )]( ) [ ( ) ]u r r u r u= + × ×  (1) 
Where  and  are the Lame’s coefficients;  is the material density; u={ux,uy,uz} is the displacement vector. 
In this paper we only consider the elastic waves that propagate in the x-y plane, i.e. the wave field are 
independent of z so that / 0u z = . Then Eq.(1) can be split into two coupled in-plane equations, which 
govern the longitudinal and transverse modes, and an out-of-plane equation that governs acoustic mode: 

 ( ) ( )( ) ( )
2

2 2 y yx x xu uu u u
t x x y y y x

= + + + +r r r  (2) 

 ( ) ( ) ( )( )
2

2 2y y yx xu u uu u
t x y x y x y

= + + + +r r r  (3) 

 ( ) ( )
2

2
z z zu u u

t x x y y
= +r r  (4) 

where r=(x,y) denotes the position vector.  
According to the Floquet-Bloch wave theory, the displacement vector can represented as the product of a 
periodic function and an exponential factor as: 
 ( ) ( ) ( ), i

k e= k ru r k u r  (5) 

where uk(r) is a periodic function of r with the same periodicity as the structure; k=(kx,ky) is the Bloch wave 
vector. 
Inserting Eq.(5) into either Eq.(2), Eq.(3) or Eq.(4), with (r)= (x,y), (r)= (x,y) and (r)= (x,y); the elastic 
waves governing equations can be converted to eigenvalue problems within a unit cell. After discretized by 
finite element method (FEM), these equations can be written as: 
 ( )( )2 0k =K M u  (6) 

where u=uk; K and M are stiffness matrix and mass matrix respectively. Due to the periodicity of the unit cell, 
only the wave vectors on the boundary of irreducible Brillouin zone are considered for the calculation of the 
band diagram. 
 
4.2 Topology optimization problem 
Our goal for the optimization of phononic crystals here is to maximize the relative band gap between two 
adjacent bands (referred as band n and band n+1). The objective function can be stated as follows: 

Max: ( ) ( ) ( )
( ) ( )

1

1

min max
2

min max
n n

e
n n

f x +

+

=
+

k k
k k

  (7) 

Subjected to: 
1

N

e e
e

x V V
=

× =   

where xe is the design variable which describes the material distribution in the unit cell. Ve and V are the 
elemental volume and the prescribed volume of the unit cell, respectively. It should be noted that the frequency 
is the function of the wave vector. 
It is assumed that the phononic crystal is composed of two base materials. We use the linear material 
interpolation scheme, which has been applied successfully to the design of phononic crystals [4] as 
 ( ) ( ) 1 21e e ex x x= +   (8) 

 ( ) ( ) 1 21e e ex x x= +   (9) 

 ( ) ( ) 21e e ex x x= +   (10) 
where subscripts ‘1’ and ‘2’ represent the matrix material and the inclusion material respectively. In the 
traditional BESO method [11-14], the discrete design variable is set xe=0 or 1 only. However, numerical 
simulation shows that the optimization process of phononic crystals is very sensitive to the change of design 
variable. Thus, in this paper the variation of the design variable in each iteration step is limited to be xe=0.1. 
 
4.3 Sensitivity Analysis and BESO algorithm 
For a given wave vector k and assuming that eigenvectors are normalized to the global mass matrix, the 
sensitivities of eigenfrequencies n(k) with respect to a change in an element design variable can be computed 
as: 
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Thus, the sensitivity of the objective function can be written as: 
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Originally proposed by Xie and Steven [15] in early 1990s, the essential idea of evolutionary structural 
optimization (ESO) method is by gradually deleting low efficient materials, remain topology of the structure 
evolves to an optimal design. Its later version, BESO allows adding materials while removing insufficient ones 
[16, 17]. Topology optimization of phononic band gap structures starts from a simple unit cell without any band 
gap. Then based on the sensitivity analysis and BESO algorithm, it will gradually modify the distribution of two 
materials in the following iteration steps by changing the value of the design variable of every element until the 
convergence criterions are satisfied. A filter scheme shown below is adopted to avoid checkerboard and mesh-
dependency problems [11]: 

 ( )
( )
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1
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where rij denotes the distance between the centre of the element i and node j ; w(rij) is weight factor given as  

 min min
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,
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r r for r r
w r

for r r

<
=   (14)

with rmin as the radius of the filter. 

5Numerical Results 
In this example, our goal is to maximize the relative band gap between two neighbor bands of a 2D square unit 
cell for a prescribed material volume fraction. A solid-solid phononic structure design is considered with Epoxy 
as the matrix and Au as the inclusion material. The material parameters are: epoxy=1200 kg/m3, epoxy=6.38 GPa, 

epoxy=1.61 GPa, Au=19500 kg/m3, Au=65.44 GPa and Au=29.94 GPa. 
BESO starts from an initial design without band gap and gradually decreases the total volume of the unit cell 
using an evolutionary rate ER=2%. A mesh-independency filter is used to avoid tiny structures and the radius of 
the filter is 1/50 of the length of the lattice’s diagonal line. 
 
5.1 Out-of-Plane waves (Acoustic modes) 
The optimal unit cells and the corresponding band diagrams for the first to eighth band gaps of the out-of-plane 
waves which propagate in the Au-Epoxy composite are demonstrated in figure 1 with the volume constraint of
Vf=0.38. The optimized topologies show the distribution of 3×3 array of unit cells (the representative unit cell is 
shown within the red dashed box), in which black represents Au and white represents Epoxy. The optimal 
designs are very similar to those reported by Dong et al. [9] for the first and fifth band gap structures. It 
demonstrates the effectiveness of the proposed optimization method. It is also noted that the complexity of the 
optimal topologies increases when the appointed bands grow higher. 

 

 
a1 b1  a2   b2

  
a3 b3  a4   b4

159



 
a5 b5 a6 b6

 
a7 b7 a8 b8

 
Figure 1: Optimized band gap structures and corresponding band diagrams from the first to eighth band for the 

out-of-plane mode .The black and white colours represent Au and Epoxy, respectively. 
 
Figure 2 illustrates the evolution history of the first band gap optimization process for the out-of-plane mode. As 
shown in the figure, there is no initial gap between the first and second bands. The band gap occurs after several 
iterations and then the total volume of the unit cell gradually increases as the volume fraction decreases to the 
predefined value. Finally, the optimized gap size stably achieves its maximum value when the volume is kept to 
be the constraint value. It can also be concluded from figure 2 that the proposed algorithm is of high efficiency 
since the optimization process would converge in 70 iteration steps, which is much faster than present 
optimization methods, for instance GA would take nearly 1000 iterations [9].  

 
 

Figure 2: Evolution histories of the first band gap size and volume fraction. 
 

5.2 In Plane waves (Coupled modes) 
 

 
a1  b1 a2 b2

 
Figure 3: Optimized phononic band gap structures and corresponding band diagrams for third and fifth band 

gaps of in-plane mode. 
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The proposed optimization method can also applied to the in-plane waves of phononic crystals. Using the same 
parameters for the previous examples, the optimization results for the third and fifth band gaps of the in-plane 
mode are shown in the figure 3. The volume constraint is also set to be Vf=0.38. The optimized topology for the 
third band gap is analogous to the first band gap structure of the out-of-plane mode. The optimized topology for 
the fifth band gaps looks like a hollow diamond, which also has a small band gap between the third and fourth 
bands. It is observed that band gap between the third and fourth band can be easily obtained when optimizing 
for other band gaps. 
 
6. Conclusions 
This paper proposes a new optimization algorithm based on BESO in combination with FEM for the design of 
phononic band gap structures and systematically investigates the topology optimization of 2D phononic band 
gap crystals for both the out-of-plane and in-plane wave modes. Numerical results show that optimized 
topologies for various band gaps has been successfully achieved. The optimized band gap sizes well 
demonstrate the effectiveness of the proposed optimization algorithm. Moreover, the optimization method 
proposed in this paper is also efficient as the optimization usually converges within about 100 iterations.  
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1. Abstract
Assembly of shaft and hub by an interference fit is a classical connection with known advantages and disadvan-
tages. The advantage being the level of possible torque transfer while the disadvantage is a possible fretting fatigue
failure at the points of stress concentration. The pressure distribution in the contact is the source responsible for the
fatigue failure. The distribution can be improved by design modification done directly on the contacting surfaces
which however requires a very high production precision. Alternatively it is shown, how shape optimization of the
hub side can improve the pressure distribution significantly.

2. Keywords: Interference fit, Contact, Optimization, Stress concentration.

3. Introduction
Interference fit or press fit is one of the most used assembly methods for shaft-hub connections. This type of
assembly is superior with respect to possible torque transmission between two assembled parts. The disadvantage
is that in the typical configuration disassembly is not possible. The limit to the used of an interference fit is
typically dictated by the maximum heating or cooling of the parts during the assembly process. Once assembled
the interference fit may fail due to fretting fatigue. Fretting fatigue is a type of fatigue where the parts due to
relative movement between compressed parts fail. The failure is a gradual deterioration of the surface resulting in
loss of contact pressure.

In a traditional design with straight assembly surfaces for shaft and hub, the result is a large stress concentration
at the end of contact. The shaft is in the working condition typically loaded in both bending and torsion. The
combination of the high stress and the relative motion result in the fretting fatigue. Results from roller bearings,
see [1] and [2] indicate that for this case, although not directly comparable, is possible to achieve a constant contact
pressure by special design of the rollers. Design changes to the interference fit contact surfaces should therefore
also be possible. In the literature many different design changes have been proposed for improving the strength
of the interference fit, different ways of changing the contact can be found in e.g. [3], [4], [5], [6], [7] and [8].
Improving the interference design by shape changes made to the hub can be found in [3] and [9]. For most of the
papers the design improvement has been done without a focus directly on optimization but more by a trial an error
method.

It might not be straight forward What the shape of an optimal contact pressure should be. If fretting fatigue is
to be avoided then there should be no relative motion between the two parts in contact, the possibility for relative
motion is controlled by the friction coefficient and the normal pressure, therefore one could argue that the contact
pressure at the inlet to the contact should be high. This reasoning have lead to suggested design improvement
where, e.g., there is a groove in the shaft and the hub has an overhang over part of this groove leading to an even
higher stress concentration at the contact inlet. On the other hand if there is relative motion between two parts in
contact then the contact pressure should be low in order not to result in fretting fatigue. As seen in the paper [10]
the high stress values can result in deterioration of either the hub or the shaft or both due to the high stress. The
interference fit should function in situations where the connection typically is loaded both in bending and torsion.
The torsion only creates shear motion and therefore for a pure torsional load of an interference fit the way to design
the contact pressure is one where the contact pressure is so high that relative motion is avoided and at the same
time no deterioration of the surfaces takes place due to plasticity. For the interference fit in bending (rotating) it
seems that even though the stresses are high at the inlet the stress will either be increased to a too high level or there
will be inherently a relative motion between the two part. The design objective for the present work is therefore to
have a constant contact pressure between the parts. The level of this contact pressure should be selected such that
the fretting fatigue is avoided on one hand and on the other hand so high as possible to fully take advantage of the
interference fit.
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4. Stress singularity of standard design
To evaluate the size of the stress singularity a FE model with a mesh refinement is needed. Reducing the element
size at the singularity will increase the maximum stress and the size of the stress will go to infinity as the element
size goes towards zero.

The data for the shaft and hub connection used in the present work is

• Shaft: length Ls = 0.6m, diameter D f = 0.2m

• Hub: Length Lh = 0.3m, thickness t = 0.1m , i.e., outer diameter of hub Dh = 0.4m

The interference is introduced in the finite element model by modeling a cooling of the hub by 100◦C. The
material properties of the hub and shaft are assumed identical and given by

E = 2.1 ·105MPa, ν = 0.3, α = 1.1 ·10−5/◦C

where E is modulus of elasticity, ν is Poisson’s ratio and α is the thermal expansion coefficient. A cooling of the
hub by 100◦C is used and this results in an interference fit of δd = 220μm. The classical analytical pressure in the
connection, under the assumption of rotational symmetry and infinitely long shaft and hub (plane model), is given
by

p f =
Eδd
2D f

(
1−
(

D f

Dh

)2
)

(1)

where Dh = DF + 2 · t is the outer diameter of the hub. With the given data the pressure is p f = 86.6MPa. The
size of the singularity for the present design is estimated using the COMSOL program ([11]). The connection is
modeled assuming axis symmetry as seen in Figure 2. In the contact modeling it is examined if the inclusion of
friction is important for the evaluation of the pressure, from the computation it is found that the friction does have
an influence but that it has an negligible influence on the contact pressure.

In order to evaluate the stress concentration factor it is here selected to identify the stress 10μm from the edge
of the hub. The overall distribution of the stress is given in Figure 1a) and in Figure 1b) a zoom of the last 1mm is
shown. The finite element model is highly refined with 30 FE nodes along the last 10μm of the contact in 1a) and
in the shown zoom with 60 FE nodes along the last 10μm. The stress converges to a level of 415MPa. From the
computation we conclude that the theoretical stress concentration Kt for this case is

Kt ≈
415
86.6

= 4.8 (2)

The exact value of the theoretical stress concentration factor can always be discussed. But it is clear that the
stress concentration has a significant size.

5. Super element technique for contact analysis
An alternative to performing contact analysis by a traditional iterative finite element analysis (FEA) is to use the
super element technique. The procedure involves no iterations see [12]. Application of the method for shrink fit
analysis can be found in [13] and in relation to bolted connection see [14]. The primary advantage of the method
is that no iterations are needed in the FE calculation. In Figure 2 an interference fit is shown. The axis symmetric
model of half the connection is also shown together with the contact pressure distribution.

In the analysis the shaft and hub are separated. The super element FE model of the hub alone is given as

[Shp]{Dhp} = {Fcp} (3)

where [Shp] is the hub super element stiffness matrix. The order of this matrix equals the number of FE mesh nodes
on the contact line. The resulting displacements of the contacting nodes are {Dhp} and the corresponding nodal
contact pressure forces are {Fcp}. The total contacting force is given as the sum of these nodal forces i.e.

Fp = ||{Fcp}||1 (4)
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Figure 1: Contact pressure along interference fit. a) Full length of contact. b) Zoom of last 1mm of contact, the
stress is not plotted for the last 10μm due to the singularity, the maximum stress 10μm from the edge is 415MPa.

p

z

r

Figure 2: left: the interference fit. Right: of this an illustration of the axis symmetric model of half the shaft and
hub used in the analysis. The contact pressure p is illustrated by a distribution that it is to be determined from the
analysis.

With respect to the practical determination of the super element matrices see [12].
It is assumed that the contact line on the shaft has the same number of nodes (mutual corresponding) as the

hub contact line. The analysis for the shaft can under this assumption be performed in a similar manner using the
super finite element matrices for this part.

[Ssp]{Dsp} = −{Fcp} (5)

where [Ssp] is the shaft super element stiffness matrix. The order of this matrix also equals the number of FE mesh
nodes on the contact line. The resulting displacements of the contacting nodes are {Dsp} and the correspond-
ing nodal contact pressure forces are −{Fcp}, i.e., a negative sign relative to the analysis of the hub, to express
equilibrium with (3),

Before assembly the radial interference (negative gap) between the shaft and hub for the nodes on the line of
contacts can be determined as

{g} = {rs}−{rh} (6)
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where {rs} and {rh} are the radial position of the nodes on the contact line for the shaft and hub respectively. After
the two components are fitted together the nodes will be at the same point, i.e. we have that

{rs}+{Dsp} = {rh}+{Dsh}⇒ {g} = {Dsh}−{Dsp} (7)

The super element technique can be used in two different ways; either the contact force distribution, {Fcp}, is
assumed known and from this the gap, {g}, can be found directly by

{g} = ([Shp]
−1 +[Ssp]

−1){Fcp} (8)

alternatively the gap is assumed known and the contact force can be found from

{Fcp} = ([Shp]
−1 +[Ssp]

−1)−1{g} (9)

The result we achieve is that under the given assumptions then contact force can be found directly without
iterations from a given gap distribution. The analysis involved the determination of the inverse matrices for the
two super finite element stiffness matrices, but the size of these is limited to the number of nodes on the contact line.

6. Design modification of contact zone
Under the assumption used in (8) we may find the gap δ (z), as a function of the position z, that will result in a
constant stress. In Figure 3 the resulting gap for the shaft hub design used in the present work with a constant
pressure of 86.6MPa is shown.

0 40 80 120

98

102

106

110

δ (z)/μm

z/mm

Figure 3: Gap as a function of axial position (see Figure 2) that result in a constant pressure, 86.6MPa, in the
interference fit.

As can be seen in Figure 3 the variation in the gap is not very high as compared to the normal production
methods where the interference is specified by tolerances, the variation lies in this case within 14μm. Creating a
shaft and hub with exactly the shown interference is therefore not desirable.

The results indicates that the connection for a constant interference is to stiff at the run-out of the hub relative
to achieve a constant contact pressure. One way of changing this assuming that a constant interference is used is
to make design changes to the hub side. A simple design change is to make a chamfer of the hub as seen in Figure
4a). The optimization problem can be stated as minimize the variation in the gap for a given constant pressure.
The optimal design for this design change is shown in Figure 4b). The given simple design parameterization does
not allow for a completely constant gap.

In Figure 4b) the optimal value of the chamfer is a = 15.5mm which gives a total variation in the interference
of 3.5μm to be compared to the original 14μm for no chamfer a = 0mm.

One disadvantage of the presented chamfer design is the reduction in the possible use of the hub, e.g., we can
not use the whole length for a gear.

Alternative design change will be presented in the lecture. also the application of traditional contact analysis
will be shown.
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Figure 4: Gap as a function of axial position for different chamfer size that result in a constant pressure, 86.6MPa,
in the interference fit.
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1. Abstract  
Topology optimization is becoming an integral part of the design process in various industrial fields in order to 
keep up with the continuous drive to increase productivity and efficiency. In the field of machine tools, the 
dynamic behavior of a machine tool’s structure is largely responsible for its overall performance. Thus, topology 
optimization methods targeting the optimization of Eigen frequencies are often used in industrial practice. 
A machine tool’s structural frequency response (e.g. to external excitation during cutting processes) is also 
dependent on its damping properties. Therefore, the dynamic behavior of machine tools can be significantly 
influenced by utilizing one or more vibration suppression systems like tuned mass dampers (hereinafter called 
TMDs) to target specific vibrations. Although TMDs are often used to solve problems during operation, they are in 
some cases utilized during the engineering phase, becoming an integral part of the machine design. 
By combining both optimal utilization of vibration suppression systems and topology optimization within a 
structural optimization framework, potential synergetic effects of both approaches can be utilized. 
In this paper, the recently started development of such an optimization framework including the automatic optimal 
positioning and analytic tuning of multi-mass dampers (hereinafter called MMDs) is described. The advantages of 
MMDs include robustness and easy implementation, as demonstrated by initial simulative results presented in this 
paper. The described framework in development addresses issues like manufacturing constraints for the topology 
optimization and restrictions on the MMDs physical properties. The paper concludes with a brief outlook on the 
consideration of constraints for additive manufacturing and the volumetric distribution of multiple MMDs 
embedded inside those structures. 
2. Keywords: Machine tools, dynamics, tuned multi-mass dampers, topology optimization 
 
3. Introduction 
The application of topology optimization methods for structural dynamics problems has been discussed for many 
years. The optimization of dynamic behavior is a very general term. From a mechanical engineering standpoint, 
one can distinguish between indirect and direct methods. Indirect methods include those trying to maximize 
certain Eigen frequencies [1], achieve target (or shift specific) Eigen frequencies [2] or create a so-called band-gap 
behavior by maximizing the distance between distinct Eigen frequencies [3]. Many indirect methods include Eigen 
frequencies as optimization constraints rather than objective functions, e.g. [4, 5], a practice often applied in 
commercial products as well (see [6]). These methods can be called indirect, because the frequency-tuning is 
essentially achieved by optimizing the stiffness-to-mass ratio of a structure for certain Eigen frequencies and 
associated Eigen modes. The resulting dynamic behavior is indirectly affected by this optimization. 
Direct methods on the other hand aim at influencing the dynamic behavior more directly, e.g. by synthesizing 
specific mode shapes [7] or minimizing the (maximum) frequency response at specific points or regions within the 
structure [8]. The latter is especially interesting in the field of machine tools, where the dynamic behavior at the 
tool center point (TCP) is often the most important point of interest. 
The dynamic behavior of machine tools, and whether specific Eigen modes are potentially critical during 
operation, is in no small part also dependent on the damping properties of the structural parts and coupling 
components connecting them [9]. However, the topology optimization of the damping behavior of structural, 
load-bearing components has not been the focus of research. Instead, problems like an optimal material 
distribution within damping layers [10], especially regarding acoustics important in the automotive industry [11], 
were investigated. 
Besides structural optimization techniques, a classic approach to reduce an existing machine’s (or any vibrating 
structure’s) peak response amplitude in one of its Eigen frequencies is to attach a vibration suppression system to 
it. Strategically positioned and tuned to absorb one response peak, the kinetic energy is either dissipated by 
different means of damping behavior or counteracted by opposing forces. Expensive, high-maintenance active 
systems (actors) can adapt to varying frequencies, passive systems like TMDs are only effective within a narrow 
frequency range. [9] 
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An extensive amount of research has been conducted into different types of TMDs. Regular ones consist of a single 
absorber mass connected to the main system with a specific attachment stiffness and optimal damping, see Eq.(1), 
Eq.(2). Many different approaches have emerged in the literature, using multiple degrees of freedom (DOF) for 
attachment [12] or distributing the damper mass over multiple masses [13-15]. They have in common, that the 
optimal tuning is usually achieved by using numeric optimization methods and significantly simplifying the 
system they are attached to. Also, available research is dominated by its application to buildings exposed to ground 
vibrations due to seismic activity, e.g. [16]. 
There is noticeably less research on the automatic optimum placement of such auxiliary systems, although [17] 
proposed a genetic algorithm approach to position damper systems (again in the field of civil engineering) across 
different floors of high-rise buildings, for example. Industrial applications of those optimized TMD systems in 
general and applications to machine tools in particular are rare, e.g. [18]. 
One aspect which all passive vibration suppression systems have in common is that their effectiveness depends on 
their mass in relation to the mass of the system they are attached to. By reducing the main system’s mass, e.g. by 
topology optimization, the auxiliary system can be smaller. Yet, no research on a combined approach of topology 
optimization and integrated optimal tuning of TMD systems is available. 
This lead to the research project presented in this paper, where a concept of integrating optimally tuned systems of 
MMDs into a topology optimization framework targeting the direct optimization of structural dynamics of 
machine tools is proposed. The general concept is summarized in Fig. 1. Either due to problems during operation 
or requirements during the design phase, the goal of optimizing structural dynamics can either be solved by 
damping critical vibrations or by optimizing one or more structural components w.r.t. static and especially 
dynamic considerations. The challenges and potentials of combining both approaches into an optimization 
framework are described in the following paragraphs. The motivational application example on the right side of 
the figure will be described in detail in the outlook of this paper. 
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Figure 1: Schematic summary of the combined topology optimization and damping method concept 

 
4. Analytically tuned MMDs 
As mentioned above, the methods for optimal design of multi-mass or multi-DOF dampers presented in the 
literature focus on numerical optimization methods to optimize parameters like the number of masses, the mass 
fraction and the distribution of masses and attachment frequencies. Due to the computational effort of the 
combined optimization task, described in detail below, a fast analytic approach would be preferable. 
Thus, the approach presented in this paper relies on analytic tuning methods of classical TMDs and applies them to 
a multi-stage design to broaden the effective frequency range and increase the robustness of the design. 
 
4.1. Analytic tuning of multi-stage MMD units 
When designing a regular TMD, the main system’s dynamic behavior in the targeted Eigen mode is simplified to 
that of a single mass oscillator with an equivalent static stiffness and kinetic mass M. After defining the absorber 
mass m, the damper mass ratio  = m/M is used throughout the optimal tuning. Using DEN HARTOGS [19] equations 
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to derive the optimal frequency ratio fopt between the absorber’s and the system’s Eigen frequency (optimal 
detuning), the necessary attachment stiffness kTMD.opt can be calculated: 

 
2

,
1

1 1
sysTMD

opt TMD opt
sys

f k m   (1) 

A TMDs performance relies on its optimal damping, which can be determined using BROCKS [20] formula: 

 , 3

32
8(1 )TMD opt sysc m   (2) 

Depending on the system’s mass and the target frequency, it can be difficult to achieve the target damping value in 
practice, and deviations in cTMD,opt result in significantly reduced performance [16]. It is shown in several 
publications (e.g. [13,21]) that distributed mass dampers offer comparable performance to a single TMD with less 
damping, while being more robust to deviations in tuning (stiffness, damping or mass). Thus, distributing the 
single TMD mass represents the first design aspect of the MMD presented here as well (Fig. 2, left). 
By attaching an absorber mass to a system, its resonance peak is split into two new resonance peaks. Neglecting 
any damping effects, the frequency spacing of those peaks can be calculated using Eq.(3) derived by [19]. The two 
solutions to this quadratic equation only depend on the mass fraction , where higher mass fractions increase the 
peak spreading effect of an absorber. A graphical representation of this formula is shown in Fig. 3 (top, middle). 

 
2

2

1
2 4sys

  (3) 

Obviously, the distribution of the single TMD mass in an MMD reduces the peak spreading due to the decreasing 
individual mass fractions, narrowing the effective frequency range of a MMD system. To increase this frequency 
range, a multi-stage design is proposed, which calculates the newly created resonance peaks from the previous 
stage of absorbers using Eq.(3), and tunes additional masses to the lower- and uppermost peaks i,l and i,u, 
respectively. This multi-stage design (as illustrated in Fig. 2, right) iteratively increases the effective frequency 
range of the proposed MMD system. 
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Figure 2: Design aspects of tuned multi-mass damper units 

 
All MMD results presented in this paper are obtained from a FE simulation of a clamped, thick cantilever plate 
(steel, 20x100x500mm), where two MMDs are attached at different positions along the central axis and tuned to 
the 1st and 2nd bending mode (normal to the plate). The MMD attachment positions (as shown in Fig. 3, right) are 
chosen such that the mutual interference of both MMDs is low. The MMDs are idealized as point masses, 
individually connected via uniaxial springs/dashpots to the plate. A cantilever plate is chosen in order to validate 
the simulations on a test bench at a later stage. Also, the position of clamping can be moved along the longitudinal 
axis of the plate to detune the system and analyze the robustness of the MMD design. 
An example of the multi-stage design and the spreading effect is demonstrated in Fig. 3 (bottom), where the overall 
damping of the MMD is kept constant and deliberately at a low level, such that the individual resonances can be 
clearly distinguished. Note that with an increase in stages, the maximum receptance is reduced, despite the 
constant damping. 
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Figure 3: Utilizing the resonance peak spreading effect of adding absorbers to construct multi-stage MMDs 

 
4.3. Robustness and manufacturing considerations 
The premise of the presented MMD design is robustness both towards changing frequencies of the main system 
and towards variations and limitations in the stiffness and damping properties of available attachment devices for 
the individual dampers. Possible attachment devices include rubber attachment buffers in different configurations 
and shore hardness classes of rubber mixtures. An example of those buffers is shown in Fig. 4 (top, right). 
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Figure 4: Effects of variations in the individual attachment stiffnesses on the MMD performance 

 
Due to manufacturing and material property fluctuations, the stiffness of a single type of buffer and shore hardness 
can vary by more than 10%, the damping coefficients can vary even more. To consider those variations, the 
optimally tuned attachment stiffnesses, damping coefficients and masses of each individual damper are optionally 
subjected to a semi-truncated standard deviation to guarantee positive values, see Fig. 4 (top, left). Initial 
simulations for single- and multi-stage MMDs show a very beneficial effect of even large deviations, as can be 
seen in the example in Fig. 4 (bottom, left). Again, the sum total of viscous damping within each MMD 
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(0.1 Ns/mm) is very low compared to the optimum damping of a regular TMD with equal mass 
(cTMD,opt = 0.7262 Ns/mm for the 2nd bending mode), obtainable from Eq.(2). 
In contrast to the analytic tuning of regular TMDs, whose effectiveness relies heavily on optimal damping, the 
optimal tuning procedure presented here allows for the consideration of damping coefficients of available 
attachment devices. Available attachment stiffnesses are taken into account by scaling the number of masses per 
stage, thus changing the individual damper masses to achieve the same tuning frequency with different stiffnesses. 
Detailed results of this MMD design and practical validations on a test stand will be presented at a later stage. 
 
4.3. Optimal positioning criteria 
Any TMD needs to be in a position undergoing significant amplitudes within the targeted mode shape to be able to 
dissipate kinetic energy. Finding an optimal MMD position within a structure for a single targeted mode shape is 
straightforward. The nodal displacements of the considered mode shape, extracted from a FE modal analysis, yield 
optimal positions with high amplitudes. As soon as multiple MMDs are to be used to target multiple frequencies 
and mode shapes, the optimal positioning turns into a minimization problem, where optimal positions have high 
amplitudes at positions with low amplitudes in target modes of other MMDs. Even for a simple cantilever plate 
like the one used for demonstration in this paper, finding two optimal positions for both targeted Eigen modes 
cannot be realized without any mutual interference, see Fig.3 (top, right). The optimal positioning subproblem is 
further constrained by the necessity to have enough surface area at certain positions within the structure to attach 
MMDs to or to have enough local volume to integrate the MMDs into (see volumetric distribution in Ch. 6). Those 
constraints are imposed onto the positioning problem by the changing topology of the structure. 
 
5. Topology optimization framework 
5.1 Computational effort and technical challenges 
The optimization framework under development is to be used for the optimization of real structural components of 
entire machine tools, which are often very large and complex structures containing a high number of DOFs. The 
FE dynamics analyses needed to calculate the system responses require a lot of computational effort. A modal 
analysis and subsequent frequency response calculation is necessary to determine the mode shapes and Eigen 
frequencies for tuning the MMDs and the frequency response behavior for the topology optimization module. 
Additionally, the tracking of Eigen modes (by using the MAC criterion, see e.g. [22]) will be considered, since 
mode shifting is likely to occur during the optimization process. To cope with the huge computational effort, a 
hybrid topology optimization scheme will be implemented to reduce the overall size of the system of equations by 
fully deleting Finite Elements in regular intervals (and adding some in critical areas, BESO-type approach). In 
between those reduction intervals, a localized topology optimization problem will be solved. 
By adding, moving and retuning MMDs to and in the structure during the optimization process, the dynamic 
behavior of the structure is changed. The topology optimization in turn changes the dynamic behavior of the 
system, detuning the MMDs. A suitable coupling scheme has to be developed, while the achievable stability and 
convergence of the combined process and the topology optimization procedure in particular are critical but 
unknown. Due to this added complexity, the optimization core is kept modular to investigate the performance and 
suitability of different topology optimization approaches and coupling schemes (both implicit and explicit). 
 
5.2 Applicability to real structures and manufacturing considerations 
Structural components of machine tools are usually designed as welded steel or cast iron constructions. Welded 
steel constructions are comprised of mostly planar plates with relatively low wall thicknesses and are inherently 
ill-suited to be target designs of topology optimization methods. Thus, manufacturing constraints focus on 
improving the castability of the design proposals. A simple casting constraint would be to forbid the formation of 
undercuts in the designs w.r.t. a single cast removal direction. The framework in development operates on FE 
models discretized with a uniform Cartesian grid of hexahedra, allowing the definition of a casting direction along 
one of three principal axes of said grid. By allowing only the removal of surface material on the top and bottom 
projection of the structure w.r.t. the casting direction, undercuts are avoided, as proposed in [23], for example. 
 
6. Outlook on additive manufacturing and the volumetric distribution of MMDs 
The full potential of the combined optimization method can be exploited using additive manufacturing and 
distributing a large number of micro-dampers volumetrically within a load-bearing lightweight structure. A 
motivational, practical application is shown in Fig. 1 (top, right). Portal milling machines exhibit a dynamically 
challenging design component, namely the z-slide providing vertical movement of the main spindle. Typical mode 
shapes of this type of machine design include horizontal bending and sliding of said z-slide in the z-axis guides. 
Depending on the z-slide’s vertical position, the Eigen frequencies change significantly, and surface area for the 
attachment of external TMDs is very limited. Volumetrically distributed MMDs which are tuned towards those 
typical Eigen modes and provide broadband performance due to their multi-stage design do not suffer from the 
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same spatial and frequency-related restrictions. 
As mentioned above, the lighter the structure, the less damper mass is needed for vibration suppression. Also, the 
necessary individual damping associated with each mass increases with the number of dampers. By using additive 
manufacturing, it is conceivable that hundreds or thousands of masses can be integrated into a load-bearing truss 
structure derived by topology optimization and connected to it by parametrizable beams of material. Damping can 
be introduced into the masses for example by designing them as hollow spheres and retaining unmolten material 
within. These aspects will be the focus of research at a later stage of the ongoing framework development. 
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1. Abstract  
In parametric design studies, the strength of a structure is often considered as the primary design criterion, and 
consequently the optimal (best) structural design is often chosen as the one that minimises the maximum stress 
generated. However, for structures whereby failure is governed by fracture or fatigue, residual strength and fatigue 
life, as distinct from stress, need to be considered as the explicit design objectives.  
In this study, the design space for fatigue life for different structural configurations is evaluated to demonstrate the 
utilities of design space exploration for damage tolerance design optimisation. This was illustrated using the 
problem of the optimum design of a cutout shape with boundary cracks under biaxial load. The minimum fatigue 
life associated with the cracks was evaluated for each cutout geometry.  
The design surface for fatigue life establishes that a design based on damage tolerance parameters poses a 
well-behaved optimisation problem with a well-defined minimum/maximum region. The design space was found 
to be flat for fatigue life, enabling the specification of design tolerances. The optimum values of the fatigue life 
obtained from the design space agreed well with those determined using various optimisation methods. It is shown 
that a design space exploration can provide a systematic way to reduce the weight of a structure by adopting a 
‘feasible non-optimal’ solution that meets the design criteria, rather than aiming for the ‘optimal’ (best) solution. 
2. Keywords: Design space; Shape optimisation; Damage tolerance; Fatigue life; Finite element analysis. 

3. Introduction 
The late twentieth century saw the development of sophisticated structural analysis methods, which led to the use 
of light weight structures with low design safety factors. This resulted in high operational stress levels. High 
service stresses increase the likelihood of crack initiation and propagation. Furthermore, structures are now being 
fabricated using high strength materials that have a relatively low resistance against crack propagation. This 
problem is of prime concern in the aerospace industry where weight reduction is an important consideration. This 
led to the inception of damage tolerance design philosophy in which the presence of cracks and defects in a 
structure is taken into account. To address this, we previously developed a range of damage tolerance optimisation 
techniques based on a heuristic algorithms [1-5], and applied it for maximising the residual strength and fatigue 
life of structures. 
Design optimisation including damage tolerance parameters is an inherently iterative process. One challenge often 
faced by a designer is to automate the evaluation of several potential designs. Design space exploration can be of 
immense aid in obtaining a collection of ‘preliminary’ improved designs that (partially) meet the design 
specifications and can assist in further optimisation of structures. The aim of the present study is to demonstrate the 
advantages of design space exploration for durability based designs. The effectiveness and utilities of design space 
exploration in the context of damage tolerance optimisation are demonstrated. In particular, one purpose of this 
paper is to evaluate the characteristics of the design space fatigue life. The optimum solutions obtained via the 
design space study are compared with those predicted by different structural optimisation methods. The utility of 
design space exploration in designing light-weight structures is also emphasised. 
A design space for structural designs is a collection of structural responses (i.e. the values of objective and 
constraint functions) for various structural geometries and/or configurations (expressed by combinations of design 
variables). One way to perform a detailed (iterative) design study is to visualise the partial or entire design space. 
The initial step for this is similar to that of optimisation. The ‘design problem’ is to be cast as an equivalent 
‘standard optimisation problem’, in terms of a set of design variables and objective and constraint functions. The 
design space can then be determined by analysing the structure for each possible combination of the design 
variables (design point). Design space studies for multiple design criteria can aid in assessing the relative roles of 
multiple design objectives. For example, the variation of the minimum fatigue life and the maximum stress for 
different shapes provides the designer with an insight into the relative performance of these shapes. A designer has 
the option of choosing a design in the vicinity of an optimum solution rather than selecting the ‘fatigue life 
optimum point’ itself as the final design. This compromise may be necessary to meet a maximum strength 
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requirement, or to satisfy specific operational constraints. In this paper, we will evaluate the characteristics of the 
design space of one of the primary damage tolerance criteria, i.e. fatigue life of a structure via a simple example.  

4. Example Problem 

4.1 Problem Description  
Design space exploration is illustrated through the simple problem of ‘the optimum design of a cylindrical 
(through-the-thickness) cutout located in a rectangular block under biaxial loading’. This specific problem was 
selected as it has been used in the previous optimisation studies by the present and other authors in the literature [3, 
4, 6, 7]. Hence, this will enable us to correlate and compare the ‘optimum point(s)’ observed in the design space 
with those obtained using the different optimisation methods.  
The problem geometry, loading and boundary conditions are shown in Figure 1. It is a three-dimensional 
rectangular block, 320 mm wide, 320 mm high, with a thickness of 20 mm, and has a circular 
through-the-thickness cutout at its centre. The diameter of the initial cutout was 20 mm. The material of the block 
was assumed to be an aluminium alloy (2219-T851) with a Young's modulus of 71 GPa and a Poisson's ratio of 
0.3. A one-eighth model of the block along with the loads and constraints was considered, because the geometry, 
loading, and constraints are symmetric about the three planes (xy, yz, and xz), as shown in Figure 1. Symmetry 
boundary conditions were imposed on the planes (xz, yz and mid-xy planes) by constraining the appropriate 
displacements (ux, uy and uz) and rotations ( x, y and z). All the planes (xy, yz and xz) mentioned in the rest of the 
paper refer to Figure 1.  
A simple constant amplitude fatigue loading was assumed. The block was subjected to fluctuating (cyclic) stresses 
in the horizontal (x) and vertical (y) directions. The mean stresses for the present problem were 75 and 150 MPa, 
respectively, in the x and y direction, and the corresponding stress amplitudes were 25 and 50 MPa, respectively. 
The minimum fatigue life associated with the cracks was taken as the design criterion or objective function. 

xz plane:
uy = 0, x = 0, z = 0

yz plane:
ux = 0

y = 0
z = 0

x

y

xy mid-plane:
uz = 0

x = 0
y = 0

X
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Z

Figure 1: Schematic of the one-eighth model of a cylindrical cutout in a rectangular block under biaxial load (ux, uy,
and uz denote the displacements along the x, y and z axes, respectively, and x, y and z denote the rotations about 

the respective axes). 

4.2 Crack Modelling  
A number of surface cracks were modelled on the hole boundary. All the cracks were assumed to be semi-elliptical 
flaws emanating from the hole surface with their major axes (c) parallel to the axis of the hole (z axis) and minor 
axes (a) normal to the hole surface, see Figure 2. An initial crack spacing approximately equal to the smallest crack 
size was used to achieve an effective modelling of the stress intensity factor and fatigue life variation along the 
structural boundary. Here we modelled 21 three-dimensional semi-elliptical cracks along the surface of the 
cylindrical hole (for one quarter) resulting in an initial crack spacing of ~0.75 mm. Each crack on the structural 
boundary was assumed to grow in the direction of the major and minor axes from an initial size of (ci, ai) to its final 
size of (cf, af). The initial surface flaws were assumed to be of size, ci = 5 mm, ai = 2 mm, and the final acceptable 
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flaw size was taken as, cf = 8 mm, af = 4 mm. These specific flaw cases were chosen, because these were the 
representative cases previously studied [3, 4]. All the cracks were grown simultaneously for fatigue life design 
space evaluation. 

Figure 2: Locations of the three-dimensional semi-elliptical cracks along the hole surface (one-eighth model) 

4.3 Geometry Representation 
The geometric representation of the hole shape in the xy plane is given by: 

01p

p

p

p

b
y

a
x

(1)

where a, b, and p are the shape parameters. The shape of the hole is altered by varying these parameters. Any 
combination of them can be chosen as the design variables for optimisation. As such, this geometric description is 
ideally suited to the present problem of the optimum design of a cutout in a rectangular block under biaxial 
loading. Hence, in the present study, Equation 1 was used to generate the design points on the hole surface for a 
given combination of design variables (a, b, and p).
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Figure 3: Fatigue life study: Design space plot of the objective function (the minimum fatigue life Nmin) with hole 
geometric parameters, hole size (b) and curvature index (p)

5. Design Space Exploration 
The design parameters, hole dimension (b) and curvature index/exponent (p), were varied to generate a set of 
design points to investigate the nature of variation of the minimum fatigue life associated with all the cracks on the 
boundary for different cutout shapes. The major axis b was varied from 10 to 30 mm, and the index p was varied 
from 2 to 3, generating a total of 1287 design points. This enabled a reasonably accurate representation of the 
design space, which was also used for validating the previous optimisation results. The design space for the 
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minimum fatigue life (Nmin) is presented in Figure 3. As expected, the surface takes the shape of an ‘inverted ship 
hull’, which is intuitive. The maximum point (optimal hole) corresponds to a fatigue life of 9214 cycles. The size 
(b) and curvature (p) of the optimal hole shape are 22.8 mm and 2.1, respectively. The fatigue life optimal cutout is 
shown in Figure 4. It is noteworthy that for fatigue life, the optimal points exist on the plane p = 2.1, and the 
optimal shape represents a ‘super-ellipse’. 
The design space of fatigue life of the cutout in Figure 3 is found to be flat for fatigue life. This ‘flat’ design space 
can be thought of as a set of local ‘optimums’ clustered in a small region. Since all of these optimum points have 
approximately the same value of the objective function (Nmin), it is thus appropriate to conclude that this class of 
problems has a ‘global optimum region’ instead of a global optimum point. Furthermore, the flatness of the design 
space establishes that the design is robust in a Taguchi sense. The width of the flat region is within 10% of the 
average value of the design variables. So this is within the commonly adopted manufacturing tolerances. This 
insensitivity of the optimum point or flatness of the optimum region implies that it is feasible to extract the 
maximum fatigue life taking into account the variability in typical industrial manufacturing processes. 

Figure 4: Fatigue life optimal shape with b = 22.8 mm and p = 2.1, with life optimised shape being larger than the 
initial cutout, leading to weight reduction 

6. Relationship of Design Space Study with Structural Optimisation 
Design space exploration and optimisation are closely related in that in structural optimisation we move through 
the design space using an algorithm to improve a current design, whereas in a design space study we attempt to 
obtain the overall variation in the design objective function with structural geometry/shape. Indeed, one of the 
earlier optimisation algorithms, known as the ‘random search method’, utilises a similar concept [8]. For many 
optimisation problems the optimum solution may not be unique and often depends on the initial (starting) shape, 
especially if multiple (local) optimum points exist. In such cases an initial examination of the nature of the design 
space can help set a starting solution that would (eventually) converge to an improved (local) optimum point. This 
can lead to a significant improvement in the structural performance in cases where there is a considerable 
variability among the objective functions associated with different local optimum shapes. 
In contrast, for the present problem of the cutout shape design with fatigue life as the design objective, an initial 
design space evaluation can save computational time. The realisation that the design space around the optimum 
point is ‘flat’ means that once a design point is in the ‘near’ optimal zone, any solution in the neighbourhood could 
be taken as an acceptable design, because the fatigue life of the structure will not improve appreciably by further 
refining the solution to locate the ‘precise’ optimum point. In the context of practical structural designs, the extent 
of flatness in the design space can be used to specify the manufacturing tolerances during the design stage without 
compromising the fatigue life of the resultant structure. 
Design space analysis can also be used for verifying the reliability and assessing the performance of optimisation 
algorithms before applying them to design optimisation of a relatively complex structure. In the previous studies, 
we performed the same damage tolerance based cutout optimisation problem using two ‘fundamentally’ different 
optimisation methods, a Biological method [3, 4] and nonlinear programming methods [6, 7]. The optimum results 
from the design space evaluations for fatigue life are compared with those obtained using the different 
optimisation methods [3, 4, 6, 7].  
The hole dimensions and curvatures obtained using a heuristic and a gradient-based method are compared with 
those observed from the design spaces in Table 1. To compare the optimum point identified using the design space 
study for fatigue life, the hole shape optimisation was performed using the 3D Biological algorithm [4] and the 
nonlinear programming method [7]. The initial and final flaw sizes were the same as used in the design space 
study, i.e. ci = 5 mm, ai = 2 mm, and cf = 8 mm, af = 4 mm. The fatigue life at the optimum point and the cutout 
geometry parameters are presented in Table 1. All the three approaches essentially predicted the same ‘near’ 
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optimum solution. 

Table 1: Comparison of the fatigue life optimisation results with the design space study 

Methods 
Hole major axis 

(b)
(mm) 

Hole curvature (p)
Objective function  

(Nmin)           
  (cycles)  

Biological method [4] 22.909 - 9043 

Nonlinear programming method 
[7] 22.876 2.132 9154 

Design space study 22.8 2.1 9214 

7. On Weight Reduction and Optimum Design 
A design space plot can further help in lightening a shape by exploring alternative designs. There are cases when 
the design is deemed to be acceptable, but the structure is thought to be too heavy. This can be illustrated using the 
present example. Since in this example, a rectangular block supposedly from a generic structural component is 
used, the total weight of the structure is unknown. So the volume of the cutout shape is used instead to identify the 
weight savings. An increase in the cutout volume will lead to weight reduction of the resultant structure. Figure 5 
presents the volume of the cutout (normalised relative to the volume of the initial circular cutout) for different 
shapes. By combining Figures 3 and 5, a non-optimal design point could be chosen that would have a lower 
weight, yet maintaining an adequate fatigue life. 

V 
/ V

0

p
b (mm)

V 
/ V

0

p
b (mm)

Figure 5: Volume (normalised) of the cutout at various design points 

To illustrate this concept, let us consider a series of cutout shapes, all having the same (optimum) curvature index 
of p = 2.1. Figure 6 shows the variation of the (minimum) fatigue life with the cutout volume ratio (V/V0) for the 
optimum curvature index (popt = 2.1). The fatigue life increases as the hole enlarges and it reaches a maximum 
value of 9,214 cycles at V/V0 = 2.322. Beyond this optimum point the fatigue life reduces with an increase in the 
cutout volume. In this case an optimum shape leads to a weight saving of ~2.32 times the volume of a circular hole, 
in addition to a significant gain in the fatigue life (~7.9 times that of a circular hole). 
However, the shape can be further lightened if the desired fatigue life (Ndesign) is lower than the maximum fatigue 
life that can be achieved by adopting an optimal shape. This is illustrated in Figure 6. For example, if the design life 
is Ndesign = 7000 cycles, then a line AB corresponding to Nmin = 7000 cycles can be drawn in Figure 6. Any point 
above AB will constitute an acceptable design with a life Nmin > Ndesign. In such a case the shape corresponding to 
point B (V/V0 = 2.474) will provide the largest (acceptable) hole shape, or the lightest shape satisfying the fatigue 
life design limit. In this case, adopting a ‘non-optimal feasible’ design can lead to a further weight saving of ~6.5% 
over the fatigue life optimal shape. This weight reduction can be enhanced if the design fatigue life is further 
lowered, see Figure 6. 
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Figure 6: Variation of the minimum fatigue life with (normalised) volume for a super elliptical (‘near’ elliptical) 
hole with optimum curvature index (popt = 2.1)  

8. Conclusions 
In this paper, a design space exploration study has been undertaken to understand the nature and variation of the 
damage tolerance based objective functions with structural geometry and to illustrate the utility of design space 
exploration in the context of durability based design optimisation. The design space study was first demonstrated 
using the problem of the optimisation of a cutout shape under biaxial load with fatigue life as the design criteria. 
The shape of the cutout was parametrically represented using super ellipses. The minimum fatigue life associated 
with the flaws along the structural boundary was evaluated for various hole geometries to construct the design 
space.
The design surface for fatigue life it resembles an ‘inverted ship hull’. These shapes confirm that the design based 
on fatigue life, indeed poses a well-behaved optimisation problem, i.e. a well-defined maximum region exists.  
One benefit of a design space study is that it can provide an ‘overall view’ of the objective function distribution. 
From earlier studies it was concluded that for this category of problems multiple ‘local’ optimums can exist. The 
present study has shown that a set of ‘local’ optimum solutions can exist in a ‘close’ neighbourhood, rather than 
lying apart as found in many other classes of structural optimisation problems. It is therefore contended that this 
class of damage tolerance optimisation problems has a ‘global’ optimum region, rather than a single global 
optimum point. This feature of damage tolerance optimisation has not been previously reported. 
It was found that the design space is flat, which supported the earlier findings using the various optimisation 
methods. This signifies that from an engineering design point of view, the structural responses of various 
geometries in the ‘near’ optimal region will not be considerably different. Thus, it may be sufficient to choose one 
of the shapes in the ‘near’ optimal region as the final design. This can immensely reduce optimisation effort and 
computational time, and also enable us to extract the optimum performance accounting for manufacturing 
tolerances, as there will not be any need to precisely locate the (local/global) optimum solution. We can also 
lighten a structure by removing material appropriately from a ‘near’ optimal geometry without significantly 
degrading its durability related structural performance.  
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1. Abstract
Modular structures tend to be widely used in civil engineering since components can be mass-produced in high

quality controlled facilities, leading to economy of construction and improved reliability. Existing research in

optimization of modular structures has focused primarily on the notion of modularity where only the topology is

repeated. This paper presents a novel approach for dynamic grouping and topology optimization of modular struc-

tures, including the spatial orientation of the modules as an additional design variable. This extends the standard

notion of modularity by accounting for the topology invariance of the module under rigid body rotations. Group

theory is used to handle the spatial rotations and gives a straightforward and efficient mathematical representa-

tion of the module properties in terms of a permutation matrix for the rotation and continuous variables for the

topology. Further theoretical developments are proposed to couple the existing dynamic grouping techniques for

module linking, which is coupled with the proposed method of optimization for modular structures. The proposed

approach is illustrated through an academic modular truss bridge, where a memetic algorithm is used to optimize

simultaneously the topology and the orientation of the modules.

2. Keywords: Structural optimization, modular structures, group theory.

3. Introduction
Stronger requirements on sustainability, safety, and cost push architects and engineers to develop new philoso-

phies of design. Among them, modularity (i.e., dividing a complex structure into simpler subsystems that can be

mass-produced in high quality-controlled facilities [8]) offers substantial advantages. First, the repeatability of the

components together with their independence allows for an industrial manufacturing of the modules, leading to

better quality controls of production, higher safety measures, and a reduced sensitivity to weather interferences.

Secondly, prefabrication of the modules leads to a significant time saving during construction since several tasks

can be carried out in parallel, i.e., the geotechnical phases and the manufacturing of modules [11]. While mod-

ularity in construction is not new, optimization of modular structures is still largely unexplored and can lead to

improved sustainability, safety, and economy.

The coupling between modularity and optimization involves two scales that must be considered concurrently.

On one hand, the module scale is defined by the topology and the shape variables identically repeated throughout

the structure. On the other hand, the structure scale describes the way the whole system is assembled starting from

the initial module. Topology optimization for modular structures has been carried out for continuous and discrete

structures but is still restricted to the module scale, without the capability of changing the module orientation

[6, 1]. In other words, the module topology is repeated throughout the whole structure using standard symmetry

operations like translation, rotation, and reflection. On a different standpoint, authors in [12] focused on the

optimal orientation of fixed-topology modules for architectural purposes, i.e., building communication networks

for pedestrian traffic. Starting from a fixed topology, a genetic algorithm evaluated the optimal module assembly to

minimize the walking distance between two terminals. Finally, considering a small number of identical modules,

so-called a group, results in added flexibility in the design and improves the optimization process, while keeping

the economical and functional advantages of modularity [1].

From these observations, it follows that the optimization focuses either on the module scale or on the assembly

process to build the whole structure, but always through a decoupled methodology. Therefore, the present paper

proposes a unified formulation for optimizing modular truss structures assuming a linear elastic behaviour, focus-

ing simultaneously on the topology of the modules, their spatial orientations, and the way they are dynamically

grouped. This problem, which includes different types of design variables, is solved using a memetic algorithm: a

simultaneous analysis and design technique is used for the topology optimization (to handle a large number con-

straints and variables) while elements of group theory efficiently integrate the module rotations.

1
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4. Group theory and rigid body rotations
Including module rotation in the optimization requires some care related to the structure assembly and the non-

commutative character of the rigid body rotations. This section addresses the numerical approach for the latter

problem. By denoting d ∈ {2,3} the spatial dimension and Ns the number of support reactions, the number of

degrees of freedom is Nd = d Nn −Ns, with Nn being the number of nodes. The pin-joined modular structure is

made of Nm identical modules, each of them composed of Nem elements. Due to topological repetition, all modules

can be expressed through a reduced number of variables for the cross sections and the bar lengths i.e., a ∈ R
Nem
+

and l ∈ R
Nem
+ respectively.

Accounting for spatial rotations in modular structures is of great interest, since fixing the way the modules

are assembled before carrying out the topology optimization will inherently bias the process [6]. Group theory

provides a rigorous mathematical background to systematically describe symmetry operations, i.e., the operations

that map an object into coincidence with itself. Widely used in chemistry and physics [5], extensions to civil

engineering applications have been carried out to reduce the computational effort using a particular group, so-

called the point group, that leaves one point fixed under operations. For spatial rotations, the special orthogonal

group SO(3) is the most convenient set of symmetry operations to easily handle module orientation modifications

while ensuring the topology invariance. Indeed, the latter corresponds to the group of all the rotations about the

origin of a three-dimensional Euclidean space R
3.

In structural analysis, rotating the modules in space using SO(3) requires some care: starting from an initial

configuration, the module rotation leads to the dissociation between the forces and the nodes where they were

initially applied, leading to unstable structures. Considering only a finite set, so-called admissible rotations, permits

the circumvention of this problem of stability, by ensuring a perfect superposition between the initial and the final

configurations for the boundary nodes only. Doing so, the symmetry operation will only consist of permuting the

cross sections of the module elements in addition to continuously rotating the nodes inside the module. In group

theory, any element of a symmetry group is associated a matrix representation. In the case of SO(3) for module

rotation, one defines the matrix representation P such that, when rotating a module, a new topological configuration

a′ is reached and expressed by a′ = Pa [10]. The latter formulation presents attractive outcomes since it allows

for a perfect decoupling between the rotation P and the topology a, identical for all the modules. An illustration of

the way the permutation matrices are acting on the structure is given in Fig. 1, where a rotation of 120 degrees is

performed around the center c.

Figure 1: Effect of a permutation matrix on the topology of a triangular structure. The initial and final topologies,

after a counter-clockwise rotation of 120 degrees around the point c, are depicted in (a) and (b) respectively. The

final cross section vector a′ is obtained by a change in the topology between the bars and expressed by a′ = Pc a.

Building the set of admissible permutation matrices can be performed using Euler’s theorem, stating that any

rotation around some axis is composed of a combination of three orthogonal rotations. To do so, one starts from the

rotations matrices Pnx, Pny and Pnz, corresponding to the matrix representations of the smallest admissible rotations

of an angle α = 2π/n (with n ∈ R
+
0 ), in the three orthogonal directions x, y and z respectively. Evaluating these

three matrices is purely geometrical and consists of considering the module as a convex polygon that is rotated

to ensure a perfect superposition between the initial and the final configuration. Such an operation can easily be

carried out using a scalar measure, represented by the total square Euclidean distance e, that becomes zero for any

admissible rotation:

en =
nb

∑
i=1

min
j
||x f ,i(n)−x j||2 (1)

where nb denotes the number of boundary nodes per module, x f ,i(n) and x j the ith final and the jth initial position

of the boundary nodes respectively, for an angle of rotation α = 2π/n. An example of the evolution of the total

Euclidean distance with respect to α is illustrated in Fig. 2 for a hexagonal module, under a rotation around the c
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Figure 2: The rotation of an hexagonal module around the c axis, with it initial and final configuration in gray and

black respectively (a). The total square Euclidean distance, obtained by summing the square of the norm of the

black vectors, evolves towards zero for an angle of rotation (α = 2π/n) of 60 degrees (b).

axis. Retaining the way the nodes are permuted when the total Euclidean distance is zero enables the building of

the permutation matrix: Pkp takes a unitary value if the kth and the pth bars are permuted.

The major problem when handling spatial rotations using SO(3) relies on its non-commutative characteristic

i.e., Pnx Pny Pnz �= PnyPnzPnx [5]. As a consequence, the order of the matrix multiplication matters for being able

to explore all of the possible module orientations, which unfavourably impacts the size of the design space. Well

known techniques have been developed to deal with combinatorial optimization and permutation-based problems

without exploring the whole design space. However, most of them require sufficient information on the problem

to enumerate the solutions in a clever way, by disregarding subsets of the design space that do not contain the

solution [2]. In the present study, the non-commutative and discrete character of the design space for the admissible

rotations forbids such an approach, leading to a standard complete enumeration procedure:

P(Lξ ,Lη ,Lζ )
= PLξ

nξ
PLη

nη PLζ
nζ

⎧⎪⎨
⎪⎩

Lξ = 1, . . . ,nξ −1

Lη = 1, . . . ,nη −1

Lζ = 1, . . . ,nζ −1

∀ξ ,η ,ζ ∈ {x,y,z} (2)

where P
Lξ
nξ corresponds to a rotation in the ξ th direction with an angle of 2π Lξ/nξ . Since equation (2) generates the

complete set of admissible rotations, the computational complexity becomes very high due to its exponential de-

pendence with respect to the number of modules. Considering a structure made of Nm modules where each of them

has, in average, n possibilities of rotation in each direction. The total number of possible combinations, accounting

for the non-commutativity of the rotations, is exactly 3!nd Nm , leading to a time complexity T (n,Nm) = O(nNm).
Fortunately, in the case of module rotations, different combinations of permutation matrices lead to the same fi-

nal configuration, thereby greatly reducing the complexity of the problem. In the hexagonal example in Fig. 2,

a reduction of 12Nm times the initial space of search can be performed, leading to a problem that is numerically

tractable without extensive computational efforts.

5. Hybrid optimization algorithm for structural optimization of modular truss structures
The optimization problem addressed in the present paper consists of minimizing the compliance (the compliance

is a measure of the energy stored in a structure undergoing deformation) of a modular truss structure under (i) the

static and kinematic equilibrium conditions and (ii) a limitation on the allowable final volume and nodal displace-

ments. First, modifications are made to the equilibrium equations to account for the permutation matrices and the

topological repetition in the modular structures.

5.1. Equilibrium equations for modular truss structures

The module cross section vector am can be expressed, according to group theory, by a permutation matrix Pm and

the fundamental cross section a. Incorporating the latter formulation into the kinematic and static compatibility

equations [9] enables the expression of the classical equilibrium equations for modular structures:

Nm

∑
m=1

Nem

∑
e=1

E aem

lem
γT

emγem u = f (3)

where aem denotes the cross section of the eth element in the mth module, γem represents its direction cosines and
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u ∈ R
Nd and f ∈ R

Nd denotes the displacement field and external force vector respectively. By introducing the

permutation matrices P and the cross section vector a, the module cross section becomes

aem =
Nem

∑
r=1

Pm
er ar (4)

where Pm denotes the permutation matrix of the mth module. Equations (3) and (4) can be coupled together to

explicitly express the equilibrium equations in terms of a module orientation Pm and the topology information a
(identical for all the modules) in the optimization problem.

5.2. Problem formulation for optimization of modular truss structures

Typically, the numerical optimization and analysis phases are considered distinct in a computational sense. Given

a design domain, the structure is solved exactly through a finite element analysis, hence only the optimization

is involved in the design space related to the cross section vector a, distinct from the state space defined by the

displacement field u. This procedure, so-called nested analysis and design, is solved by an iterative procedure until

the optimum is reached. Another paradigm, namely the simultaneous analysis and design, treats the design and

state variables independently, so that equilibrium equations (3) are set as equality constraints and do not need to be

solved at each iteration [4, 3]. Following the latter formulation, coupled with equations (3) and (4), the problem

definition for compliance minimization of modular structures can be stated as

Minimize
P,a,u

1

2
f T u

s.t.
Nm

∑
m=1

Nem

∑
e=1

E aem

lem
γT

emγem u = f

|ue,m|−ulim ≤ 0

Nm

Nem

∑
e=1

ae le − vlim = 0

(5)

with a ∈ R
Nem
+ , P ∈ P, the set of admissible permutation matrices P ⊂ R

Nem×Nem . In equation (5), ulim and vlim

correspond to the allowable magnitudes for the displacements and the volume respectively. The major issue in

solving equation (5) is the different nature of the design variables. Although simultaneous analysis and design

topology optimization problem can be efficiently solved using mathematical programming, the discrete character

of the permutation matrices makes the resolution of equation (5) difficult with a single algorithm.

Among algorithms that are able to manage multiple types of design variables, hybrid algorithms offer a great

potential to efficiently solve equation (5). Indeed, combining global and a local search techniques provides the

advantages of both methods, i.e., being able to explore the design space with non-continuous variables and easily

handling large scale problems [7]. In this study, the Lamarckian approach is used, in which a genetic algorithm

and a gradient-based method are employed together [7]. In such an approach, the design variables are divided into

two parts, each of them are handled by one of the two algorithms. The genetic algorithm manages the discrete

variables for the permutation matrices while the gradient-based method works only with the continuous variables,

and both are coupled for the evaluation of the objective functions and constraints. The general functioning of the

proposed memetic algorithm is depicted in Fig. 3: in one iteration of the algorithm, the genetic operators perform

modifications to the permutation matrices before applying the interior-point algorithm, to drive the individuals to

local optima for a fixed module orientation. The major advantage of the proposed approach relies in the use of a

mathematical programming to solve equation (5) for fixed values of the permutation matrices, taking advantage of

the inherent sparsity of the problem as well as the capability of providing analytically the Jacobian matrices [4].

6. Numerical application
To illustrate the proposed approach, an academic application of a simply supported bridge truss made of 4 identical

modules is studied (Fig. 4). The design domain is made of a 13 x 3 grid regularly spaced by one meter while the

ground structure at the module scale is composed of 66 bars. The bridge, made of steel (S235), has a span of 12

meters and is submitted to a single load acting at the upper node at midspan with a magnitude of 100 kN. The

Young’s modulus E and the limitations on the volume vlim and the displacement ulim are equal to 235 MPa, 10% of

the initial volume of the ground structure, and 1/800 of the span respectively. To solve the non-linear problem (5), a

genetic algorithm for integer programming handles the permutation matrices (using truncated Laplacian crossover

and power mutation operators), while an interior-point algorithm with analytic Jacobian handles the cross sections

4 182

Leo
Rectangle



Figure 3: General flowchart of the memetic algorithm. The permutation matrices are managed by the genetic

operators while the cross sections a and the displacement field u are handled by the local search algorithm

and the displacement field. A small population size of 20 individuals is sufficient to ensure a fast convergence of

the algorithm since only the spatial orientation variables are handled by the genetic algorithm. The convergence

criterion is based on the stable condition (10−8) for the design variables and the objective function.

The proposed approach is compared with the optimization of periodic modular structures [6]. In the latter,

the module orientation is a priori fixed, taking advantage of the structural symmetry; in the present example, this

corresponds to a topology symmetry between the modules 1 and 4 and the modules 2 and 3. The results are

depicted in Fig. 5, corresponding to the module topology and their spatial orientations to build the whole structure,

where a final compliance of 25.74 J is reached. Fig. 6 gives the results obtained by the proposed approach,

where a gain in efficiency is clearly demonstrated in comparison with the previous method: simultaneous module

topology and spatial orientation decreases the objective function to 22.49 J. The cross sections as well as the

module orientations are such that the whole structure presents strong elements to handle the flexural loads on the

bridge. In addition, it can be noticed that the latter solid configuration exhibits similarities with those obtained

from continuous optimization for a simply supported bridge [3].

From a computational viewpoint, 30 generations are sufficient to respect the stopping criterion. This fast con-

vergence towards the solution can be explained by the simultaneous optimization of the module orientation and

their topology. The same optimal configuration can be attained by different module topologies and spatial arrange-

ments, representing the existence of multiple but equivalent local minima. In addition, the latter observation also

explained the high robustness of the algorithm with respect to the genetic parameters, where variations on the re-

sults were only observed for a population size less than 10 individuals together with a convergence tolerance lower

than 10−3.

Figure 4: Ground structure

Figure 5: The results obtained when imposing the topology symmetry, with the module topology (a) and the final

module distribution (b) (compliance = 25.74 J)

6. Conclusions
This paper describes a novel approach for the structural optimization of modular structures i.e., structures made

of identical topological components. By coupling elements of group theory and mathematical programming tech-

niques, the problem is properly addressed and solved through a memetic algorithm, allowing for a clear decoupling

between design variables of different natures. A genetic algorithm handles the discrete variables using truncated
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Figure 6: The results obtained by the proposed approach, with the module topology (a) and the final module

distribution (b) (compliance = 22.49 J)

genetic operators while, for fixed module orientations, a simultaneous analysis and design manages the topology

optimization at the module scale; the latter barrier problem is solved using an interior-point algorithm, which is

well suited for problems involving a large number of design variables and constraints. With a limited computa-

tional effort, optimal configurations, in terms of module orientation and topology, are generated and provide better

optimization results than applying standard optimization approaches for modular structures. For future works,

extensions of the proposed method to manage partial modularity and dynamic grouping of modules will be inves-

tigated, in order to provide a complete unified framework.
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1. Abstract
The topology analysis method was developed to optimize the part shape and configuration of automotive 
components [1]. The key point of the method is to embed solid elements in a model made of shell elements for 
topology optimization. Improvements of static stiffness were verified for a simple cylindrical model, automotive 
floor model and full vehicle model. However, in addition to static stiffness using constraints, stiffness while 
driving is required in the body stiffness of a full vehicle. Inertia relief is known as a method for the expression of 
behaviour while driving.  
In this study, stiffness optimizations by using inertia relief were carried out for an automotive full vehicle model. 
Specifically, the optimized automotive components were the joints linking a side-member and a cross-member. 
These components are made of steel sheets and have rectangular cross sections. 
The results show that the developed topology optimization method, in which solid elements are embedded in a 
model consisting of shell elements, is valuable in the optimization of automotive rectangular steel sheet 
components by using inertia relief. The points of difference and similarity between the static stiffness using 
constraints and the stiffness using inertia relief were clarified by the optimization results. 

2. Keywords: Topology optimization, shape optimization, industrial applications, inertia relief 

3. Introduction 
Environmental issues are rapidly emphasizing the necessity of engineering measures for automobile weight 
reduction. One such measure is reducing the weight of the body-in-white by using high strength steels, which is 
effective for reducing the mass of automotive parts. However, thickness reduction by using high strength steels 
also reduces the stiffness of the part, and the decrease in the rigidity of the part decreases the rigidity of the entire 
vehicle. In general, topology optimization is known as a technology which improves stiffness without increasing 
weight [2] [3]. In topology optimization, a design area constructed of solid elements is used, and the effective 
elements are retained after deleting unnecessary elements during the topology optimization process for the 
required properties. In the conventional solid element method, the residual shape is commonly complicated, and as 
the name implies, only solid elements are ordinarily used in the topology optimization method for optimization of 
cast parts such as an engine block or a lower control arm. On the other hand, in automotive bodies consisting of 
metal sheets, conventional topology optimization is used as a temporary answer which provides a rough sketch [4], 
a guide for design from scratch and a method of searching for supersensitive areas of material density in the current 
shape by using shell elements for the body  [5] [6] . 

Thus, conventional topology optimization by using shell elements is advantageous when searching for stiffened 
areas. However, the answer is limited to increasing the material thickness, and the effect is smaller than changing 
the shape. Topology optimization using solid elements is very effective for creating new shapes but is not used to 
make new shapes for automotive bodies. The reason for this limited range of use is the difficulty of applying 
conventional topology optimization to an automotive body, which is mainly composed of thin steel sheets and is 
normally modeled by using shell elements. For this problem, the topology analysis method was developed to 
optimize the part shape and configuration of automotive components [1]. The key point of the method is to embed 
solid elements in a model made of shell elements for topology optimization. Improvements of static stiffness have 
been verified for a simple cylindrical model, automotive floor model and full vehicle model. 

On the other hand, static stiffness using constraint of nodes cannot express deformation while driving [7]. Figure 1 
shows the boundary condition and deformation in the static stiffness method [1]. Here, torsional deformation 
occurred in all parts of the body in the mode in which one point of the front bilateral suspension parts was forced 
and the other three points were constrained. However, because the automotive body is mounted on the suspension 
and the displacement of the suspension is not constrained, there is a difference between static stiffness and the 
condition while driving. For this reason, simulation under the loading condition of driving is necessary. Inertia 
relief is known as a method for expressing behavior while driving [8]. Inertia relief can solve the deformation 
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while driving without constraint of the suspension parts because the deformation by loading force and the inertia of 
loading force are calculated in this method. 
This paper describes stiffness optimizations for an automotive full vehicle model by using inertia relief, in which 
solid elements were embedded in the shell elements for topology optimization. Specifically, the optimized 
automotive components were the joints linking a side-member and a cross-member. These components are made 
of steel sheets and have rectangular cross sections. 

Figure 1:  Boundary condition and deformation in static stiffness 

4. Stiffness analysis and sensitivity analysis by using inertia relief 
4.1. Boundary conditions and deformation of stiffness analysis 
A full vehicle model, which is available to the public at the National Crash Analysis Center (NCAC), was used for 
the stiffness analysis. This model consists of shell elements [9]. Figure 2 shows the boundary conditions for the 
stiffness analysis compared with static torsion. In static torsion, one point of the suspension was forced by 1000N 
in the front or rear, and the other points were constrained. The loading conditions for inertia relief were vertical 
bending in the front or rear caused by passing over a gap, torsion by both sides in the front or rear by lane change, 
torsion by one side in the front or rear by running aground and horizontal bending in the front or rear by lane 
change. The solver of the stiffness analysis is NASTRAN2012. 

Figure 2:  Boundary conditions for the stiffness analysis in this research 

Figure 3 shows the deformations in several boundary conditions. The deformation of static torsion is displayed 
with the magnification of 1000, and that of inertia relief is displayed with the magnification of 300. The length of 
the vehicle is 4178mm. The results of static torsion in front loading or rear loading show deformation over the 
entire body. In inertia relief, only the area near the loading point is deformed. For example, under rear loading, the 
neighbourhood of the rear suspension is deformed and the front of the body is not deformed greatly. Similarly,
under front loading, the neighbourhood of the front suspension is deformed and the rear of the body is not 
deformed greatly because the whole deformation occurs between the loading point and the constrained point in 
static torsion with constraints, but in inertia relief, the deformation in the neighbourhood of loading mainly occurs 
by the inertia of the force. It is assumed that the partial deformation of the body calculated by using inertia relief is 
close to the typical behaviour which occurs during a lane change while driving. 
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Figure 3:  Deformations in several boundary conditions 

4.2. Sensitivity analysis of automotive body 
Sensitivity analysis of a full vehicle model consisting of shell elements was carried out by topology optimization 
for several boundary conditions. Figure 4 shows the results of static torsion in front loading, rear loading and 
complex loading in the front and rear. Figure 5 shows the results of vertical bending in the front and rear, torsion by 
both sides in the front and rear, torsion by one side in the front and rear and horizontal bending in the front and rear 
by inertia relief. Figure 6 shows the results of complex loading in the rear, complex loading in the front and 
complex loading in the front and rear by inertia relief. The objective response was a minimization of compliance, 
and the constraint function was lower than 25% of the residual volume fraction. In the case of complex loading, the 
weight of compliance was the same, the objective response was a minimization of the sum of the weighted 
compliance and the constraint function was lower than 25% of the residual volume fraction. The solver of the 
topology optimization analysis was Optistruct11. Side panels, roof-outers and window glass are not displayed. 

Figure 4:  Sensitivity analysis of static torsion 

Figure 5:  Sensitivity analysis of loading conditions by inertia relief 
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Figure 6:  Sensitivity analysis of complex loading conditions by inertia relief 

The contour is material density. A large material density area shows a large influence on the stiffness of the 
automotive body. The sensitivity of the entire body was high in all boundary conditions of static torsion, as shown 
by Figure 4, because deformation of the entire body occurs in static torsion independent of the loading position. 
With inertia relief, the sensitivity of the rear side of the body was high in the rear loading conditions, and the 
sensitivity of the front side of the body was high in the front loading conditions, as shown by Figure 5. This is 
because the deformation of the neighbourhood of the loading point is predominant in inertia relief. The sensitivity 
of the rear side of the body was high in the rear complex loading conditions of inertia relief, the sensitivity of the 
front side of the body was high in the front complex loading conditions of inertia relief and the sensitivity of the 
entire body was high in the front and rear complex loading conditions of inertia relief, as shown by Figure 6, 
because inputs from several areas of the body are added in complex loading in inertia relief. 

Figure 7 shows the sensitivity analysis of the static torsion and inertia relief in the case of rear complex loading for 
the selection of the stiffened area. The result is focused in the rear side of the body and the contour is over 0.5. The 
high sensitivity areas of static torsion are the seat-back, wheel-house, rear suspension, rear side-member and rear 
cross-member. The high sensitivity areas of inertia relief are the rear floor-member, seat-back, wheel-house, 
speaker panel, rear suspension, rear side-member, rear cross-member and rear floor-side. The high sensitivity 
points of inertia relief are larger than those of static torsion because rear side loading was used in inertia relief. 
Thus, high sensitivity points can be found by using inertia relief, but there are cases in which high sensitivity points 
are overlooked when using static torsion. 

Figure 7:  Comparison between static torsion and loading condition by inertia relief 

5. Topology optimization by embedded method by using inertia relief 
5.1. Difference of residual areas by loading condition of optimization 
The validity of the method in which solid elements are embedded in an automotive model made of shell elements 
for topology optimization by using inertia relief was verified. Figure 8 shows the area where countermeasures are 
necessary indicated by the sensitivity analysis. Figure 9 shows the original shape with the target area of 
optimization. The target area was the neighbourhood of the rear cross-member connected with the rear side 
member, as shown in Figure 10. The end of the rear cross-member was deleted, and the cut edge of the rear 
cross-member consisting of shell elements was connected with the solid elements of the design area to transmit the 
load.
The loading conditions of the topology optimization were static torsion in complex loading in the front and rear, 
vertical bending in the front and rear, torsion by both sides in the front and rear, torsion by one side in the front and 
rear, horizontal bending in the front and rear by inertia relief and complex loading in the rear and complex loading 
in the front by inertia relief. The objective response of the optimization was a minimization of the sum of the 
weighted compliance with the same weight, and the constraint function was lower than 20% of the residual volume 
fraction. The solver of the topology optimization analysis was Optistruct11. 
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Figure 8:  Target by sensitivity analysis 
Figure 11 shows the results of the topology optimization for several loading conditions. The residual shape of 
static torsion was similar to the shape of horizontal bending in the rear by inertia relief. The residual area was the 
joint linking the cross-member and the side-member and the face of the ground side in the design area. These 
results show the load path from the loading point to the cross-member and floor by the side-member. The most 
important area was retained for this load path. The residual area was not only the joint linking the cross-member 
and the side-member, but also the joint linking the floor and the side-member, and its shape was complicated. This 
is because the automotive body has a monocoque structure which is made of steel sheets, and the load path is 
complex because each part of the body plays a role in transmitting loads. Moreover, the conventional material 
mechanics theory approach cannot solve this load path because the mode of stiffness is not a simple mode such as 
bending or torsion. On the other hand, the residual shapes for the other conditions were different from the static 
torsion and the horizontal bending in the rear by inertia relief. These results show that the required shape for 
stiffness differs depending on the mode of loading. 

Figure 9:  Target area of original shape                     Figure 10:  Full vehicle model with embedded solid elements 

Figure 11:  Residual areas of topology optimization for several loading conditions 

5.2. Design by using residual shape and effect on mode of stiffness 
The new shape designed based on the topology optimization of static torsion and horizontal bending in the rear by 
inertia relief is shown in Figure 12, together with the original shape. The parts were the joint linking the 
cross-member and the side-member, the floor and the side-member. The total weight increase in the full vehicle 
was only 0.1kg.
Figure 13 shows the improvement ratio of stiffness compared with the original shape in the loading condition of 
static torsion and several inertia relief conditions. Stiffness is calculated by the change of the displacements on the 
loading point. The solver of the stiffness analysis was NASTRAN2012. The improvement ratios of static torsion 
and horizontal bending in the rear by inertia relief are larger than those of the other conditions. Thus, the validity of 
the developed method, in which a design area consisting of solid elements is embedded in an automotive body 
consisting of shell elements, could be verified by using a full vehicle model. As the improvement ratios of the other 
conditions were small, these results show that the loading condition used in optimization is important. 
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Figure 12:  Optimized shape of connecting area in full vehicle model 

Figure 13: Improvement ratio of stiffness by optimal shape 

6. Conclusions 
It is clear that the topology optimization method in which solid elements are embedded in the shell elements of an 
automotive body is effective when using inertia relief for the driving condition. 

There is a substantial difference between the static torsion method using constraints and the method of inertia relief. 
That is, in the static torsion method, deformation occurs over the entire automobile body, whereas in inertia relief, 
the area near the loading point is deformed. 
With the static tension method, the sensitivity of the entire body was high, but with inertia relief, the sensitivity of 
the loading side of the body was high. Moreover, the sensitivity of the entire body was high in the complex loading 
conditions of inertia relief because inputs from several areas of the body are added in inertia relief. 
The validity of the method in which a design area consisting of solid elements is embedded in an automotive body 
consisting of shell elements for topology optimization by using inertia relief was verified with a full vehicle model. 
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Abstract:Bearing is one of the key parts in high-speed trains. To achieve the high-precision forming of outer ring 
in bearing for high trail, the paper analyses the sections of the outer ring and deduces the calculating formula for 
the volume. All of that is based on the basic theory of cold rolling and the principle of volume conversation by the 
application of the finite element software ABAQUS. According that, the paper designs four typical structure of 
blank of the outer ring in bearing and then analyses their defects and causing reasons in the process of cold rolling 
between different structure. Through the analysis, the paper eventually gets the best size of the symmetric blank 
about outer ring, which lays the theoretical foundation of implementing the high-precision forming of outer ring in 
bearing for high trail.
Keywords: cold rolling; High-speed Rail bearings; bearing blank; forming quality 

1. Introduction 
High-speed rail bearing is the key components of high-speed train in running mechanism and is the key material in 
the construction of the high-speed train. It supports the static and dynamic radial load from the train weight and 
vehicle load. Besides, it bears the additional unsteady force in axle direction[1-3]. Thus Its reliability has a great 
affect on the security of train operation.
The rational blank structure will directly determine the quality of high-speed rail and rolling stability of the cold 
forming[]4-5.Currently the working method for blank from experience not only has the high cost of production, 
and a long preparation time, but also can not get the Goods in high-precision. Thus structural design of the blank 
has important theoretical significance and applicable value for the study of parameters in cold rolling process. 
Based on the principle of constant volume, the paper simulate the rolling process of the billet in four different 
structures to get the best structure for the bear outer in the high-speed rail through the finite element software 
ABAQUS. 
2 the structural design of blank and the set of program 
The diameter of closed hole, formed by the driving roller and core roll in the cold rolling process, gradually 
expanded. So the unformed piece can be regarded as blank and the optimal shape is various. The outer ring in 
high-rail bear is symmetry in the axial direction, its size is shown in Fig.1  

Figure.1 High-Speed Rail bearing outer ring structure size 
Thus this paper uses the half model as shown in Fig.2. 

2 2 2 2
1 2 1 2 1 2 2 3

1( ) ( )
2 3
RV B B r r r r r B  out er (1)

It can be obtained by the Pythagorean theorem from Eq.(1) that 

1 2 2tan Br r  (2)
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Figure.2 Symmetrical structure size 
We can obtain the Eq.(3) from simplify the Eq. (1) and Eq.(2)

2 2 2 2
1 2 2 2 2 2 2 3

1 1 (3 3 tan tan )
4 3outerV RB B r r B B r B   (3)

Where R is the outer diameter of the outer ring; 1B  is the width of the outer ring; 2B is the vertical width of the 

cant; 3B is the width of the vertical surface; 1r is the radius of the up surface; 2r is the radius of the bottom surface 
and is the bevel angle. 
It can be obtained from the principle of constant volume 

outer blankV V  (4)  

2 2 2 2
1 2 2 2 2 2 2 3

1 1 (3 3 tan tan )
4 3blankV RB B r r B B r B   (5)

Based on the analysis and principle, the paper designs four kinds structural shapes of blank to analyze and compare 
the finite element simulation of cold rolling about the outer ring of the high-speed rail bear. 
The designed options of the blank are as follows:
Option one: the cross-section of blank is rectangular, whose the biggest advantage is convenient to machine and 
saving the cost. The paper ultimately draw the structure of option one, which is shown in the Fig.3. 

Figure.3 Rectangular section blank 
Option two and option three: the cross-sections of blank are both half-cone bevel. According to principle of 
constant volume and actual production experience, the upper part of the pre-formed of option two is the finished 
oblique cone, while the taper of option three is different with the finished oblique cone, where the rolling force 
makes the internal metal flow downward to complete the cold rolling. The structure of option two and option three 
are separately shown in Fig.4 and Fig.5.   
Option four: the cross-section of the blank is identical for finished structure. During the cold rolling, the shape of 
cross-section don’t change while the diameter of the outer ring increases because of the rolling force. The structure 
of option four is shown in Fig.6. 
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Figure.4 On the half-cone oblique section blank Figure.5 Under the half-cone oblique section blank 

Figure.6 Cone oblique section blank 
3 the finite element analysis results of cold rolling about the blank of outer ring in high-speed rail bear 
The analysis result of option is shown in Fig.7, the forming quality of option one didn’t meet the requirements of 
finished product. It will produce obviously defect of concave as shown in Fig.7(b) in the simulation of cold rolling, 
which makes rolling process unstable. It can be obtained that the blank deformed and gradually stick to the outer 
surface of the core roll by the feed force due to the upper surface of core roll firstly contacting with billets. As 
shown in Fig.7(a),the rolling force form core roll is perpendicular to oblique cone, which has the downward 
component in the vertical direction. Thus the internal metal is easily flowing to the place where has no constraints 
and can’t form the shape as designed. The defect of concave resulting from that affects the stability of the cold 
rolling mill and the forming quality of blank. 

                                (a)the analysis of stress                                 (b)the defect of concave 

Figure.7 Option one 
The analysis result of option two is shown in Fig.8, it describes the situation of the forming quality about the blank 
which owns the section of upper half cone shape. Although option two consume less material during billet 
machining, but its forming quality didn’t meet expectations. It will generate the defect of concave and the defect of 
filling discontent in cone angle in the cold rolling, which are shown in Fig.8(b) and (c),and makes the rolling 
process instability. The forming mechanism of concave defects is similar with the option two. The roll of outer ring 
in high-speed rail bear belongs to cold working and don’t have the high thermoplastic as the same as the hot 
cerclage. The Fig.8(c) shows the structure of blank at 100 step. It is the cone angle of core roller don’t completely 
fit in the blank that leads to defects and affects the forming precision of the outer ring in high-speed rail bear. 
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            (a)the analysis of stress                (b)the defect of concave      (c)the defect of filling discontent in cone angle 

Figure.8 Option two 
The analysis result of option is shown in Fig.9. 

                   (a) the analysis of stress in initial cold rolling                         (b) the analysis of stress in middle of cold 
rolling   (c) the defect of tilt 

Figure.9 Option three 
The Fig.9 shows the situation of forming quality about the option three. The angle of oblique cone in the blank is 
different from the angle in high-speed rail bear. The vertical plane of blank directly contact with the core roll.As 
shown in Fig.9(a),core roll firstly contacts with the vertical plane of blank and squeezes the blank in radial 
direction, which makes the diameter of the blank gradually larger. With cold rolling going on, as shown in the 
Fig.9(b),blank gradually forms the shape of oblique cone and fits in outer surface of the core roll. In the 
meanwhile,the situation  of force is 1 4 2xF F F  and The blank is under squeezing in the radial direction. The 

situation of force is 3 4 yF F .In the axial direction,and internal metal accelerate flows to the upper end of the 
blank where the resistance is smaller.It leads the upper end of the blank to deform in advance and ultimately 
generates the defect of tilt.
The analysis result of option is shown in Fig.10, it shows the situation of forming quality about the blank with the 
cone bevel section. The structure is a viable option after considering of the defects of the three options. Fig.10(d) 
shows that the forming quality of the blank is better after cold rolling .Besides,the process of roll is stable. The 
inner surface of the preformed blank is identical to the outer surface of the core roll in option four. In the initial 
cold rolling,as shown in Fig.10(a),the stress is more even and balance than the previous options in radial and axial 
direction. It doesn’t appear that the metal accelerate flow to some direction due to The blank is tightly suppressed 
by the core roll. Compared with the Fig.10(b),Fig.7(b),Fig.8(c)and Fig.9(c),the defect of concave,filling discontent 
in cone angle and tilt don’t appear in option four,and the forming effect achieves the requirement. Compared with 
Fig.10(c)and Fig.10(d),it is drawn that the structural size of option four is the best one in above options.  
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(a) the analysis of stress          (b)the structure of blank at 100 step 

            (c) the figure of blank       (d) the figure of product after cold rolling 

Figure.10 option four 
5 conclusion 
(1)According to the structure of finished outer ring,the paper analyses that the cross-section of outer 
ring in high-speed rail bear can be a rectangular or a oblique cone,and derives the volume calculating 
formula of the outer ring in high-speed rail bear. 
(2)The paper designs four typical structure of the blank based on the principle of volume constant,and 
simulates each structure by applying ABAQUS.Then the paper analyze the various defects and causes 
in cold rolling through the stress and deformation in the process.As a result,the paper summarizes the 
advantages and disadvantages of the four structures of the blank,and eventually achieves the best  
structural size of the outer ring in high-speed rail bear. 
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1. Abstract  
Graphene sheet (GS) is a monolayer of carbon atoms arranged in a honeycomb lattice and is the strongest material 
ever measured and the thinnest material ever synthesized in the universe. Due to its unique mechanical, structural 
and electronic properties, GS is supposed to be a base material for nanoelectromechanical systems (NEMS), given 
that lightness and stiffness are the essential characteristics sought in NEMS for sensing applications. In this study, 
shape optimum design of GS is carried out to improve its stiffness for these applications. At first, we model C-C 
bond as an equivalent continuum beam by means of molecular mechanics (MM) method. So that GS can be 
adopted as a continuum frame structure. Then, we optimize the shape of the atomistic finite element model based 
on a free-form optimization method for frame structures. In the optimization process, we use the compliance as 
objective function and minimize it under the volume constraint. Each equivalent continuum beam is assumed to 
vary in the off-axis direction to the centroidal axis and we derive the shape gradient function for determination of 
the optimal design velocity field based on the free-form optimization method. Using the derived optimal design 
velocity field, the shape optimum design of GS can be carried out without shape parametrization. The numerical 
results show that, using the proposed shape optimization method, the compliance of GS can be significantly 
reduced that would be helpful for designing GS used in NEMS. 
2. Keywords: Compliance; Free-form; Graphene sheets; Molecular mechanics; Shape optimum design. 

3. Introduction 
Due to its large specific surface area, high intrinsic mobility, high Young’s modulus and thermal conductivity, 
Graphene sheet (GS), a one-atomic-thick monolayer of graphite, has been proposed to be used in 
nanoelectromechanical systems [1]. For a broad range of industrial applications of GSs, the prediction of 
mechanical properties for the perfect 2D nanostructure, such as the stiffness, vibration characteristics and buckling 
analysis, have been carried out by means of experiment [2], ab initio energy calculation [3] or molecular dynamics 
(MD) simulation [4], molecular mechanics (MM) method [5] and continuum mechanics [6]. Conduction 
experiments with nano-size systems are difficult and expensive, while MD methods are time consuming and have 
convergence problems. Thus, developing appropriate continuum mathematical models based on MM method and 
continuum mechanics for nanostructures is important for the development of GSs [7]. 
Here, we need to introduce MM method for modeling frame-like structure of GSs. For a GS can be treated as a 
large array of molecule consisting of C atoms, MM method has played important roles for modeling GSs. From the 
viewpoint of MM method using the equivalent atomistic based continuum mechanics, MM method depicts the 
forces between individual atoms as typical beam elements (shown as Fig. 1). According to the Tersoff-Brenner 
force field theory [8] and a link between molecular and solid mechanics of C-C bond, we assume the equivalent 
C-C beam with circular cross-section of diameter d and initial length 1.42 Å, and get the proposed material 
constants are Young’s modulus Eb = 5.53 TPa, shear modulus Gb = 0.871 TPa and d = 1.46 Å [9]. 

Figure 1 Molecular mechanics method for graphene sheets 

Recently, the shape of GSs can be controlled by an external electric field [10] or chemically modifying the 
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adherence of GSs on metal [11]. Hence, shape optimum design of GSs can make an effective role to improve their 
mechanical behaviors. 
Shape optimum design of traditional continuum structures such as shell, solid or frame structures have been carried 
out based on the free-form optimization method. The free-form optimization method is a gradient method with a P. 
D. E. (Partial Differential Equation) smoother in the Hilbert space for shape optimization of continua, which is also 
called H1 gradient method or traction method and does not require any shape parameterization. This method was 
firstly proposed by Azegami [12] and Shimoda et al. developed this optimization method for designing frame [13], 
shell [14] and solid structures [15]. The free-form optimization method is a parameter-free or a node-based shape 
optimization method that treats all nodes in the body as design variables. The advantages of this method include 
efficiency for treating large-scale problems and the ability to obtain a smooth shape. Using the free-form 
optimization method, it is possible to obtain the optimized shapes of frame-like structures of GSs. 
The present work is arranged as following. In section 4, we introduce the MM method for GSs and build the 
frame-like continuum model of GSs at first. Then, we use a developed free-form shape optimization method for the 
frame structure and build the shape optimization system for designing the shape of GSs. Using the shape 
optimization method, we carry out two examples to do shape optimum design of GSs in section 5. At last, 
conclusions are presented in section 6. 

4. Shape optimum design of graphene sheets 
Based on the MM method, we assemble the frame-like GS finite element models for shape optimization in the 
present work. Thus, shape optimum design of GSs can be simplified to a shape optimization problem of frame 
structures as shown in Fig. 2. 

Figure 2 Shape variation of frame structure of graphene sheets 

4.1. Domain variation of frame structure of graphene sheets 
As shown in Fig. 2, members 1,2,...,j j N,  consisting of Timoshenko beams compose a frame structure of 
GSs that can be represented by a bounded domain 33 , where N is the number of beams and  is a set of 
positive real numbers. The notations 1 2 3( , , )x x x  and 1 2 3( , , )X X X  indicate the local coordinate system with 
respect to the beam and the global coordinate system, respectively. Hence, we have 

3 2
1 2 3 1 2 3, ,j j j j j j j j jx ,x ,x x x A x S3 2

1 2 322
j j j j j3 2 S1 2 31 2222
j j j j3 2 jx x A x S1 2 31 2222
j j j jj j j jj j3 , j j jA S j j jA S      (1) 

where ,jS j  and j  express the centroidal axis, circumference surface and whole domain of member j,
respectively. jA and jA express the cross section and its circumference of member j, respectively. The 
subscript j shall be frequently omitted to avoid the complexity of expression in the sequel. 1,2,3{ }i iww  and 

1,2,3{ }i i  express displacement vector and rotation vector in the 1 2 3, ,x x x  directions of the local coordinate 

system, respectively.  Then, The weak form governing equation in terms of ,w can be expressed as 

, , , , , , , ,a l U Uw w w w w                                   (2) 

where the notation ( )  expresses a variation, and U expresses admissible function space in which the given 
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constraint conditions of ( , )w  are satisfied. In the frame structure of GSs as shown in Fig. 2, due to the domain 
variation V  (design velocity field) in the out-of-plane direction to the centroidal axis, the initial domain j and a 
centroidal axis jS  of member j become j

s  and j
sS , respectively. The subscript s expresses the iteration history 

of the domain variation.  

4.2. Compliance minimization problem 
We utilize a free-form optimization method for frame structures to minimize the compliance of the frame structure 
of GSs, the shape optimization problem for finding the optimal design velocity field V  can be formulated as 

Given                                                                                                  (3) 
Find     or sV                                                                                        (4) 
that minimizes    ,l w                                                                         (5) 

subject to     Eq. (2) and  
1

ˆ
j

N

S
j

M AdS M                                   (6) 

where M and M̂  denote the volume and its constraint value, respectively. 
Letting ( , )w  and  denote the Lagrange multipliers for the state equation and volume constraints, respectively, 
the Lagrange functional L associated with compliance minimization problem can be expressed as 

ˆ, , , , , , , , , ,  L l l a M Mw w w w w w   (7) 

The material derivative LL  of the Lagrange functional can be derived as 
ˆ(( , )) (( , )) (( , ),( , )) ((  , ), ( , )) , ,  L l l a a M M Gˆ(( ,L l(( ,l(( ,w w w w w w n V CV   (8) 

where  ( )Gn G  expresses the shape gradient function (i.e., sensitivity function), which is a coefficient function 
in terms of V . n is defined as an outward unit normal vector on the circumference  surface or as a unit normal 

vector on the centroidal axis S. The notations ( )  and ( ))  are the shape derivative and the material derivative with 
respect to the domain variation, respectively. 
The optimum conditions of the Lagrange functional L with respect to ( , )w , ( , )w  and  are expressed as  

, , , , ,   ,a l Uw w w w                                           (9) 

, , , , ,   ,a l Uw w w w                                         (10) 

                 ˆ- 0M M̂-M - ˆ- 0M M 0                                                               (11) 

When the optimality conditions are satisfied, Assuming that the external forces do not vary with regard to the 
space and the iteration history s  and considering the self-adjoint relationship , ,w w , which is obtained 
from Eqs. (9) and (10), we get 

1 0
1

· ·,
j j

N

S S
j

G dS G dSL G ,L G V n V nn V                                             (12) 

1 1 2 3,3 2,3 3,3 2,3 12G h h Ew w                                                        (13) 

0 1 1 2 2 3 32 i iG AH F w C C C H  (14) 

where 1,2,3{ }i iFF  and 1,2,3{ }i iCC  are the force and couple vectors per unit length applied to member j,
respectively. The notation  is the Lame constant and E is the Young's modulus. H denotes the curvature of the 
centroidal axis. Moreover, the tensor subscript notation uses Einstein’s summation convention and a partial 
differential notation for the spatial coordinates ,( ) ( ) /i ix .

4.3. Free-form optimization method for frame structures of graphene sheets 
The free-form optimization method described here was proposed by Shimoda for solving the shape optimization 
problem of frame structures [13]. In this method, the negative shape gradient function (= )GG n is applied as a 
distributed force to a pseudo-elastic frame structure in the normal direction to the centroidal axis (shown as Fig. 2). 
This makes it possible both to reduce the objective functional and to maintain smoothness, i.e., mesh regularity 
simultaneously. The optimal shape variation, or the optimal design velocity field V  is determined as the 
displacement field in this pseudo-elastic frame analysis, and the obtained V is used to update the shape. We call 
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this analysis for V  velocity analysis. In other words, this method is a gradient method in a Hilbert space with 
Laplacian smoother. The stiffness tensor of the pseudo-elastic frame structure has a role of the positive 
definiteness tensor, which is needed in a gradient method in a function space. The governing equation of the 
velocity analysis is expressed as  

, , , , , ,  , ,  ,a G C CV w n w w V                            (15) 
61

1 2 3 1 2 3, , , , , satisfy Dirichlet condition for shape variationC V V V H S (16) 

In problems where convexity is assured, this relationship definitely reduces the Lagrange functional in the process 
of updating the shape of GSs using the design velocity field V determined from Eq. (16). 
The shape optimization process for frame structure of GSs is built by repeating stiffness analysis, sensitivity 
analysis for calculating the shape gradient functions, velocity analysis and shape updating, in which stiffness 
analysis and velocity analysis are conducted using a standard commercial FEM code. 

5. Results and discussion 
In order to evaluate the shape optimization process for frame structure of GSs, we execute two examples to 
optimize the shape a rectangular GS and a circular GS. The volume constraint is set to be initial1.05ˆM MM ,
where initialM  is the initial volume of GSs. It should be noted that the constraint conditions utilized in the present 
work are expressed as 1 (x1 direction), 2 (x2 direction), 3 (x3 direction), 4 ( 1 direction), 5 ( 2 direction) and 6 ( 3
direction). 

5.1. Example 1 
In this example, we built a frame model of rectangular GS containing 2006 carbon atoms and 2946 equivalent C-C 
beams. In the structural analysis shown in Fig. 4 (a), three corner points are constrained in 123 and the remaining 
one point undergoes a concentrated force. In the velocity analysis shown in Fig. 4 (b), all of the four sides of the 
rectangular GS are constrained in 123 and all of the remained nodes are constrained in 12. The shape optimum 
design of the rectangular GS is carried out using the proposed shape optimization process. The optimized shape 
and the iteration history are expressed in Figs. 4 (c) and (d), respectively.  The optimized shape of GS is smooth 
and the iteration history shows that the compliance ratio is reduced by 97.4% normalized to the initial shape. The 
optimization process converges according to the volume constraint.  

Figure 4 Shape optimization for a rectangular graphene sheet 

5.1. Example 2 
A frame model of circular GS containing 3120 carbon atoms and 4607 equivalent C-C beams is built in this 
example. In both of the structural analysis and the velocity analysis shown in Figs. 5 (a) and (b), the edge of the 
circular GS is constrained in 123. Moreover, all of the remained nodes are constrained in 12 in the velocity analysis. 
There is a linear nodal forces acting on the surface of the circular GS in the structural analysis. Using the proposed 
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shape optimization process, the shape optimum design of the circular GS is carried out. The optimized shape and 
the iteration history are shown in Figs. 5 (c) and (d), respectively.  The optimization process converges according 
to the volume constraint, and we obtain a smooth optimized shape of the circular GS .In the iteration history 
expressed in Fig. 5 (d), the compliance ratio is reduced by 55.5% normalized to the initial shape and the volume 
ratio goes up to 1.05 initialM .

Figure 5 Shape optimization for a circular graphene sheet 

6. Conclusions 
In the present work, we built the frame-like continuum mechanical model of GSs based on the MM method at first. 
Then, we formulated the compliance minimization problem of the frame structure of GSs and adopted a shape 
optimization method that can be used in the optimum design of GSs. This method was developed based on the 
free-form optimization method, so that the optimized shape of GSs could be determined without re-mesh and 
requiring shape design parameterization. The objective of the developed optimization method was to minimize the 
compliance of GSs under the volume constrain. To confirm the effectiveness of the proposed shape optimization 
method, two examples were carried out using the developed free-form shape optimization method. The results 
showed that the obtained optimal shapes in both of the two design problems were smooth and the compliance of 
each case was reduced significantly.  
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1. Abstract  
The wind-induced vibrations of super tall buildings become excessive due to strong wind loads, super building 
height and high flexibility. In view of individual uncertainty and diversity of wind-induced vibration response, a 
life cycle vibration sensation rate model based on AIJES-V001-2004 was proposed to evaluate human comfort 
performance of super tall buildings under wind load. The maximum acceleration was adopted as the quantitative 
index of the performance. Pseudo excitation method was employed in the frequency domain analysis for the 
calculation of the vibration sensation rate of the super tall building under random wind load. The randomness of 
the wind speed being taken into consideration, the vibration sensation rate of human comfort was obtained for the 
whole life cycle. A cost model for the wind-induced human comfort of super tall buildings was derived based on 
the vibration sensation rate model. This model evaluated the life cycle cost of different design schemes, which 
could help make design choice based on the minimum life cycle cost criterion. The proposed method was applied 
to the human comfort design choice of a super tall building with and without tuned mass damper (TMD), tuned 
liquid column damper (TLCD) or combined tuned damper (CTD) device to illustrate its effectiveness and 
applicability. 
2. Keywords: super tall building; AIJES-V001-2004; life cycle cost; human comfort performance; optimal design 

3. Introduction 
The design method widely adopted nowadays is strictly subjected to the design code criteria. However, it is hard 
for the house owner to master the specific performance of tall buildings under different wind pressures. For 
example, the engineer is aiming to meet safety usage, but the owner hopes to raise the human comfort 
significantly. Besides, as structural performance has no economic assessment, the owner cannot understand 
benefits from the initial investment to determine whether a damper and what kind of the damper to be installed to 
control the vibration of tall buildings. Most importantly, it is not only the subjective feeling of vibration but also 
the acceptable failure risk level of occupants that determines the goal of structural performance. [1] In all above, it 
is a key problem that both the owner and the engineer are needed to pursue for a balance or a reasonable design 
standard between economic benefits and comfort performance. 
The performance based design methodology is a significantly useful approach to solve the above problem, which 
aims at guaranteeing the safety and comfort performance, implement specific different performance levels and 
lead to the minimum life cycle cost when suffering possible random wind [2]. Guoxiong Bo et al [3]carried out the 
beneficial exploration and perfection of the wind-resistant performance based design, in which the concept of 
benefit-cost ratio is taken to assess the economical efficiency. However, the authors did not consider the failure 
effect of the human comfort performance, which made the performance assessment for buildings with a TMD 
impossible. The author   originally proposed a life cycle cost model to evaluate human comfort performance of tall 
buildings and to decide the human comfort design choice whether to install a TMD or not [4]. It is a pity that the 
failure effect of the TMD itself on the structural human comfort performance was not considered in that model. 
In order to better serve real objects, a further study is investigated in this paper, in which the internationally 
adopted Japanese AIJES-V001-2004[5] is adopted. A vibration-sensation model is proposed to estimate the human 
comfort performance and a life cycle cost with the consideration of damper failure is explored. The proposed 
method is applied to the human comfort design choice of a super tall building with and without tuned mass damper 
(TMD), tuned liquid column damper (TLCD) or combined tuned damper (CTD) device [6] to illustrate its 
effectiveness and applicability.  

4. Human Comfort Performance Based Life Cycle Cost Model 
The existing vibration-induced human comfort performance criteria are closely relative to the acceleration 
limitation of the vibration environment. That is to say, according to the limitation given by the selected criterion, it 
is easy to judge whether a building performance meets the performance requirement or not with structural 
acceleration known. However, for convenience of mastering and utilizing these human comfort criteria, it is 
necessary to further understand these criteria [7]: (1)the allowed vibration limitation given by vibration comfort 
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standards is artificially divided by ensuring a certain significant level, the allowed vibration limitation itself also 
has kind of uncertainty; (2)nowadays there has been no effective method to evaluate the whole-system 
performance just according to vibration comfort performance of each part; (3)there is no criterion with the 
economic failure evaluation if the performance is beyond standard limitation and this no doubt has to be 
considered by engineers and designers. Therefore, it is essentially important to improve the existing standard.

4.1 Vibration-Sensation Rate Model 
4.1.1Wind-induced human comfort performance criterion 
Nowadays Japanese wind-induced human comfort performance criterion of building structures 
(AIJES-V001-2004) [5] is generally recognized. The 10-minute peak acceleration of the structure under 1-year 
wind loads is taken as the evaluation index. Japanese criterion determines five levels (H-10~H-90) of comfort 
performance depending on the proportion of people who have the vibration sensation, in which H-10 represents 
10% of people feeling vibration without discomfort, H-30 with a similar meaning and rest on. Most importantly, 
the each-level performance of Japanese comfort standard is associated with the vibration frequency.

max 1
baf  (1) 

Where max = the maximum acceleration response (cm/s2), 1=f the vibration frequency, a  and b  are related 
coefficients which shows in figure 1. 
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Figure 1: The building horizontal vibration performance evaluation curves under wind load 

4.1.2 Vibration-sensation rate model under once random vibration 
For the view of psychophysics, the uncertainty people reacting to vibration subjectively can be divided into two 
categories: (1) ambiguity due to the subjective reacting criteria not clear in the concept; (2) random caused by 
people’s sensation differences in vibration stimulation. The ambiguity of uncertainty can be described by 
psychophysical Fechner law. 

lnu c u d  (2) 

Where =u the vibration acceleration, =v degree of membership of subjective response, c and d are undetermined 
coefficients which can be determined by the above Japanese criterion.
Besides, Griffin et al. [8] hold the view that the distribution of people’s vibration feeling is subject to the normal or 
lognormal distribution and it has been proved in later studies that the variability of human ability to feel vibration 
can be approximately taken as the lognormal distribution:

2

ln

2

ln1| exp
22

xu
f x u

u
 (3)  

Where 2 2= ln(1 ) , 2
ln ln 2x x , in which x and are respectively the expectation value of the 

variable and the coefficient of variation. Equation (9) means that for once random vibration with the 
acceleration x , people have different feelings due to differences of human sensibility. And people actually feel 
vibration stimulation with equivalent acceleration u , although these feelings are different from each other, they 
generally remain stable at an average equivalent stimulation x .
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According to Japanese wind-induced human comfort performance criterion, taking the ambiguity and random of 
human sensation into account, a vibration-sensation rate model is proposed as follows:

min

2 2

2

1 (ln( ) 0.5 )exp
22u

u xA x u du
u

 (4) 

The physical meaning of the equation (4) is the rate of people that have feelings without discomfort under once 
random vibration.

4.1.3 Vibration-sensation rate model under one-year strong wind 
Cao Hong et al. [9] believe that it is reasonable to utilize normal distribution to describe the distribution of 
wind-induced structural peak acceleration response.

2

2 2

2 exp -
2mx

x x

xf x
mxm

f xx
x 2 x2

 (5) 

Therefore, the probability distribution function of peak acceleration response will be:

2
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x
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xF x e dtex
t

mxm
F xx  (6) 

Assuming that there are N  structural peak acceleration responses during the period 0,T and these peak 
acceleration responses mxmx (m=1, 2, 3…N) are mutual independent. So the distribution of maxm mz xmxmmaxmz maxm max can be 
showed in the following equation:
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mzF xz  (7) 
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 (8) 

Where 
mzF x
mzF xz and

mxF x
mxm

F xx are the probability distribution functions of peak acceleration response mxmx and the 

maximum of them mzmz  respectively, 
mxf x
mxm

f xx and
mzf x
mzf xz are the probability distribution density functions of mxmx

and mzmz  respectively. T represents the time of gustiness which usually is 10 minutes.

From all above, the expectation of vibration-sensation rate, that is, the vibration-sensation rate with random 

acceleration distribution can be illustrated as:

2
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2 2= exp -
2

x
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t

z
x x

xE A x f x A x dx N e dt A x dxt
mzf xz

x 2 x2
 (9) 

It is needed to note that the expectation of vibration-sensation rate showed in equation (9) is under a certain wind 
pressure 0w [10].Taking one-year wind pressure distribution into consideration, the expectation of 
vibration-sensation in one year is:

0 0 00
( )| f w dwA x E A x w w  (10) 

In order to simplify the calculation, equation (10) can be replaced by equation (11).

1
1

[ ]| i

m

i i
i

F w F wA x E A x w w  (11) 

Where iF w  is the probability distribution function of the maximum average wind pressure during 10 minutes, m
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is the number of wind pressure grades [22].

4.2 Failure Cost Model of Human Comfort Performance 
It is well known that for different building usages, even the same vibration level can result in different failure costs. 
For example, hospitals, superior hotels and superior offices which need higher level human comfort performance 
suffer more than tour towers with low comfort performance requirement.  Therefore, referring to estimating failure 
costs of human comfort performance, the building usage, the number of occupants, vibration-sensation rate and 
local economic level are needed to consider. For different building usages, the recommended failure cost model is 
shown as follow:

c x n C A x  (12) 

For the whole building, the failure cost can be shown in equation (13): 

max

min
1

x

x
c c x dx                                                                      (13) 

Where n the number of people in the vibration environment; C represents the economic evaluation 
index, C the local average annual income, the coefficient which can be calculated by regression 
analysis; A x represents the vibration-sensation rate of different structural usage, the effect coefficient of 
building usage (e.g. 1.0 for superior hotels and superior offices and 0.8 for tour towers). 

4.3 Life Cycle Cost Model  
The discount rate of money is utilized to calculate the whole life cycle cost. For convenience, assuming that the 
structure is time-independent and the failure cost is the same in every year, the life cycle cost model is illustrated as 
follow [11-13]:

0 0 1
1

1
1

lifeT

CC m f m i
i

L C C C C C c
r  (14) 

Where 0C the initial investment cost, mC the maintenance cost, fC the failure cost, lifeT structural service 
life period (like 100 years for the super tall building ), r money discount rate, the adjustment coefficient 
representing policy maker’s attitude to risk (e.g. 1 for optimistic, 1 for pessimistic and 1 for 
intermediate, especially for research and consulting institutions [14]).

Figure 2: Process Diagram of Life Cycle Cost Calculation

4.4 Life Cycle Cost Model for the damper-structure system 
4.4.1 Wind-induced Vibration Control Theory 
In order to raise human comfort performance, dampers are usually installed in the structure to suppress the 
amplitude of vibration. The effectiveness of a damper can be illustrated by vibration control coefficient and finally 
result in the decrease of life cycle cost. The vibration control coefficient  is defined as follow:

= =1- =
damper damper

x x sa x x

x e x

A A
A

=1 = x x=1 ==1
A A

x e xA
 (15) 
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Where xx  and damper
xx are acceleration responses of the primary system and the damper-structure system 

respectively, sa =the sum of structural damping ratio and aerodynamic damping ratio, e  =the equivalent 
damping ratio of the damper-structure system [15].

Figure 3: Vibration control coefficient and mass ratio [3].

4.4.2 Dynamic reliability of wind-resistant damper 
The damper (e.g. a TMD) installed in the building to suppress the vibration response usually has large amplitude of 
vibration response itself, which may lead to itself or other surrounding structural damage. Therefore, it is necessary 
to install a snubbing system in the building to snub the damper to guarantee the damper’s safety. Most importantly, 
even if it does not cause damage, the damper tends to be locked-in when the structure suffers a quite strong wind in 
some real objects, which no doubt causes the failure of damper. For a large given limitation b , the expectation of 
passage times that the relative displacement of the damper with respect to the main structure exceeds the limitation 
meets the Poisson distribution shown in the following equation:

2

2exp
2 2

y
b

y y

bv expy  (16) 

Based on first-passage failure criterion, the dynamic reliability of the damper which means the transcendence 
degree is equal to zero ( =0N ) is given as follow:

2

1 2exp exp
2 2

y
s

y y

T bP b y t
TyTT expy  (17) 

For the dynamic reliability with both-side limitation:

2

2 2exp exp
2

y
s

y y

T bP b y t b
TyTT expy  (18) 

However, with a relatively small limitation b , the Poisson distribution is unreasonable. The Vanmarcke approach, 
which is based on the Markov model, is proposed as follow [9].

2

2 2

1 exp
2

exp exp
2 2

1 exp
2

x
s

x

qr
T rP b y t b

r
xTx expexpx  (19) 

Taking the wind-field-environment random of the structural site into consideration, the failure probability of the 
damper under one-year wind is fP which is shown in equation (26) and equation (21). 

2 21f sP P  (20) 

20
|f f kP P b y t b f d  (21) 

Where f is the probability distribution density function of maximum wind pressure during 10 minutes of once 
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strong wind.

4.4.3Life Cycle Cost Model of the structure-damper system 
For different building usages, the human comfort performance based failure cost of the structure-damper system 
can be calculated by the following equation:

1 damper
f fc x n C P A x P A x  (22) 

And the life cycle cost model of the structure-damper system is the same as before:

max

min
1 ( )

x

x
c c x dx  (23) 

0 0 1
1

1
1

lifeT

CC m f m i
i

L C C C C C c
r

 (24) 

The parameters in the above equation are the same as before. It is needed to note that Guoxiong Bu et al. had 
studied the initial investment cost 0C and the maintenance cost mC of TMD [3]. Therefore, these data of other 
dampers (e.g. a TLCD or a CTD) can be studied in a similar manner to the analysis of a TMD. 

4.5 Life Cycle Cost Model Based Optimal Design  
4.5.1 Optimal Design Theory 
As the damper is installed in the building, the initial investment and maintenance costs increase when the damper 
mass increases, however, the failure cost even decreases to a constant value (see figure 4). Therefore, there is a 
minimum value of life cycle cost which needs to be analyzed and calculated in detail.

                   
Figure 4: Diagram of optimal design theory      Figure 5: selection method of the damper

4.5.2 Process of Optimal Design 
The optimal design process of wind-induced human comfort performance, which is based on minimizing life cycle 
cost, is shown as follows: (1) calculating the optimal parameters of different mass ratios to maximize the 
effectiveness of the dampers; (2) calculating the initial investment and maintenance costs according to different 
damper parameters; (3) calculating the acceleration response, the vibration-sensation rate and the 
performance-failure cost according to different damper parameters; (4)calculating the life cycle cost of the whole 
building and finding out the minimum value; (5) checking whether human comfort performance meets the 
criterion and the owner’s requirement or not. If not, go back to step 4.
The main steps of damper selection are shown in figure 5. 

5. Response Analysis  
As the wind loads are usually describing as random processes, the analysis of random vibration response is the 
basis to calculate the vibration-sensation rate. For the random process characteristic of the wind load, the structural 
response under the wind load can be described with the response power density spectrum which can be calculated 
by load spectrum and frequency-response function . Also, the pseudo excitation method can be employed to help 
analyze the random process that has the dense vibration modes or the nonlinear damping [17]. The along-wind 
response is caused by the fluctuating wind and the fluctuating wind can be described by a Gaussian stationary 
random process with zero mean. Moreover, the spectrum of longitudinal turbulence proposed by Davenport (1961) 
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7

is adopted in this study. It is easy to calculate the acceleration response of the along-wind load. As is generally 
known, the cross-wind load is stronger and may be the chief control load for the wind-sensitive structure with the 
increasing building height. However, it is so complicated that the cross-wind load spectrum cannot be calculated 
similarly to that of the along-wind which is according to the quasi-steady theory and the strip assumption. 
Nowadays high frequency force balance test is widely used to simulate the cross-wind load spectrum based on an 
assumption that the first mode of vibration is linear [18]. Yong Quan and Ming Gu [19] had studied super tall 
buildings with four different kinds of wind environments and fifteen types of structural shapes and proposed a 
closed equation of the cross-wind load spectrum which can be used to calculate the standard deviation of the 
cross-wind acceleration response.

When the structural shape is unsymmetrical and changeable, there exists torsional vibration under the wind load. 
The structural torsional vibration is due to asymmetries of windward, leeward and lateral wind pressures 
associated with turbulence and wake excitation. That is to say, owing to the deviation between the structural mass 
centre and stiffness centre, the bending vibration mode and the torsional vibration mode couple with each other, in 
which case, the structural response is quite different from that of the single direction. Therefore, the torsional 
response needs to be considered for these asymmetry-shape buildings [20].

6. Case Study 
A 729m high 69m wide 141-storey super building whose building function contains commercial shop, office, hotel 
and tourism is studied in this study. The 3-D model and lumped mass multi-degree-freedom model are showed in 
figure 6. The damping ratio is 2%, the local wind environment is C and the 50-year wind pressure is 0.45 kPa. The 
human comfort performance and the optimal design scheme are studied.

6a 3-D model     6b lumped mass model
Figure 6: A super tall building model 

6.1 Response and Vibration Sense Rate of Structure 
The possibility wind pressure in one year can be separated in 6 grades of 0.1, 0.3, 0.45, 0.5, 0.57, 0.67 Kpa  which 
is in consistent with the velocity grades of 10.62 22.03 26.54 28.44 30.34 32.85 ms-1 respectively. The 
fluctuating wind load spectrum can be calculated by the above spectrum function mentioned in section 4 and the 
structural response can be with the pseudo excitation method. Taking 26.54ms-1 0.45Kpa for example, the 
structural response of standard deviation acceleration is shown in figure 7. It is concluded that the response under 
the cross-wind is larger than that under the along-wind. It is needed to point out that the cross-wind response is 
approximately linear because the structural generalized first-order power spectrum is based on the assumption that 
structural first mode of vibration is approximately linear according to the high frequency force balance test. 
However, all modes are involved and the structural first mode of vibration is a bending-shearing type. The 
vibration-sensation rates of the primary structure are calculated by taking all grades of one-year wind pressure into 
consideration showing in figure 8.
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6.2 Optimal Parameters of Dampers 
The optimal parameters of dampers can be calculated by maximizing the vibration control efficiency. Because the 
cross-wind response is dominant, the structural responses under the cross-wind are calculated. The relationships 
between parameters and vibration control efficiency of the TMD and the TLCD are shown in figure 9 and figure 10 
respectively.
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Figure 9: Relationship amongst parameters and vibration control efficiency of TMD 
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Figure 10: Relationship amongst parameters and vibration control efficiency of TLCD 

6.3 Life Cycle Cost Evaluation and Design Choice 
With the vibration-sensation rate of the structural human comfort performance known, it is available to evaluate 
the design schemes to minimize the life cycle cost. Assuming that the life cycle and the discount rate of money are 
100 years and 3.5% respectively, the structural life cycle costs of different design schemes are shown in figure 11 
and table 1. 
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Figure11: Relationship of life cycle cost and damper mass 

Table 1 Expected life cycle cost 

Structural scheme Damper mass 
t

C0
106$

Cm
106$

Cf
106$

LCC
106$

Primary structure 0 0 0 12.26 12.26 
TMD-structure system 500 1.12 0.056 8.76 9.94 
TLCD-structure system 1000 0.22 0.011 9.27 9.50 

TLCD-structure system TLCD 650 0.15 0.008 8.74 9.73 TMD 350 0.79 0.039 

It is highly efficient to improve the human comfort performance by installing a damper. Also, the total life cycle 
cost decreases. From the data in the table 1, it is easily concluded that in terms of life cycle cost, the design scheme 
with a TLCD-structure system is the best. After that, the design scheme with a CTD-structure system ranks second. 
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Then, the design scheme with a TMD-structure system follows and the primary structure system without any 
damper. It is worth being noted although the life cycle cost drops continuously with the mass rising, the damper 
mass of the TLCD or the CTD is decided twice as high as that of the TMD for the consideration that the volume of 
the TLCD filled with water is usually several times as large as that of the TMD.

6.4 Human comfort performance check 
The selected design scheme based on the minimum life cycle cost should also meet the limitation requirements of 
Chinese code criterion and the owner’s thoughts. For this study case, the structural peak-acceleration response can 
be obtained by calculating the structural root mean square under 10-year wind pressure and selecting the peak 
factor of 2.5 (99.3% for insurance) with assumption that the structural response meets Gaussian distribution with a 
zero-mean value.

Table 2 Check for human comfort performance  

Structural scheme 
10-year wind pressure 

Root mean square m/s2 Peak value m/s2
Primary structure 0.0773 0.193 

500t TMD-structure system 0.0584 0.146 
1000t TLCD-structure system 0.0604 0.151 
1000t CTD-structure system 0.0572 0.143 

It is easily concluded that the human comfort performance of all different design schemes can meet limitation 
requirements of Chinese code for hotels and offices but exceed slightly that for apartments. Measurements such as 
selecting larger damper mass can be taken to obtain more optimal design schemes when the owner has  higher 
requirements.

7. Conclusion 
Due to strong wind loads, super building height and high flexibility, the wind-induced vibrations of super tall 
buildings become excessive. Aiming to assess the human comfort performance of super tall building conveniently 
and effectively, a brand-new life cycle cost model based on AIJES-V001-2004 is studied in this paper. The 
proposed method is also applied to the human comfort design choice of a super tall building with and without 
tuned mass damper (TMD), tuned liquid column damper (TLCD) or combined tuned damper (CTD) device to 
illustrate its effectiveness and applicability, which could help make design choice based on the minimum life cycle 
cost criterion. Some conclusions are drawn as follows:

 (1) The damper has high effectiveness to improve the human comfort performance of super tall buildings. And 
properly increasing the initial investment can help to reduce the total life cycle cost. These have great significance 
to the decision of damper installation, which can be used for the structural early optimal design and provide a quite 
efficient method to solve the later related problems. 
(2) The initial investment and vibration control performance are different among the TMD, the TLCD and the 
CTD, the life cycle cost of them are also different. The life cycle cost of the TLCD-structure system is much less 
than that of the TMD-structure system, but the volume of TLCD is several times as large as that of TMD with the 
same mass ratio, which is no doubt with larger space required. The life cycle cost of the CTD-structure is between 
that of the TMD-structure and that of the TLCD-structure. It is concluded that the CTD can fully utilize the high 
effectiveness of a TMD and economical advantage of a TLCD, which makes it a competitive option. 
(3) Due to the lack for data of initial investment and maintenance cost of a TLCD, the relative costs of a TLCD are 
calculated in a similar way to TMD in this study, which, of course, needs further research in real objects. 
(4) It is strongly noted that it is hard to evaluate the costs of human comfort failure accurately because of strong 
variability of human subjective feelings and economic factors. There is also a large amount of work to do before 
the proposed method to be widely used. However, the proposed method provides an innovative idea for the optimal 
design of wind-induced human comfort performance for super tall buildings.  
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1. Abstract
The life cycle of a super tall building has many stages such as design, construction, operation, maintenance and so 
on. The life cycle cost of the structure is mainly composed of the construction, maintenance and disaster lost costs. 
Viscous dampers can effectively improve the energy dissipation capacity of super tall building structures under 
earthquakes. The life cycle cost could be reduced by the introduction of viscous dampers due to two facts. One is 
that the structural members can be further optimized for considering the reduction of earthquake actions due to 
additional damping, and the other is that the structural damage could be alleviated with the viscous dampers to 
reduce the maintenance and disaster lost. The integrated optimal design of the life cycle cost about the main 
structural members using viscous dampers was addressed in this paper. Integrated optimal design was then applied 
to minimize the sizes of structural members. A life cycle cost assessment method was proposed to evaluate the 
whole life cycle cost of buildings which include construction, maintenance and disaster lost costs. A super tall 
building located in high seismicity area was applied in the final part of this paper to illustrate the effectiveness of 
the proposed optimal life cycle design method. 

2. Keywords: super tall building; viscous dampers; life cycle cost; integrated optimal design. 

3. Introduction 
The past decade has witnessed the great development of super tall buildings in China. Especially for those 
buildings in seismic prone area, special measures are needed for improving the seismic performance of the super 
tall buildings. Energy dissipation system is widely applied in the design of high-rise buildings. Viscous dampers 
can effectively improve the energy dissipation capacity of super tall building structures under earthquakes. 
Viscous dampers can generate damping forces by velocity-dependent viscosity effects of the viscous liquid under 
different earthquake levels, and thus have been widely applied in engineering practices [1].
According to previous study [2,3], the damped outriggers are installed between service core and column and it will 
not occupy space. The structure will be safer with the reduction of response and internal forces due to increase of 
damping, furthermore the structural damage could be alleviated with the viscous dampers. 
The optimal design of super tall building is usually equal to the optimization of construction cost. But the life cycle 
of a super tall building has many stages such as design, construction, operation, maintenance and etc. When 
engineers optimize the structure, they always negative the damage cost under different levels of earthquake.  
This paper developed an integrated optimal life cycle design method which can further optimize the additional 
redundancies introduced by the installation of viscous dampers in the outrigger trusses in super tall buildings. An 
optimal design process was applied to further optimize the structural members with high redundancies in iterative 
nature. A life cycle cost assessment method was proposed to evaluate the whole life cycle cost of buildings. A 250 
meter high super high-rise building is adopted in the last part to show the effectiveness of the proposed method. 
The performance and cost of the optimized structure and primitive structure were compared at the end. 

4. Optimal Design Process 
Viscous dampers offer additional damping to the structure and dissipate the energy during different earthquake 
intensity. The seismic performance of structure can be improved with the energy dissipation capacity of the 
viscous dampers. The structural members can be further optimized for considering the reduction of earthquake 
actions. On the other hand, the damage lost could be much less than the original structure. To reduce the 
redundancies introduced by the viscous dampers, the following integrated optimal design process can be 
employed:
(1) Assess the contribution of different outrigger trusses on the structural lateral stiffness; 
(2) Remove those outriggers which have small contribution on the lateral stiffness; 
(3) Install damped outriggers with viscous dampers, and calculate the addition damping ratios; 
(4) Determine the design constraints of components, such as story drift, period and stress ratio; 
(5) Conduct sensitivity analysis and indicate those members which need to be optimized; 
(6) Optimize those components of high redundancies, and check the design constraints to make sure they are 
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below specified limits; 
(7) After the optimization of structural components, sensitivity analysis will be conducted using updated sizes of 

structural components. Those components of high redundancies will be optimized again like in step (6) until 
the margins of design constraints are as small as specified; 

(8) Step (1) to (7) will be conducted for different structural schemes with different number of damped outrigger 
and stiff outrigger combinations; 

(9) The overall life cycle costs of different structural schemes will be compared and the scheme with least cost 
will be the final scheme to be employed. 

It is worth pointing out that in step (6), structural member sizes are commonly determined by multiple constraints. 
The multiple constraints are related with numerous design requirements, say global design criteria (such as period, 
story drift, shear weight ratio and etc.) and component design criteria (such as stability, bending strength, shearing 
strength, stress ratio, axial compression ratio and etc.). 
The sensitivity analysis and optimization design of structure used in this paper is based on the virtual work 
principle. The virtual work principle indicates that when the system is given any geometric possible displacement 
and deformation, the sum of all the virtual work produced by external forces in the system is equal to the sum of all 
the virtual work produced by internal forces with micro deformation of each section in the system [4].
Assuming id is the virtual work on real displacement about this component. The sensitivity index is shown in 
Eq.1: 

i
i

i

d
=                                                                          (1) 

where id  is the virtual work of component’s displacement, i  is generally chosen the component’s weight or 
cost, etc. 
According to the sensitivity indices, we can easily obtain one component's contribution to the monitoring 
parameter, and it is convenient to obtain the effectiveness of the structural system, the rationality of layout and the 
sensitivity of the components for several criteria. 

5. Life Cycle Cost Assessment 
With the rapid development of construction industry, engineers need comprehensive assessment method to 
evaluate the different schemes in preliminary design. Life cycle cost assessment, which is an effective assessment 
method, is being used more and more widely in the study of structural life cycle design. Life cycle cost assessment 
method is used to evaluate the cost in whole life cycle, and to guide engineers how to select a safer and more 
economical scheme.
The previous study has already put forward that the optimization objective is to minimize the life cycle cost [5].
The scholars in China and other countries had a deep study on the theory and analysis model [6]. The expression of 
analysis model is shown in Eq.2: 

tot b m fC C C C= + + (2)

where bC is construction cost; mC is maintenance cost; fC is loss cost. 
The significance of performance based design is to make a balance of economic and safety, and to minimize the 
life cycle cost. The life cycle cost refers to the construction cost, maintenance cost and lost cost. The lost cost may 
be caused by external force (such as wind load, earthquake, fire, explosion and etc.) or internal function (such as 
corrosion, aging and etc.). To super tall buildings, the main cause that we should consider in design is external 
force.
Different earthquake intensity has different probability of occurrence. The earthquake intensity and loss have a 
corresponding relation to the same structure. The expression of loss cost under the earthquake is shown in Eq.3: 

1

i0
dpf iC c= (3)

where ip is the probability of earthquake of intensity i, ic is the loss cost under earthquake of intensity i. 
According to Eq.3, the loss cost can be expressed in Eq.4: 

1
( ) *

N

i j j
j

c B n c
=

=                                                                               (4)

Where j is the component category, ( )jB  is the loss coefficient of component, n is the number of damaged 

component, jc is the lost cost of component. 
The relation between peak acceleration of earthquake, earthquake intensity and probability of earthquake is given 
as Eq.5 and Eq.6 [7]:

( lg 2 2.11)10 IA =  (m/s2)                                                                   (5) 
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III1 ( ) 1 exp( ( ) )k
i

w xp F x
w

= = 6

where A is peak acceleration of earthquake; I is earthquake intensity; w is upper limit of earthquake intensity; k is
shape function. 
With Eq.6, we can easily get the relationship between the probability of earthquake and the peak acceleration. For 
example, when the peak acceleration is 0.15g, earthquake intensity I is 7.56, w is 6.14, and shape function K is 
8.110, Eq.6 can be expressed in Eq.7. 

8.11
III

12lg 2 2.11 lg1 ( ) 1 exp[ ( ) ]
5.86lg 2i

Ap F x= =                                                  (7) 

The lost coefficient can be gained from classification of earthquake damage to buildings and special structures. 
The damage state can be divided into 5 states, and every state has its own corresponding lost coefficient. As it is 
shown in Table.1, ( ) 0iB =  indicates that the component is undamaged, and ( ) 1iB =  indicates that the 
component cannot be repaired. 
Fig.1 shows that most finite element analysis software judge the damage levels of components with performance 
level in FEMA 356. In FEMA 356, ‘IO’ is operational performance, ‘LS’ is life safety, and ‘CP’ is collapse 
prevention. Fig.2 is the relationship between the damage levels and performance levels. So we can easily obtain 
the performance level with finite element analysis software, then we can gain the lost coefficient. 
To assess the life cycle cost, the following Life cycle cost assessment process can be employed: 
(1) To simplify the calculation, select several typical peak acceleration, such as the peak accelerations of frequent 
earthquake, moderate earthquake, and rare earthquake in Code for Seismic Design of Buildings.
(2) Calculate the probability of different earthquake intensity ( ip ).
(3) Analyze the structure with different earthquake intensity. 
(4) Calculate every component’s loss coefficient ( )jB .
(5) Obtain the lost cost with Eq.4. 

Table.1 Definition of damage coefficient on different level for the reinforced concrete elements 

Damage level Description of classification ( )iB

Undamaged B1  No crack and no need to repair. (<0.5IO) 0.00 
Slight damage B2  A little crack, and just need simple repair. (0.5IO) 0.05 

Moderate damage B3  Concrete occur obvious crack, but the steel bars do not yield. (IO) 0.15 
Severe damage B4 The concrete spalls severely, and the steel bars yield. The component 

should be repaired and reinforced. (LS) 0.90
Collapse B5  The component is absolutely damaged, and cannot be repaired. (CP) 1.00 

Fig.1 Performance levels of elements from FEMA Fig.2 Damage levels and performance levels 

6. Case Study 
A 250-meter-high super high-rise building with 63 floors and 3 mechanical floors is adopted in this study. The 
structural system is frame-core wall structure. The plane of tower is 57.02m×35.62m, and the spacing of frame 
column is 10.2 meters along the long side and 5.6 meters along the short side. The core tube is in the middle with 
the size of 32.2 m×13.7m. There are three belt trusses (16th floor 32th floor 48th floor ) and two outriggers (32th 
floor 48th floor). Fig.3 and Fig.4 show the structural system of tower. The outriggers are only installed in the X 
direction. Five ground motion records were used for nonlinear time history analysis. The acceleration amplitude is 
set to 35 gal and the duration is set to 40s. The damping ratio is 4% in frequent earthquake. 
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Fig.3. 250 meters high model Fig. 4 Typical layout plan of tower 

6.1 Remove Outriggers 
As is shown in Table.2, the story drift about one outrigger in zone 3 is 1/545, and it is better to remove the outrigger 
in zone 2 because of the less stiffness loss. When two outriggers are removed, the story drift will be amplified too 
much, and the structural stiffness and stability are difficult to meet the requirements. So the damped outriggers 
should be installed on the outrigger in zone 3. 

Table.2 Optimal position of outriggers 

Number of outriggers 2 1 1 0 

Location Zone 2,3  Zone 2 Zone 3 -- 

Story drift in the X direction 1/674 1/571 1/545 1/496 

6.2 Install Viscous Dampers  
The structure will be safer with the reduction of response and internal forces due to increase of damping. Fig.5 
shows that the dampers can be put in 8 grids, Fig.7 and 8 show the layout of damped outriggers. The parameters of 
dampers are as follows: the maximum damping force is 2000kN, the damping coefficient is C=400 kN/ (m/s) 0.3,
the damping exponent is =0.3 and the stiffness is K=4.0×105 kN/m. Fig.6 and Table.3 show that the story drift 
decreased, and the additional damping ratio increased with the increase of dampers. The calculation results about 
four various quantities of dampers are shown in following Table.3. 

Fig.5 8 grids that can be installed viscous dampers Fig.6  Additional damping ratio with 
different quantity of  VDs 

Fig.7 Damped outrigger with 1 VD Figure.8 Damped outrigger with 2 VDs 
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Table.3 Calculation result of four schemes 

Scheme Location Story Drift Additional Damping Ratio 

with 4 VDs Grid 3,4,5,6 one VD in one grid  1/666 1.44% 
with 8 VDs Grid 3,4,5,6 2VDs in every two grids  1/706 2.70% 

with 12 VDs Grid 3,2,7,8 one VD in one grid
Grid 3,4,5,6 2VDs in every two grids 1/744 3.10% 

with 16VDs Grid1,2,3,4,5,6,7,8 
2VDs in every two grids 1/769 3.29% 

6.3 Sensitivity Analysis 
Virtual couple and actual seismic force are put on the structure to conduct the sensitivity analysis for determining 
the optimization strategy. The virtual force is acted on the 49th floor where is the maximum story drift. Sensitivity 
index /i i id=  of component is shown in following Table.4. 
Table.4 shows that the diagonal members of belt trusses in Zone 3 and Zone 4 have the most contribution to 
maximum story drift and the second is chord members in Zone 3. To save the cost, the size of components that 
have small contribution to the story drift should be reduced, such as the belt trusses in Zone 1 and Zone 2. 

Table.4 Sensitivity index of belt truss 

 Zone1 16F  Zone2 32F  Zone 3 48F  Zone 4 63F

Chord Member  <5  <5  10-30 <5 
Diagonal Member  <5  <5  50-80 50-100 

6.4 Component Redundancy Analysis 
This study chose belt trusses optimization as an example for the limits of paper. The design of outriggers usually 
needs to consider global design criteria and component design criteria. As is shown in Table.5, the stress ratio is 
about 0.6 to 0.9 which is under 0.9 that the Chinese code limits. 

Table.5 Stress ratio of belt trusses (unit: mm) 
Story  Member Section Size Stress Ratio 

16F
Diagonal Member 500x500x50x50 0.760 

Chord Member 700x500x50x50 0.729 

32F
Diagonal Member 500x500x50x50 0.850 

Chord Member 700x500x50x50 0.736 

48F
Diagonal Member 500x500x50x50 0.666 

Chord Member 700x500x50x50 0.687 

63F
Diagonal Member 500x500x50x50 0.732

Chord Member 700x500x50x50 0.784 

6.5 Member Optimization 
The members of belt trusses whose sensitivity index to story drift is low will be the first to be optimized, when the 
seismic performance criteria is met. With the integrated optimal design method, the materials are distributed 
reasonably, and the economy of the structure is improved. Table.6 shows the section size of belt trusses which are 
optimized with the guidance of sensitivity analysis after several iterations. 

Table.6 Optimization scheme comparison (unit: mm) 
 Component Original Structure Scheme with 4VDs Scheme with 8 VDs 

Zone1
Diagonal Member 500x500x50x50 500x450x45x45 500x450x45x45

Chord Member 700x500x50x50 600x500x40x40 600x450x40x40

Zone2
Diagonal Member 500x500x50x50 500x500x45x45 500x450x45x40 

Chord Member 700x500x50x50 600x500x40x40 550x450x40x40

Zone3
Diagonal Member 500x500x50x50 500x500x50x50 500x500x50x50 

Chord Member 700x500x50x50 700x500x45x45 700x450x45x45 

Zone4
Diagonal Member 500x500x50x50 500x500x50x50 500x500x50x50 

Chord Member 700x500x50x50 700x500x45x45 700x450x45x45 

216

Leo
Rectangle



6

  Scheme with 12VDs Scheme with 16 VDs  

Zone1
Diagonal Member 500x450x45x40 500x450x45x35  

Chord Member 600x400x40x40 600x400x40x40  

Zone2
Diagonal Member 500x450x45x35 500x450x45x30  

Chord Member 550x450x40x35 550x450x40x30  

Zone3
Diagonal Member 500x500x50x50 500x500x50x50  

Chord Member 700x450x45x45 700x450x45x45  

Zone4
Diagonal Member 500x500x50x50 500x500x50x50  

Chord Member 700x450x45x45 700x450x45x45  

6.6 Life Cycle Cost Assessment 
The ground motion record will be used for nonlinear time history analysis. The acceleration amplitude is 
respectively set to 35 gal, 100gal and 220gal. And the duration is set to 30s. The frame beams and coupling beams 
are simulated with FEMA plastic twisted beam. The frame columns and shear walls are simulated with fiber units. 
Different components are assessed by failure condition with the plastic hinge rotation or strain. 
This paper chose the steel bars in the shear walls as an example for the limits of paper. Fig.9 shows the failure 
condition under rare earthquake whose acceleration amplitude is 220 gal. The deeper color represents the greater 
damage. The steel bar about original scheme with no viscous damper damaged at the bottom and middle of 
structure. And the damage of integrated optimal structure is less with the additional damping ratio of the viscous 
dampers. The largest strain of reinforcement in the shear walls are under the condition of ‘LS’ which is Chinese 
code limits. 

Fig.9 Damage condition of steel bars in shear walls 
The lost cost of components under different earthquake intensity is shown in Table.7. The Lost cost of integrated
optimal structure is much smaller than the cost of uncontrolled structure with the energy dissipation of viscous 
dampers. And the lost cost is smaller with the increase of viscous dampers. Every scheme is undamaged under the 
frequent earthquake.

Table.7 Lost Cost under different earthquake intensity (unit: RMB) 

Original 
Structure

Scheme with 
4VDs 

Scheme with 
8VDs 

Scheme with 
12VDs 

Scheme with  
16 VDs 

35gal 63% 0 0 0 0 0 
100ga 10% 3,770,000 3,010,000 2,430,000 2,210,000 1,910,000 
220gal 2% 4,900,000 4,120,000 3,300,000 3,050,000 2,800,000 

Sum 135,700 112,500 90,300 83,100 75,100 

6.7 Optimization Result 
Table.8 is the optimization comparison with different number of viscous dampers, in which it can be clearly 
observed that the damped outriggers can be removed the inner outriggers that cost 365 ton steels. The outer 
outriggers of the scheme with 12 and 16 VDs cost more steels than other schemes. The lost cost is smaller with the 
increase of viscous dampers. The optimal lost cost scheme with is the scheme with 16VDs. The price of every 
viscous damper is about 10,000 RMB. The price of steel is about 10,000RMB per ton. In Table 8, the economy of 
scheme with 8VDs is the best.  
Table.9 shows the period and story drift about original structure and scheme with 8VDs. Period is a little larger 
than the previous scheme, and the story drift is reduced with the installation of viscous dampers.  
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Table.8 Optimization scheme comparison 
Original 
Structure

Scheme with 
4VDs 

Scheme with  
8 VDs 

Scheme with 
12VDs 

Scheme with 16 
VDs 

Outer Outrigger 149t 115t 115t 230t 230t 
Inner Outrigger 365t 0 0 0 0 

Belt Truss 1181t  1026t 976t 948t 934t 
Viscous Damper 0 40,000RMB 80,000RMB 120,000RMB 160,000RMB 

Lost Cost 135700 RMB 112500 RMB 90300 RMB 83100 RMB 75100 RMB 

Total 17.0 million 
RMB

11.6 million 
RMB

11.0 million 
RMB

12.0 million 
RMB

11.9million 
RMB

Table.9 Optimization scheme comparison of global design criteria 
 Original Structure Scheme with 8 VDs 

First period 5.83s 6.06s 
Second Period 4.96s 5.00s 
Third Period 3.96s 3.96s 
Story Drift 1/674 1/692 

7. Conclusion 
This article discusses the optimization design method of viscous dampers for super high-rise building. This 
method is made use of sensitivity analysis, which is based on principle of virtual work. And the components can be 
optimized for the redundancies introduced by the viscous dampers. A 250-meter-high super high-rise building is 
addressed in this study, without reducing the safety of structure, the additional damping ratio is increased and the 
economy of the structure is improved. 
We can draw the following conclusions: 
1. The installation of the damped outriggers can increase additional damping ratio of structure, consume 
earthquake energy and reduce response under the earthquake. Meanwhile, there are some redundancies for 
component optimization. 
2. In the process of integrated optimal design, sensitivity analysis, which is based on principle of virtual work, is 
used to judge the component’s contribution to some criteria so that the optimal strategy can be obtained. 
3.  Life cycle cost assessment method is used to evaluate the cost in whole life cycle, and to guide engineers how to 
select a safer and more economical scheme. 
4. Optimization calculation results show that the integrated optimal design of viscous dampers is reasonable and 
can be guidance to other designs of super tall buildings. 
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Abstract
Viscous damping walls can effectively suppress the vibration amplitude of the super tall building structures under 
both earthquake and wind. Comparing with other viscous dampers, viscous damping walls can dissipate more 
energy due to shear type mechanism and larger contacting areas. There are differences in economic cost and 
energy-dissipating capacity between viscous damping walls with different parameters and viscous damping walls 
with better parameters cost more. By the introduction of viscous damping walls in super tall buildings, the material 
consumption of main structures can be reduced by the reduction of earthquake action and an integrated optimal 
design of super tall buildings with viscous damping walls was adapted in this paper. A parameter optimization 
method of viscous damping walls was proposed in this paper to consider the overall costs of the structure including 
the cost of material consumption and the cost of viscous damping walls and optimal number of the viscous 
damping walls. A super tall building located in high seismicity area was applied in the last part of the paper to 
illustrate the proposed parameter optimization method. Numerical analysis results show that the proposed method 
is reasonable and effective. 
Keywords: parameter optimization method; viscous damping walls; overall costs; super tall buildings 

1. Introduction 
The application of energy dissipation control for high-rise structure become more and more extensive for many 
areas of China in high intensity seismic zone. As an new innovative high efficient energy dissipation device in 
recent years, viscous damping wall was firstly proposed by M.Miyazkai and Aiima[1] in 1986 and firstly 
manufactured successfully by Sumitomo Construction company Arima et al.1988 [2]. Viscous damping wall is 
mainly composed of steel plate hanging in the upper floor, thin steel box fixed on the lower floor and viscous liquid 
of high viscosity between the inner and outer plates, as depicted in Fig.1. When the structure is subjected to wind 
or earthquake, relative displacement and relative velocity between the floors will make the steel plate moving in 
the viscous liquid and thus generate the shear deformation of the viscous liquid. Viscous damping walls consume 
energy through the internal friction produced by the flowing of the liquid, thereby reducing the seismic response of 
the structure, as depicted in Fig.2. 
As the energy dissipation device of the structure, viscous damping wall can work in frequent earthquake, moderate 
earthquake and rare earthquake and can be flexibly arranged according to the locations of partition walls in tall 
buildings. Comparing with the traditional rod type viscous damper, viscous damping wall has more energy 
dissipation capacity [3]due to the larger friction area between the surfaces of embedded steel plate and the viscous 
media. There are many practical cases in high-rise building nowadays [4][5]. 

Inner plate

Outer plate

Viscous liquid

Upper floor

Lower floor

Column
Viscous
damping
wall

Figure 1: Viscous Damping Wall Unit Fig 2: Work Status of Viscous Damping Walls 

The research and application of viscous damping wall in China lags behind these in Japan [6] and other countries 
and specific system needs to be established and improved. Primary, the arrangement form of viscous damping 
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walls is based on engineering experience and there is short of more convenient optimal placement algorithm. Then, 
there is not much research on the optimization space by the introduction of energy dissipation device in the past. 
Thirdly, there is lack of deep research on the parameter and number optimization of viscous damping walls. 
Search the optimal parameter method based on the integrated optimal structural design for tall buildings with 
viscous damping walls [7] was proposed for parameter optimization to minimize the structure overall cost with the 
optimization variable of parameters provided by the manufacturer, and the optimal parameters of viscous damping 
wall and corresponding optimal additional damping ratio for the structure and optimal number of viscous damping 
walls will be derived. 

2. Parameter optimization of viscous damping walls 
Compared with the prototype design, the energy dissipation structure can be optimized since the response 
subjected to earthquake or wind is decreased due to the additional damping. The energy dissipation structure 
design with optimization based on the performance improvement design is called integrated optimization design. 
Integrated optimization design can not only ensure the performance of structure and reduce the failure cost due to 
the disasters, also reduce the cost of the main structure with optimization of the components. For the overall cost of 
structure, the integrated optimal design can indeed play advantage of the energy dissipation technology. 
The overall cost of integrated optimal structure C   cover two parts as follows:

= d sC C C+   (1) 

Where: sC  refers to main structure cost; dC  refers to equipment cost namely the cost of viscous damping walls. 
Compared with the prototype design structure main structure cost sC  of integrated optimal structure decreased 
but the equipment cost dC  increased, and as the number of viscous damping wall added to structure grow, the 
additional damping increases and the optimization degree of the structure deepens, thus the main structure cost sC
get smaller and the equipment cost dC  become larger as depicted in Fig 3. The main structure cost and equipment 
cost are added up together to get overall cost of integrated optimal structure as depicted in Fig 3. The curve indicate 
that there is a lowest point in the overall cost curve and the lowest point namely the minimum cost corresponds to 
optimal additional damping ratio for the structure and and optimal number of viscous damping wall with certain 
parameter conbinations. 
The damping coefficient c and velocity exponent a are two main parameters of viscous damping wall and damping 
force =cvaF . There is certain different damping force with different parameter combinations and unit price of 
viscous dampig wall largely depends upon damping force and additional damping ratio largely depends on the 
parameter conbination, therefore parameter optimization with integrated optimal structure can both ensure the 
additional damping ratio and reduce the overall cost of integrated optimal structure. This is especially important 
for popularizing the use of viscous damping wall. 
The main structure cost curve can get through the integrated optimal structural design for tall buildings with 
viscous damping walls and equipment cost curve can be gained in the Eq (2) using time history analysis method. 

( )/ 4a j cj sW W=   (2) 

Where: a refers to additional damping ratio; 
cjW  refers to energy consumption in a reciprocating cycle with 

expected displacement of j-th energy dissipation equipment; 
cjW  refers to total strain energy of structure with 

energy dissipation equipment. 
There are different overall costs with different parameter combinations and minimum overall cost corresponds to 
the optimal parameter of viscous damping wall and the corresponding optimal additional damping ratio and 
optimal number of viscous damping wall. Search the optimal parameter method based on the integrated optimal 
structural design for tall buildings with viscous damping walls was proposed for parameter optimization to 
minimize the structure overall cost with the optimization variable of parameters provided by the manufacturer, and 
the optimal parameters of viscous damping wall and corresponding optimal additional damping ratio for the 
structure and optimal number of viscous damping walls will be derived. 

220

Leo
Rectangle



3

Fig 3: relation Curve 

The specific process for the parameter optimization of viscous damping wall is: the first step is to gain the 
relationship between the optimized cost savings and additional damping ratio and the relation curve by the 
integrated optimal structural design; the second step is to get the relationship between the viscous damping wall 
cost and additional damping ratio and the relation curve by time-history analysis method with different parameter 
combinations; the third step is to get overall cost of integrated optimal structure with different parameter 
combinations; the fourth step is to compare the overall cost of integrated optimal structure with different parameter 
combinations to get minimum cost and corresponding optimal parameters of viscous damping wall, optimal 
additional damping ratio for the structure and optimal number of viscous damping wall. 

3. Case study 

Fig.4: Three-Dimensional and Elevation Model Fig.5: Plan View of Standard Story 

As shown in Fig.6 and 7, belt truss frame core-wall structural system is applied a high-rise building with 300-meter 
and 68 floors. According to Chinese standard, the design characteristic period is 0.55s and the fortification 
intensity is 7 degree. The basic acceleration is 0.15g and Site class is III. The frame beams are made by sectional 
steel while the columns in the case are designed as SRC columns. The structure comprises of column braces on 
1-58th floor and belt-trusses on the 11-12, 26-27, 41-42, and 57-58th floor. The damping ratio in the frequent 
earthquake is set to 4% and 5% for the moderate and rare earthquake. 
Four parameters combinations provided by manufacturer were optimized in this paper and combinations are 
presented in table 1. 

Table1: Four parameters combinations 

Tonnage t
Parameters Combinations 

Cost 104 yuan
C a 

100 2348 0.45 6 
150 3522 0.45 8 
200 4000 0.45 11 
300 5871 0.45 20 

The first step for the parameters optimization of viscous damping wall is to gain the relationship between the 
optimized cost savings and additional damping ratio and the relation curve by the integrated optimal structural 
design. The result of four integrated optimization for original structure is presented in table 2 and the curve fitting 
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of the results is depicted in Fig 6. 
That optimized cost savings in table 2 is negative means this value is decreased cost relative to the original 
structure cost. 

Table2: Results of Integrated Optimization for Original Structure 
Additional Damping Ratio Optimized Cost Savings  

1.40% -1307.41 
4.20% -2605.6 
7.00% -3648.67 
11% -4317.12 
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Fig.6: Relationship between the Optimized Cost Savings and Additional Damping Ratio 

The second step is to get the relationship between the viscous damping wall cost and additional damping ratio and 
the relation curve by time-history analysis method with different parameter combinations. The additional damping 
ratio of structure with 66, 198, 264 and 396 viscous damping walls is respectively calculated as presented in table 
3 and curve fitting of the data namely relation curve for the viscous damping wall cost and additional damping 
ratio is depicted in Fig 7. 

Table3 Additional Damping Ratio 
Additional Damping Ratio       Number 66 198 264 396 

C=2348 Moderate Earthquake 1.63% 3.68% 5.62% 6.10% 
Frequent Earthquakes 2.69% 6.32% 9.42% 10.34% 

C=3522 Moderate Earthquake 2.48% 5.72% 8.60% 9.38% 
Frequent Earthquakes 4.20% 9.58% 14.46% 15.94% 

C=4000 Moderate Earthquake 2.85% 6.56% 9.72% 10.56% 
Frequent Earthquakes 4.82% 10.88% 16.66% 18.26% 

C=5871 Moderate Earthquake 4.27% 9.68% 14.37% 15.71% 
Frequent Earthquakes 7.35% 16.51% 21.00% 21.74% 
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Fig.7: Relationship between Viscous Damping Wall Cost and Additional Damping Ratio 
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The third step is to get overall cost of integrated optimal structure with different parameter combinations, and the 
total cost curve will be plotted by adding the first two fitting curve together as depicted in Fig 8. 
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 Fig.8: Total cost Curve under Four Parameter Combinations 

The fourth step is to compare the overall cost of integrated optimal structure with different parameter combinations 
to get minimum cost and corresponding optimal parameters of viscous damping wall, optimal additional damping 
ratio for the structure and optimal number of viscous damping wall. The minimum value of the curve with four 
parameter combinations is calculated as presented in table4. 

Table4: Minimum Value for the Curve under Four Parameter Combinations 
Parameter C a=0.45 2348 3522 4000 5871 

Single Equipment Cost 10000yuan 6 8 11 20 
Additional Damping Ratio 4.09% 5.91% 5.44% 5.70% 

Minimum Total Cost 10000yuan -1420.5 -1830.4 -1617.1 -1368.6 
Optimal Number 204 186 140 94 

As presented in table4, when the damping coefficient c=3522 and velocity exponent a=0.45, the overall cost is 
minimal and corresponding optimal additional damping ratio for the structure is 5.91% and optimal number of 
viscous damping is 186. 

4. Conclusion 
Search the optimal parameter method based on the integrated optimal structural design for tall buildings with 
viscous damping walls was proposed for parameter optimization to minimize the structure overall cost with the 
optimization variable of parameters provided by the manufacturer, and the optimal parameters of viscous damping 
wall and corresponding optimal additional damping ratio for the structure and optimal number of viscous damping 
walls will be derived. 
Main conclusions are as follows: 
(1)There are different overall costs with different parameter combinations and minimum overall cost corresponds 
to optimal parameters of viscous damping wall and the corresponding optimal additional damping ratio and 
optimal number of optimal damping wall. when the damping coefficient c=3522 and velocity exponent a=0.45, the 
overall cost is minimal and corresponding optimal additional damping ratio for the structure is 5.91% and optimal 
number of viscous damping is 186 in the case study. 
(2) Results show that the optimal parameters corresponding to the minimum total cost is not the biggest, and 
parameter or additional damping ratio is not the higher the better. Economy and effect should be taken into 
comprehensive consideration and parameter optimization can take a maximum of the economic effect viscous 
damping wall should have. 
(3)Parameter optimization with integrated optimal structure can both ensure the additional damping ratio and 
reduce the overall cost of integrated optimal structure. This is especially important for popularizing the use of 
viscous damping wall. 
(4) Parameter combinations provided by manufacturers are taken as optimization variables and the method 
proposed in this paper has high maneuverability which is practical and can promote the popularization and 
application of viscous damping wall. 
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1. Abstract
With the increase of height and flexibility of modern super tall buildings, structural wind-induced vibrations 
become significant under wind loads. The structural acceleration is commonly requested to be below certain limit 
in design process to avoid occupant discomfort under wind loads. For slightly excessive wind-induced acceleration 
responses scenarios, say below 20% over the code limit, the computational optimization method is usually adopted 
due to the fact that it's more cost effective than the supplementary damping systems method. The wind induced 
acceleration of certain super tall building is determined by dynamic properties under given wind loadings. As all 
known that the wind-induced response of super tall buildings is commonly contributed by the first vibration mode, 
which is actually related to the building period and modal shape of first vibration mode. A straightforward method 
to reduce the building acceleration is to change the natural vibration period. The natural vibration period is not 
quite effective due to the fact that it is global quantity and the expense of changing vibration period is very high. A 
modal shape updating method is proposed in this paper to reduce the building acceleration by locally calibrating 
the modal shape near the floor where maximum building acceleration occurs. Due to its local impact nature, the 
expense of changing local curve of modal shape is lower comparing with that of changing vibration period. A real 
super tall building project is taken as an example in the last part of this paper to show the effectiveness and 
applicability of the proposed modal shape updating method. The results show that the modal shape updating 
method provides a powerful tool for wind-induced dynamic serviceability design of super tall building structures 
with slightly excessive wind-induced acceleration responses. 
2. Keywords: Modal shape updating, wind-induced acceleration, computational optimization, super tall buildings 

3. Introduction 
With the increase of height and flexibility of modern super tall buildings, structural wind-induced vibrations under 
wind loads have been a problem of great concern. The structural acceleration is commonly requested to be below 
certain limit in design process to avoid occupant discomfort under wind loads.
There are two measures to reduce the wind-induced acceleration responses when they exceed the comfort criteria. 
One measure is to absorb dynamic energy by installing supplementary damping systems, and the other measure is 
to fine-tune design variables of structural members according to structural optimization principles. When the 
acceleration responses exceed the comfort criteria with large margins, it is cost-effective to use dampers to 
mitigate peak acceleration. There are however many cases in engineering practices that the margins over the 
comfort criteria are small, say below 20% over the code limit, the computational optimization method is usually 
adopted due to the fact that it's more cost effective than the supplementary damping systems method. 
For schemes of additional supplementary damping systems, lots of research have been carried out on the usage of 
various structural damping devices[1]. On the other hand, there are still few researches on optimization techniques 
for economical design of super tall buildings subject to wind-induced acceleration design requirements[2] even 
though wind forces and wind-induced responses can be accurately predicted by aerodynamic wind-tunnel 
techniques. 
The wind induced acceleration of certain super tall building is determined by dynamic properties under given wind 
loadings. As all known that the wind-induced response of super tall buildings is commonly contributed by the first 
vibration mode, which is actually related to the building period and modal shape of first vibration mode. A 
straightforward method to reduce the building acceleration is to change the natural vibration period. The natural 
vibration period is not quite effective due to the fact that it is global quantity and the expense of changing vibration 
period is very high. A modal shape updating method is proposed in this paper to reduce the building acceleration 
by locally calibrating the modal shape near the floor where maximum building acceleration occurs. Due to its local 
impact nature, the expense of changing local curve of modal shape is lower comparing with that of changing 
vibration period. 

4. Theoretical Basis 
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4.1. Wind-induced Response Analysis 
It has been recognized that for many super tall buildings the across wind responses may exceed the along wind 
responses in terms of wind-induced dynamic serviceability design. In view of the wind-induced response of super 
tall buildings is commonly contributed by the first vibration mode, practical methods of acceleration response of 
super tall buildings are developed based on the moment gust loading factor method and the curve fitted power 
spectra of across wind loads[3]. By solving the equation of motion, the acceleration response equation is obtained 
through vibration analysis in the frequency domain as follows:  
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where 1( )z  means the mode shape vector normalized with respect to the modal amplitude of the top floor, 
*
1M means the first mode generalized mass, 1f  means the first modal frequency, 1s  means the damping ratio of 

the structure while 1a  for the aerodynamic damping and *
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spectrum. The unified formula of the power spectra of across-wind loads can be expressed as: 
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where B , H  are width and height of the building respectively, / Hn fB U= , HU is the mean wind speed at 

the top of the building with a 10-year return period ; pf is the location parameter, deciding the peak frequency of 

the spectrum; is the band width parameter; pS is the amplitude parameter; and is the deflection parameter. 

All the four parameters, which are functions of the aspect ratio, height ratio and wind field condition, can be 
identified by curve fitting technique[4].
The displacements of the story under modal conditions means the mode shape vector normalized with respect 
to the mass matrix[5]. Thus, acceleration response of the top floor can be simplified as
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where ( )m z means the lumped mass of the story at the elevation z , means the air density. 

4.2. Modal Shape Updating Method 
Through the wind-induced response analysis, we can obtain that the acceleration response of the top floor is 
determined by the period and modal shape of first vibration mode. In view of the natural vibration period is not 
quite effective when fine tuning sizes of structural members, the modal shape updating method is adopted to 
reduce the acceleration response by locally calibrating the modal shape near the floor where maximum building 
acceleration occurs. In each iteration of the modal shape updating process, the natural vibration period is assumed 
to remain unchanged. In this case, the constraints of acceleration response can be equally converted into the modal 
shape constraints.

1 1 1
2 ( ) )) (( l

H f H
Ug a Hc H Ha =                                               (4)

where fg  means the peak factor, c  means the constant part in equation (3).

When the modal shape updates after an iteration, adverse impact of the natural vibration period on the acceleration 
response will be considered in the acceleration optimization process. 
The mathematical model of modal shape updating method is introduced as follows: 
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0.6 1.5 (j 1,2...m)j jm b h m =、
0.06 0.15 (j 1,2...m)jm t m =

where V is the volume of the material consumption (as the objective function in the optimization process),

and l  are the modal shape of the initial structure and the modal shape limitation (this inequality as the constraint 

in the optimization process), ( )mL means the length of thm component, sQ means the virtual load acting on the 

top floor, ( )m
iF  and ( )m

jF  are forces of the thm component due to the modal load conditions while ( )m
if  and 

( )m
jf  for forces due to virtual load conditions, the matrix ( )mC  means the diagonal matrix of the thm component 

where the elements are 1/ EA , 1/ YGA , 1/ ZGA , 1/ XGI , 1/ YEI  and 1/ ZEI  respectively, jb , jh  and jt
are the width, height and thickness of the flange and web of the steel members (as the design variables in the 
optimization process) .
By the modal shape updating method, the optimal section sizes for economical design of super tall buildings 
subject to wind-induced acceleration design requirements are obtained effectively.  

5. Case Study 
A real super tall building project is shown in this part to show the effectiveness of the effectiveness and 
applicability of the proposed modal shape updating method. The structure parameters and wind environment 
parameters are shown in Table 1 and Table 2. 

Table 1: Structure parameters 
/H m /B m /D m 1 /f Hz / %s

598 68 68 0.107 1.5 
Table 2  Wind field parameters 

Wind field 2
0 / ( / )kN m TH 2/ ( / )H kN m / ( / )HU m s

C 0.30 0.22 400 0.90 37.3 

The structural material is a mixed use of structural steel and reinforced concrete. It includes a central reinforced 
concrete core wall, eight exterior composite mega-columns in the perimeter and four at the corner. The central core 
walls are connected to the perimeter mega-columns by 5 outrigger trusses in X direction and 4 outrigger trusses in 
Y direction. The eight perimeter mega-columns and the 4 corner mega-columns are connected by nine belt trusses. 
The structural system and layout of outriggers are shown in Figure 1. 
Outriggers are selected as the optimization design variables due to the fact that outriggers are the most sensible per 
volume for the modal updating according to the sensitivity analysis results. The outrigger members are divided 
into 10 groups, namely group 1~5 for the diagonal members and group 6~10 for the flange members in zone 
2,4,6,7,8 respectively. The initial member sizes of diagonal members and flange members are 
1.1 1.1 0.1 0.1m m m m× × × and 1 1 0.1 0.1m m m m× × × respectively. The lower and upper boundary of the 
member sizes are 0.6 ~ 1.5m m  for width and height and 0.06 ~ 0.15m m  for thickness. 

Figure 1: Structural system and layout of outriggers 
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According to the parameters in Table 1and Table 2, the relationship between non-dimensional power spectra of 
across-wind loads and the reduced frequency as shown in Figure 2. The power spectrum value will stay constant in 
the modal shape updating process as the frequency is assumed to be unchanged. 
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Non-dimensional power spectra of across-wind loads

Figure 2: Non-dimensional power spectra of across-wind loads 
The acceleration response of the top floor is 0.26 2/m s (4% over the 0.25 2/m s limitation in Chinese code). 
From equation (4), we can see clearly that the square of modal shape normalized with respect to the mass matrix 
value need to reduce by 4%, namely from 0.104 to 0.102, in the acceleration optimization process when the 
building period is assumed to be unchanged. When the modal shape updates after an iteration, the adverse impact 
of the natural vibration period on the acceleration response is taken into consideration to revise the modal shape 
variation range. 
The member sizes of the outriggers before and after optimization are compared in Table 3. 

Table 3: Comparison of member sizes of the outriggers before and after optimization 
Members /h m /t m

Diagonal
chords

Opti-1 1.1 0.83 1.1 1.5 0.1 0.06
Opti-2 1.1 1.2 1.1 1.5 0.1 0.06
Opti-3 1.1 1.355 1.1 1.5 0.1 0.06
Opti-4 1.1 1.5 1.1 1.5 0.1 0.15
Opti-5 1.1 1.5 1.1 1.5 0.1 0.15

Flange
chords

Opti-6 1 0.6 1 0.6 0.1 0.06
Opti-7 1 0.6 1 1.5 0.1 0.06
Opti-8 1 1.23 1 1.22 0.1 0.124
Opti-9 1 1.36 1 1.42 0.1 0.136

Opti-10 1 1.5 1 1.5 0.1 0.15

From Table 3, we can come to the conclusion that heights of diagonal chords all increase to the upper boundary 
1.5m while width of diagonal chords only in zone 7 and 8 comes to the upper boundary, increase a little in zone 2, 
decreased in zone 1. Heights and widths of the flange chords in zone 6, 7, and 8 all increased a lot. Flange chords in 
zone 2 and 4 decreased to the lower boundary. The outrigger members in higher zones and diagonal chords 
contribute more for the modal shape normalized with respect to the mass matrix of the top floor.  
Figure 3 and Figure 4 compare the modal shape normalized with respect to the mass matrix and  normalized with 
respect to the modal amplitude of the top floor before and after optimization. We can obtain that the modal shape 
normalized with respect to the mass matrix reduce to 0.1012 from Figure 3. Figure 4 shows that the modal shape 
normalized with respect to the modal amplitude of the top floor after optimization is mostly larger than the initial 
mode shape. The results indicate that the modal shape updating method brings a larger generalized mass of the 
structure from another perspective. 
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Figure 3: Comparison of modal shape normalized with respect to the mass matrix 
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Figure 4: Comparison of modal shape normalized with respect to the modal amplitude of the top floor 
Change of modal shape normalized with respect to the mass matrix is shown in Figure 5. As we can see from 
equation (4), the optimization of modal shape (reducing by 2.7%) would bring a 5.3% reduction in the acceleration 
response when the building period is assumed to be unchanged. Since the acceleration exceeds the code limit by 
only 4%, the extra optimized 1.3% was for the compensation of the longer building period (from 9.29s to 9.36s).  
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Figure 5 Change of modal shape normalized with respect to the mass matrix 
Change of volume of outrigger members is shown in Figure 6. 15% (54m3) additional steel is needed for the 
acceleration optimization by the modal shape updating method. 
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Figure 6 Change of volume of outrigger members 
6. Conclusion 
The modal shape updating method provides a powerful tool for wind-induced dynamic serviceability design of 
super tall building structures with slightly excessive wind-induced acceleration responses. Through the real super 
tall building project to show the effectiveness and applicability of the proposed modal shape updating method, we 
can come to the conclusion that: 
(1) Outriggers are selected as the optimization design variables due to the fact that outriggers are the most sensible 
per volume for the modal updating. The outrigger members in higher zones and diagonal chords contribute more 
for the modal shape normalized with respect to the mass matrix of the top floor; 
(2) The optimization of modal shape normalized with respect to the mass matrix (reducing by 2.7%) would bring a 
5.3% reduction in the acceleration response when the building period is assumed to be unchanged. Since the 
acceleration exceeds the code limit by only 4%, the extra optimized 1.3% was for the compensation of the longer 
building period (from 9.29s to 9.36s); 
(3) The modal shape normalized with respect to the modal amplitude of the top floor after optimization is mostly 
larger than the initial mode shape, which indicates that the modal shape updating method brings a larger 
generalized mass of the structure from another perspective. 
(4) 15% (54m3) additional steel is needed for the acceleration optimization. The expense for the acceleration 
optimization is acceptable. 
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1. Abstract
In this paper, we present a two-phase optimization method for designing the shape and thickness of a shell 

structure consisting of an orthotropic material. Compliance vector for multiple loadings is used as the objective 
functional. The objective functional is quantified by the weighted sum method and minimized under the volume 
and the state equation constraints. In 1st phase, the shape is optimized, in which it is assumed that a shell is varied 
in the out-of-plane direction to the surface to create the optimal free-form. In 2nd phase, thickness optimization is 
implemented following the shape optimization to decrease the compliance further. A parameter-free shape and 
thickness optimization problem is formulated in a distributed-parameter system based on the variational method. 
The shape and thickness sensitivities are theoretically derived and applied to the H1 gradient method for shape and 
size optimization. The optimal multi-objective free-form of a shell structure with an orthotropic material can be 
determined using the proposal method, and the influence of orthotropic materials to the optimum shape and 
thickness distribution is fully investigated. 
2. Keywords: Shell, Free-form, Shape optimization, Thickness optimization, Composite material 

3. Introduction 
Shell structures are widely used in various industrial products. From an economic point of view, weight reduction 

is strictly required in the structural design of cars, aircrafts and so on. The usage of composite materials in shell 
structures is one of the solutions to meet the requirement since they have higher material performances than 
metals. In especial, orthotropic materials can be used for making specific stiff directions of shell structures. 
Moreover, with design optimization, mechanical properties can be significantly improved. 

In the case of optimizing the shell structures, shape optimization, including parametric and non-parametric 
methods, is an effective mean. The free-form optimization method for shells is one of the non-parametric methods 
for arbitrarily formed shells that can determine the optimal smooth and natural free-form without causing jagged 
surfaces and without requiring shape parameterization. This method was proposed [1] based on the traction 
method, or H1 gradient method [3, 4]. However, there has seldom study of shape optimizations for shell structures 
consisting of anisotropic materials. In our previous work [1, 2], we developed a free-form optimization method for 
determining a dynamically natural and optimal shell form. However, this method has been only applied to the shell 
structures with isotropic material. In this work, the method is applied to a shell structure with an orthotropic 
material, and the influence of the difference of the materials is investigated. In addition, a non-parametric method 
for thickness distribution based on the gradient method is newly developed introducing Poisson’s equation both to 
reduce the objective functional and to maintain thickness smoothness. The shape and the thickness optimization 
method is also integrated to obtain higher stiffness of shell structures, or to eliminate the waste of the thickness. 

The key point of the integrated on the two-phase optimization of shell structures is determining the shape first, 
subsequently, reducing unnecessary thickness for lighting-weight. In addition, multi-objective shell structures 
with multi-boundary conditions are considered for actual applications. In the present work, we use the compliance 
vector for multi-loading as the objective functional. The compliance minimization problem is formulated in a 
distributed-parameter shape and thickness optimization system. The sensitivity functions, also called the shape and 
thickness gradient functions, or the optimal conditions, are theoretically derived using the material derivative 
method and the adjoint method. The derived shape gradient functions are applied to the proposed two-phase 
optimization method.  

4. Governing Equation for a Shell with an Orthotropic Material 
As shown in Fig. 1(a), we consider a shell having an initial bounded domain 3  with the boundary ,

mid-surface A with the boundary A , side surface S and thickness t. It is assumed for simplicity that a shell 
structure occupying a bounded domain is a set of infinitesimal flat surfaces. The Mindlin-Reissner plate theory is 
applied concerning plate bending. Using the sign convention in Fig. 1-(b), the displacements expressed by the local 
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coordinates { } 1,2,3i i
u

=
=u  are considered by dividing them into the displacements in the in-plane direction 

{ } 1,2 
u

=
 and in the out-of-plane direction 3u .

When NB boundary conditions are independently applied to a shell, the weak form of the nth state equation with 
respect to ( ) ( ) ( ) ( )

0( , , ) ,   ( 1, , )n n n nw U n NB=u  can be expressed as Eq. (1).
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0 0 0 0(( , , ),( , , )) (( , , )),   ( , , ) ,   1, ,n n n n n n n n n n n n na w w l w w U n NB= =u u u u ,              (1) 

where the energy bilinear form (  ,  )a 　 　 and the linear form ( )l 　　 for the nth state variables ( ) ( ) ( )
0( , , )n n nwu are

respectively defined as: 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0 0 0 , 3 , 0 , 3 , , ,(( , , ),( , , )) { ( )( ) ( )( )}n n n n n n n n n n S n n n na w w E u x u x E w w d= +u u ,   (2) 
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0 0 0 3(( , , )) ( ) ( )n
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A A
l w f u m q w dA t b u b w dA= + + +u

( )

( ) ( ) ( ) ( ) ( ) ( )
0( )

n
g

n n n n n n

A
N u ds M Q w ds+ + ,  (4) 

where the notations { }0 1,2 
u

=
, w and { } 1,2 =

express the in-plane displacements, out-of-plane displacement 
and rotational angles of the mid-surface of the shell, respectively. In this paper, the subscripts of the Greek letters 
are expressed as 1,2= , and the tensor subscript notation uses Einstein's summation convention and a partial 
differential notation for the spatial coordinates ,( ) ( ) /i ix= . ( )  denotes a variation. Loads acting relative to 
the local coordinate system 1 2( , ,0)x x  are defined as: q(n), { }( ) ( )

1,2

n nf
=

=f , { }( ) ( )

1,2

n nm
=

=m , { }( ) ( )

1,2

n nN
=

=N ,
Q(n), { }( ) ( )

1,2

n nM
=

=M  and { }( ) ( )

1,2,3

n n
i i

h hb
=

=b  denote non-zero out-of-plane load, a non-zero in-plane loads, a 
non-zero out-of-plane moments, a non-zero in-plane loads, a non-zero shearing force, a non-zero bending 
moments  and a body force, respectively. In addition, , , , 1,2{ }E =  and , 1,2{ }SE =  express an orthotropic 
elastic tensor including bending and membrane stresses, and an orthotropic elastic tensor with respect to the 
shearing stress, respectively. , , , 1,2{ }Be = , , 1,2{ }Se =  and , , , 1,2{ }Me = express orthotropic elastic tensors 
with respect to bending, shear and membrane component, respectively. The constants k expresses a shear 
correction factor (assuming k=5/6).  

(a) Geometry of shell and global coordinates (b) Local coordinates and DOF of flat surface 
Figure 1: Shell as a set of infinitesimal flat surfaces. 

The notations ( )
, 1,2{ }n
=  and ( )

1,2{ }n
=  express the curvatures and the transverse shear strains. It should be 

noted that ( )nU  in Eq. (1) is given by: 
( ) ( ) ( ) ( ) ( ) ( ) 1 5

01 02 1 2{( , , , , ) ( ( )) | satisfy the given Dirichlet conditions on each subboundary}n n n n n nU u u w H A=   ,  (5) 

where 1H  is the Sobolev space of order 1. 

5. Multi-objective Free-form Optimization for Shape-thickness Problem Considered Orthotropic Material 
In this study, with the aim of maximizing the stiffness of a multi-objective shell structure, a compliance vector 

(1) (1) (1) (2) (2) (2) ( ) ( ) ( )
0 0 0{ (( , , )), (( , , )), , (( , , ))}NB NB NBl w l w l wu u u is used as an index of structural stiffness under 

multi-loading conditions. This objective functional is scalarized by the weighted sum method as follows:
( ) ( ) ( )

( ) 0
( )

1

(( , , )),
n n nNB

n
n

n init

l wc
l=

u                                                                    (6) 

( )

1

    1
NB

n

n

c
=

= ,                                                                          (7) 
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where ( )n
initl  indicates the compliance for the nth boundary condition of the initial shape, which is used for 

normalizing the compliances. c(n) indicates the weighting coefficient of the nth boundary condition, which has the 
relationship shown in Eq. (7). 

Letting the volume and the state equations in Eq. (1) be the constraint conditions and the weighted sum 
compliance in Eq. (6) the objective functional to be minimized, a distributed-parameter shape optimization 
problem for finding the optimal design velocity field V , or sA  can be formulated as: 

Given    , A t                                                                                                (8) 
find     (or  ) , sA V                                                                                   (9) 

( ) ( ) ( )
( ) 0

( )
1

(( , , ))that minimizes   , 
n n nNB

n
n

n init

l wc
l=

u                                              (10) 

ˆsubject to    ( )
A

M = tdA M and Eq. (1)                                                (11) 

where M and M̂  denote the volume and its constraint value, respectively. 

5.1. Derivation of gradient functions 
Letting ( ) ( ) ( )

0( , , )n n nwu  and denote the Lagrange multipliers for the nth state equation and the volume 
constraint, respectively, the Lagrange functional L associated with this problem can be expressed as:

(1) (1) (1) (1) (1) (1) (2) (2) (2) ( ) ( ) ( )
0 0 0 0( , ( , , ), ( , , ),( , , ), ,( , , ) )NB NB NBL w w w w ,u u u u

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0

0 0 0( )
1 =1

(( , , )) ˆ  { (( , , ) (( , , ),( , , ))} ( )
n n nNB NB

n n n n n n n n n n
n

n ninit

l wc l w a w w M M
l=

= + +
u u u u .   (12) 

 Using the design velocity field V to represent the amount of domain variation, the material derivative &L [1, 5] of 
the Lagrange functional L can be expressed as: 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0

0 0 0( )
1 =1

(( , , ))+ { ( , , ) (( , , ), ( , , ))
n n nNB NB

n n n n n n n n n n
n

n ninit

l wL c l w a w w
l=

=
u u u u

( ) ( ) ( ) ( ) ( ) ( )
0 0

ˆ(( , , ), ( , , ))} ( ) , + , ,     n n n n n n
tS t

a w w M M G G t C+ +u u n V V   (13) 

, A n f nS A A
G G V dA G V dS= +n V

,t tt A
G t G t dA=

By using the KKT optimality conditions, the shape and thickness gradient functions AG and tG (i.e., sensitivity 
functions) for this problem are derived as 

}
( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0 , , 0 , , 0 , , 0 , ,( )1

( )( ) ( )( )
2 2 2 2

n
NB n n n n n n n n

A nn
init

c t t t tG E E H
l=

= + +u u u u + t n ,  (14) 

( )

, , 0 0 , 0 ,( )1

B S Mn
NB

t nn
init

E E EcG
t t tl=

= + + +u u ,       (15) 

where H is calculated by the area strain, modifying the proposed method [1]. 
The shape gradient functions are applied to the H1 gradient method to determine the optimal design velocity field 

V and the optimal thickness variation field t .

6. H1 gradient method for shells 
The free-form optimization method for shell was proposed by Shimoda et al. [1], which consists of main three 

processes; (1) Derivation of shape gradient function (2) Numerical calculation of shape gradient function (3) The 
H1 gradient method for determining the optimal shape variation. The H1 gradient method is a gradient method in a 
Hilbert space. The original H1 gradient method was proposed by Azegami in 1994 [6] and also called the traction 
method. Shimoda modified the original method for free-form shell optimization. In the present paper, we newly 
propose a H1 gradient method for determining the optimal thickness distribution and integrate it with the H1

gradient method for shape optimization [1]. It is a node-based shape and thickness optimization method that can 
treat all nodes as design variables and does not require any design variable parameterization.
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6.1. H1 Gradient Method for Thickness Optimization of Shell 
 The H1 gradient method for shells can be easily expanded to the thickness optimization. When the state equations 
and the adjoint equations are satisfied, the perturbation expansion of the Lagrange functional L can be written as: 

( )2,tL G st O s= +                                                               (16) 

where ( )0s >  is sufficiently small constant. To obtain the optimal thickness variation field t , the following 
weak formed Poisson’s equation, or the governing equation for t  is introduced. 

0, , , ,     t ta t v t t v G st  ,   t tC t C                                    (17) 

, ,, i ij jA
a t v t k v dA                                                                  (18) 

where t and 0t  denote thickness variation field and the reference thickness, respectively. It is assumed that 

0 0t t > . The notations t  and ijk  are equivalent to the heat transfer coefficient and the thermal conductivity 
tensor in the steady heat transfer equation, respectively. Eq. (17) can be also easily solved with a standard 
commercial FEM code. The kinematic admissible function space tC  is defined as:

1  }tC H satisfy Dirichlet condition for thickness variation= {t                               (19) 

Substituting Eq. (17) into Eq. (16), we obtain: 
( )( )0, , ,t tL G st a t v t t v= +                                                  (20) 

Furthermore, taking into account the positive definitiveness of the bilinear form ( ), 0ta t v > , 0 ,t t t v
and 0s >  in Eq. (17), 

0L <                                                                                 (21) 

In problems where convexity is assured, this relationship definitely reduces the Lagrange functional in the process 
of updating the shell thickness using the thickness variation field t  determined by Eq. (17). In this method, the 
negative thickness gradient function tG is applied as a distributed internal heat generation to a pseudo-elastic 
shell to the design surface. The thickness variation field t  is calculated as the solution or the pseudo-temperature 
distribution of Poisson’s equation and is used to update the original thickness. 

6.2. Two-phases optimization method 
 To minimize the compliance and mass of shell structures, both shape and thickness are treated as design variables 
in the optimization. In the present work, the shape optimization is applied firstly to shell structures composed of 
orthotropic materials. Then, the thickness optimization is carried out after shape convergence.

7. Calculated Results
 The proposed method is applied to T-joint model. The initial shape and the problem definition are illustrated in 
Fig.2. In the stiffness analyses shown in Fig.2 (a) and (b), left and right side edges of T-joint are simply supported 
in both analyses. A coupling force is applied as load case 1 (i.e., torsional condition) at the top edge of T-joint and 
a distributed force to y direction is applied as load case 2 (i.e., bending  condition). In the velocity analysis shown 
in Fig.2 (c), it is assumed that right, left side edges and top, bottom surfaces are simply supported.  The volume 
constraints of both shape and thickness are set as 1.00 times the initial value. The material constants are used as 

1 2 12210000Pa, 21000Pa, 65000PaE E G= = = and 0.3.=  The optimization results of isotropic model and 
orthotropic model are expressed in 8.1 and 8.2, respectively. 

7.1. Isotropic material 
In this problem, an isotropic material is distributed as base material and the proposed two-phase optimization 

method is applied. Figure 3 shows the Pareto optimal shapes and thickness obtained, where the weighting 
coefficient c(1) is varied over 5 stages from 1.0 to 0.0. When c(1) is small, the shape and thickness distribution are 
strongly influenced by load case 2. As the value of the weighting coefficient c(1) is increased, the shape and 
thickness distribution gradually begin to show the influence of load case 1. As shown in Fig 3 (a)-(e), core part of 
T-joint is firstly expanded and the bead on a neck is gradually disappeared instead of the arms are gradually 
expanded while the value of the coefficient c(1) is decreased. In the thickness optimization, thickness is distributed 
on a neck and gradually disappeared instead of appearing thickness distributions on the side of arms. It is clear that  
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(a) Stiffness analysis (Load case 1) (b) Stiffness analysis (Load case 2) (c) Velocity analysis
Figure 2:  Boundary conditions for design problem 2 

a set of Pareto optimal shapes and the thickness distributions (i.e., intermediate shapes and thickness distributions) 
can be obtained by varying the weighting coefficient. 
 In Fig 4, the compliance ratio of the results above having two objective functionals is shown. It is shown that the 
compliances for the two load cases involve a trade-off. 

(a) c(1)=1.0           (b) c(1)=0.8           (c) c(1)=0.5 (d) c(1)=0.2 (e) c(1)=1.0
Figure 3: Pareto optimal shapes and thickness under multi-loading conditions of T-joint model 

Figure 4: Comparison of compliance of T-joint model 

7.2. Orthotropic material 
 The same optimization problems as 7.1 with orthotropic materials are solved to investigate the influence of 
material. Material distribution of 1E  is illustrated in Fig 5. The direction of 2E  is vertical to 1E . Young’s  modulus 
ratio is set as 

1 2: 10 :1E E = .

Figure 5: Material layout for orthotropic material of T-joint model 

E1(=10E2)

(Front View)

(Top View)

(Side View)
(Side View)

(Front View)

(Top View)

SPC:123

SPC:123

SPC:123
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Figure 6 shows the Pareto optimal shapes and thickness obtained, where the weighting coefficient c(1) is varied 
over 5 stages from 1.0 to 0.0. As shown in Fig 6 (a)-(e), both shape and thickness show similar pattern as isotropic 
one however they are gradually twisted while the value of the coefficient c(1) is decreased. Compared with the 
isotropic material, the Pareto optimal shapes and thickness with orthotropic material are clearly different from 
those of the isotropic one.
 In Fig 7, the compliance ratio of the results above having two objective functionals is shown. As isotropic material, 
it is showed that the compliances for the two load cases involve a trade-off as isotropic material. 

            (a) c(1)=1.0         (b) c(1)=0.8         (c) c(1)=0.5         (d) c(1)=0.2         (e) c(1)=1.0
Figure 6: Pareto optimal shapes and thickness under multi-loading conditions of T-joint model

Figure 7: Comparison of compliance of T-joint model 

8. Conclusion
 This paper proposed a non-parametric multi-objective free-form optimization method for shape and thickness of 
shell structures consisting of orthotropic materials. We designed the Pareto optimal free-form shape and thickness 
of multi-objective shell structures under multi-boundary conditions. The shape and thickness gradient functions 
were derived and applied to this free-optimization method. A design example was presented to verify the 
effectiveness and practical utility of this method. The proposed method makes it possible to obtain the smooth and 
natural Pareto optimal shape and thickness while reducing the objective functional without shape and thickness 
parameterization. According to this method, a natural bead pattern and thickness can be obtained according to the 
boundary conditions. An orthotropic material was distributed to these design problems and the influence of 
material distributions to the optimal shape and thickness distributions of shell structures was also investigated in 
detail.
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1. Abstract
At early design phases, taking into account uncertainty in the optimization of a multidisciplinary system is 
essential to assess its optimal performances. Uncertainty Multidisciplinary Design Optimization methods aim at 
organizing not only the different disciplinary analyses, the uncertainty propagation and the optimization, but also 
the handling of interdisciplinary couplings under uncertainty. A new multi-level hierarchical MDO formulation 
ensuring the coupling satisfaction for all the realizations of the uncertain variables is presented in this paper. 
Coupling satisfaction in realizations is essential to maintain the equivalence between the coupled and decoupled 
UMDO formulations and therefore to ensure the physical consistency of the obtained designs. The proposed 
approach relies on two levels of optimization and surrogate model in order to ensure, at the convergence of the 
optimization problem, the coupling functional relations between the disciplines. The proposed formulation is 
compared to a classical MDO formulation on the design of a two stage sounding rocket. 

2. Keywords: MDO formulation, Stage-Wise Decomposition formulation, Uncertainty, rocket design. 

3. Introduction 
Multidisciplinary Design Optimization (MDO) is a set of engineering methodologies to optimize systems modeled 
as a set of coupled disciplinary analyses (also called subsystem analyses). For example, a launch vehicle is 
customarily decomposed into interacting submodels for propulsion, aerodynamics, trajectory, mass and structure. 
Taking into account the different disciplines requires to model and manage the interactions between them all along 
the design process. Using MDO in the early design phases may improve system performances and decrease design 
cycle cost [1]. At these steps, the determination of the optimal system architecture requires a complete design 
space exploration through repeated discipline simulations. To make the exploration computationally affordable, 
low fidelity disciplinary analyses are mostly employed, which introduce uncertainties. Handling the uncertainties 
at early design phases is thus essential to efficiently characterize the optimal system performances and its 
feasibility because it may reduce the duration and the cost of the next design phases. Uncertainty-based 
Multidisciplinary Design Optimization (UMDO) aims at solving MDO problems in the presence of uncertainty. 
This induces several new challenges compared to deterministic MDO: uncertainty modeling, uncertainty 
propagation, optimization under uncertainty and interdisciplinary coupling handling under uncertainty. In this 
paper, we focus on the interdisciplinary coupling satisfaction as it is essential to ensure the system physical 
consistency.
In deterministic MDO, the interactions between the disciplines are represented by coupling variables and the 
system multidisciplinary consistency is described as a set of interdisciplinary equations to be satisfied. Two types 
of coupling handling approaches may be distinguished: the coupled versus the decoupled methods depending if 
the couplings are found by MultiDisciplinary Analysis (MDA) or by the system optimizer at the MDO 
convergence. These methods may be used within single-level or multi-level UMDO formulations. Compared to 
single-level formulations (e.g. Multi Discipline Feasible (MDF) [2], Individual Discipline Feasible (IDF) [2]) 
multi-level formulations (e.g. Collaborative Optimization (CO), [4], Analytical Target Cascading (ATC) [3]) 
facilitate the system level optimization by introducing additional disciplinary optimizers in order to distribute the 
problem complexity over different dedicated disciplinary optimizations.   
In the presence of uncertainty, the coupling variables are uncertain variables. Coupled single-level UMDO 
formulations (Fig.1) have been proposed [5,6] based on MDF combining Crude Monte Carlo (CMC) and MDA. 
Whereas in deterministic MDO, for a given design there is only one set of coupling variables that satisfies the 
interdisciplinary coupling equations, in UMDO, the uncertain coupling variables have to satisfy the system of 
interdisciplinary equations for each realization of the uncertain variables. The computational cost of the coupled 
single-level approaches becomes prohibitive due to the required number of discipline evaluations. In literature 
[7,8], decoupled single and multi-level UMDO formulations have therefore been investigated to overcome this 
computational burden. These approaches ensure the multidisciplinary system consistency for some particular 
realizations (e.g. at the Most Probable failure Point) or for the first statistical moments (i.e. mean, standard 
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deviation) of the uncertain coupling variables. Thus, it allows to limit the number of variables that have to be 
handled by the optimizer, however it does not ensure the multidisciplinary consistency of the system design for all 
the uncertain variable realizations. 
The objective of this paper is to introduce a new multi-level UMDO formulation (named Multi-level Hierarchical 
Optimization under uncertainty - MHOU) with functional coupling satisfaction under uncertainty (i.e. in 
realizations). The rest of the paper is organized as follows. First (section 4), the existing coupled MDF formulation 
under uncertainty is introduced. In a second part (section 5), MHOU formulation is introduced by using subsystem 
optimizers in addition to the system level optimizer in order to distribute the UMDO problem complexity over 
different dedicated subsystem optimizations. The proposed formulation hierarchically optimizes the whole 
system. It relies on the iterative construction of Polynomial Chaos Expansions (PCE) in order to represent, at the 
convergence of the UMDO problem, the feedback couplings between the disciplines as would MDA do. PCEs 
allow one to remove the feedback couplings and to introduce multi-level optimization while ensuring the physical 
relevance of the obtained design at the convergence. Finally, in a third part (section 6), the proposed formulation is 
compared to MDF on the design of a two solid stage sounding rocket. 

4. Coupled approach: Multi Discipline Feasible (MDF) under uncertainty 
The most straightforward UMDO formulation is an adaptation of the single-level deterministic MDF formulation 
(Fig.1) which is a coupled approach. It consists in ensuring the coupling satisfaction by propagating uncertainty 
through the disciplines with CMC and to solve the system of interdisciplinary equations by MDA for each 
realization generated using CMC [5,6]. MDF under uncertainty can be formulated as follows: 

(1)
 (2) 

with,  the design variable vector belonging to ,  the uncertain variable vector defined by  the joint 
probability distribution function (PDF) on the sample space ,  the performance function,  an uncertainty 
measure of the performance function (e.g. expected value),  the inequality constraint function vector and 
an uncertainty measure of the inequality constraint (e.g. probability of failure). In the rest of the paper, an uncertain 
variable vector is noted  and a realization of this vector . For a given design variable vector , to evaluate the 
uncertainty measure , it is necessary to propagate the uncertainty in the system models. CMC 
is used to estimate  and . To ensure multidisciplinary system consistency, the input coupling variable 
vector , which depends of and ,  has to satisfy the following system of coupled equations: 

(3)

where  is the number of disciplines, is the input coupling variable vector from discipline  to discipline ,
is the input coupling vector composed of the input coupling coming from all disciplines (represented by the dot) to 
the discipline , and is the output coupling vector from discipline  to discipline . Eqs.(3) is a system of 
coupled equations which has to be solved for all the realizations of the uncertain variables in order to ensure that 
the input coupling variables and the corresponding output coupling variables are equal. For one realization of the 
uncertain variable vector, the solving of Eqs.(3) is called a MultiDisciplinary Analysis (MDA) and often involves 
Fixed Point Iteration method. To estimate  and , repeated MDAs are performed for a set of uncertain 
variable realizations sampled by CMC. The computational cost of MDA under uncertainty corresponds to that of 
one MDA multiplied by the number of uncertain variable realizations. For each iteration in  of MDF under 
uncertainty, MDA is performed resulting in a prohibitive computational cost due to a large numbers of calls to the 
disciplines to solve Eqs.(1-2). In order to reduce the computational cost, a decoupled multi-level UMDO 
formulation is proposed in the following section. 

5. Proposed decoupled multi-level formulation: Multi-level Hierarchical Optimization under Uncertainty 
5.1. Interdisciplinary coupling satisfaction with a decoupled approach 
In order to avoid the repeated MDAs, decoupled approaches aim at propagating uncertainty on decoupled 
disciplines allowing one to evaluate them in parallel and to ensure coupling satisfaction by introducing equality 
constraint in the UMDO formulation. However, two main challenges are faced to decouple the design process: 
• Uncertain input coupling variable vector  has to be handled by the system level optimizer. However, an 

optimizer can only handle a finite number of parameters to represent these uncertain variables. It is necessary 
to find a technique to represent an infinite number of realizations of the input uncertain coupling variables 
with a finite number of parameters. 

• Equality constraints between the input coupling variables  and the output coupling variables computed by 
, which are two uncertain variables, have to be imposed. Equality between two uncertain variables 

corresponds to an equality between two functions which is sometimes reduced to equality between 
parameters [7,8] (equality in statistical moments, in realizations, etc.).

In order to overcome these two issues, an approach has been proposed [9] based on a surrogate model of the 
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coupling functional relations. In deterministic decoupled MDO approaches, considering a scalar coupling  from 
the discipline  to the discipline , only one equality constraint in the MDO formulation is added between the input 
coupling variable  and the output coupling variable .
However, in the presence of uncertainty, coupling satisfaction involves an equality constraint between two 
uncertain variables. To ensure coupling satisfaction in realizations, an infinite number of equality constraints have 
to be imposed, one for each realization of the uncertain variables: 

(4)
To solve this problem, an new integral form for the interdisciplinary coupling constraint is introduced: 

(5)

In order to have the integral in Eq.(5) equal to zero, the input coupling variables must be equal to the output 
coupling variables for each realization of the uncertain variables. Nevertheless, to decouple the disciplines, the 
uncertain input coupling variables  have to be handled by the optimizer. In order to solve this second issue, a 
surrogate model of the coupling relation is introduced: . The surrogate model, written 

, provides a functional representation of the dependency between the uncertain variables  and the 
input coupling variables with  the vector of the metamodel parameters. To decouple the disciplines, the 
surrogate model parameters  are handled by the system level optimizer. Note that, in order to keep  simple, 
the dependency between  and  is not present here:  is not a function of , it is learned for a specific  which 
is the unknown UMDO optimum. We propose to model the coupling functional relations with Polynomial Chaos 
Expansion (PCE) because this surrogate model presents advantages in terms of uncertainty analysis and 
propagation [10]. PCE allows one to approximate a function  according to: 

(6)

with  a basis of orthogonal polynomials and  the truncation degree. The choice of the polynomial basis 
is made consistently with the distribution  of the input random variables U. The polynomial basis is 
orthogonal to the weighting function [10] of the input uncertain variable distributions. The difficulty in PCE is the 
estimation of the polynomial coefficients. Different techniques may be employed if black box functions are 
considered: the orthogonal spectral projection or the regression [10]. This approach may be easily generalized to 
coupling vector . In the proposed formulation, PCE coefficients are determined with the regression method 
adapted to multi-level optimization. PCE is used to model the input coupling variables and the PCE coefficients 

 are handled by the system level optimizer. The proposed formulation is presented in the next section. 

5.2. Multi-level Hierarchical Optimization under Uncertainty (MHOU) 
MHOU formulation (Fig. 2) is inspired from SWORD formulation [11] modified for uncertainty handling. MHOU 
is a semi-decoupled multi-level formulation ensuring interdisciplinary coupling satisfaction for all the realizations 
of the uncertain variables. It assumes that the system level objective  is decomposable into a sum of the 
subsystem contributions. For instance, the Gross Lift-Off Weight (GLOW) of a launch vehicle is decomposable as 
the sum of the stage masses. In the proposed formulation, the optimization process is the following: 

At the system level: 

(7)

(8)
(9)

(10)
At the subsystem level: 

(11)

(12)

(13)
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where Eq. (13) is considered for .  is the local design variable vector of the kth subsystem and is the 
shared design variable vector between several subsystems. This formulation allows one to optimize each 
subsystem separately in a hierarchical process. The system level optimizer handles  and the PCE coefficients 
of the feedback coupling variables. The handling of PCE coefficients at the system level allows one to remove the 
feedback couplings and to optimize the subsystems in sequence. The surrogate models of the functional feedback 
couplings provide the required input couplings to the different subsystems. The kth subsystem level optimizer 
handles  and the corresponding problem aims at minimizing the subsystem contribution to the system objective 
while satisfying the subsystem level constraints . The interdisciplinary coupling constraint Eq. (13) 
guarantees the couplings whatever the realization of the uncertain variables. This formulation is particularly suited 
for launch vehicle in order to decompose the design process into the different stage optimizations [11].  

Figure 1 : MDF under uncertainty Figure 2 : MHOU formulation 

6. Application: two stage sounding rocket design 
The launch vehicle design test case consists of the design of a two solid stage sounding rocket for a payload of 
800kg that has to reach an altitude of 300km. Four disciplines are involved: propulsion, mass budget and geometry 
design, aerodynamics and trajectory (Figure 3). The sounding rocket design is decomposed into two subsystems, 
one for each stage. MHOU formulation enables a hierarchical design process decomposed into two teams, one for 
each sounding rocket stage. The kth subsystem objective is to minimize a function of the stage mass

 (with  the standard deviation). The system level objective is to minimize a function of the GLOW.  
The uncertainty measure for the constraints  is the probability measure . The required feedback 
couplings for the 2nd stage design are  which are  the separation altitude and velocity between the 

1st and 2nd stages (Fig. 3). The design constraints for the 2nd stage are  which involve the 
avoidance of the breakaway of the jet in the divergent skirt ( ), the apogee altitude ( ) and the maximal axial 
load factor ( ). The same constraints are taken into account for the 1st stage expected for the apogee altitude. The 
proposed multi-level decoupled formulation and MDF under uncertainty are compared. 

Table 1: Design variables 
Design variables Symbol Min Max 

1st stage diameter (m)  0.5 1.0 
1st stage propellant mass 

(kg) 1000 3000 

1st stage nozzle expansion 
ratio 1.0 20.0 

1st stage grain relative 
length (%) 30 80 

1st stage  combustion depth 
(%) 30 80 

2nd stage diameter (m)  0.5 1.0 
2nd stage propellant mass 

(kg) 2000 3000 

2nd stage nozzle expansion 
ratio 1.0 20.0 

2nd stage grain relative 
length (%) 30 80

Figure 3: Design Structure Matrix of the sounding rocket 2nd stage  combustion 
depth (%) 30 80 
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The design variables are resumed in Table 1. The uncertain variables taken into account are the 1st stage 
combustion regression rate coefficient  in cm/s/MPa0.3 and the 2nd stage dry mass error  in 
kg. The mission has to ensure that the payload reaches at least an altitude of 300km (with a probability of failure of 

). MDF under uncertainty and MHOU formulations use CMC to propagate uncertainty, to estimate ,
, and based on a fixed set of random samples. The FPI convergence criterion is set to a relative error of 

1%. Both system level optimizers are stopped when  evaluations of the disciplines is reached. 

Table 2: Sounding rocket problem results 
 MDF under uncertainty MHOU 

 Objective function  7.07 (t) 6.68 (t) 

Design variables 

 apogee altitude 0.028 0.029 

Figure 4: Convergence curves on the 
feasible designs w.r.t. the number of 

discipline evaluations 

Figure 5: Sounding rocket altitude as a 
function of time for the optimal design - 

MHOU

Figure 6: Optimal 
sounding rocket 

sizing and geometry 

Figure 7: Altitude (blue) and velocity (pink) couplings in MDF and MHOU formulations + coupling error (green) 
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The discipline modeling (propulsion, sizing, aerodynamics and trajectory) is adapted from classical launch vehicle 
models at the early design phases [12, 13]. Gradient based optimizer (SQP) is used at the system level in both 
formulations. CMA-ES optimization algorithm [14] is used at the subsystem level for MHOU formulation. The 
two problems start from the same feasible baseline to be optimized.  The results of the sounding rocket problem are 
resumed in Table 2. MHOU presents better characteristic in terms of quality of objective function (6.68t) than to 
MDF (7.07t) for a fixed discipline evaluation budget (Fig. 4). Both MDF and MHOU solutions satisfy the 
constraints especially the apogee altitude of 300km as illustrated in Figure 5. Only 2.9% of the trajectories do not 
reach the required altitude. Moreover, MHOU ensures interdisciplinary coupling satisfaction for the feedback 
couplings as illustrated by the comparison of the couplings for the optimal design found with MHOU with a 
coupled approach (MDA) and the decoupled approach (Fig. 7). The separation altitude and velocity distributions 
are similar with MDF (MDA on the optimal MHOU design) and MHOU (Fig. 7). Moreover, the interdisciplinary 
coupling error for the separation altitude and velocity are represented in Figure 7. The coupling error is always 
lower than 2% and concentrated between 0% and 0.5 %. 

7. Conclusions: This paper provides a new multi-level hierarchical UMDO formulation that ensures the system 
multidisciplinary feasibility for all the realizations of the uncertain variables. The proposed formulation is based 
on the iterative construction of surrogate models (PCE) of the functional coupling relations. The PCE coefficients 
are handled by the system level optimizer and subsystem optimizers only handle local design variables. Numerical 
comparisons between MDF and the proposed formulation have been performed on the design of a sounding rocket 
highlighting the efficiency of MHOU in this test case. Additional research effort is needed to incorporate mixed 
aleatory and epistemic uncertainties in UMDO. 
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1. Abstract
A multidisciplinary and multiobjective optimization of a transonic fan blade for a high bypass ratio turbofan engine

is presented including aerodynamic as well as structural static and dynamic performance criteria. The optimization

strategy applied is based on a two-level approach consisting of a Differential Evolution algorithm coupled to a

Kriging metamodel in order to speed up the optimization process. High-fidelity performance evaluations are car-

ried out by means of 3D Computational Fluid Dynamics and Computational Structural Mechanics analysis tools.

Multiple key operating points are considered in the optimization process; aerodynamic performance is evaluated at

top-of-climb and cruise conditions, while maximum stresses are evaluated at take-off operation, taking into account

centrifugal and gas loads. Blade vibration is furthermore assessed over the entire operating range. Aerodynamic

performance is separately evaluated for core and bypass flows in order to match the requirements specified by the

engine cycle design.

2. Keywords: Multidisciplinary Optimization, Fan Blade, Turbofan, Bypass Ratio, Aerostructural Optimization.

3. Introduction
High bypass ratio turbofan engines are today the almost exclusive powerplant of choice for medium and long

haul commercial aircraft due to high obtainable thrust levels combined with good fuel efficiency. About 80%

of a modern turbofan engine’s thrust is generated by the fan. Low engine fuel consumption requires the fan

blades to transfer mechanical shaft power into thrust with the lowest possible amount of aerodynamic losses (high

propulsive efficiency). Although this goal can be formulated easily, in practice additional requirements such as

stable operation under widely varying operating conditions, transonic relative inlet flows and structural integrity

constraints significantly complexify the design problem. Structural loads occurring during operation include cen-

trifugal forces, aerodynamic loads and periodic blade excitations from varying sources. As the fan blade is a safety

critical component, all of the above aspects need to be considered in the design process.

In the aero-structural design process commonly applied by industry, the structural and aerodynamic design are

mostly handled separately from each other and the design progresses iteratively from one discipline to another

until a satisfactory solution is found. The result is a lengthy and expensive design process with the additional

disadvantage that interactions between the involved disciplines are difficult to reveal.

In this paper the application of a multidisciplinary and multiobjective optimization system to the above stated

design problem is presented. The optimization method enables the concurrent evaluation of aerodynamic and

structural performance criteria, therefore facilitating the identification of the interaction of disciplines and allow-

ing the design to progress towards global optimal solutions in a reduced design time.

4. Baseline design
Specified engine cycle requirements are the starting point for the fan blade design process. To enable a reasonable

design space definition, a baseline design was generated using two-dimensional preliminary aerodynamic design

tools based on first principles and correlations. The methods enable a reasonable estimation on required spanwise

blade angle distributions and suitable profiles to be made. The obtained geometry was analyzed using CFD and

slightly adjusted manually to meet the operating range requirements. However, not all aerodynamic specifications

could be met at the end of this design stage.

5. Optimization system
The optimization system shown in Fig. 1 is the result of more than one and a half decades of research and develop-

ment at the von Karman Institute [1],[2]. The core components of the system are a multiobjective Differential Evo-

lution algorithm (DE) [3,4], a database, several metamodels, including Radial Basis Functions,
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Figure 1: Flow chart of the optimization system.

Artificial Neural Networks and Kriging, and a high

fidelity evaluation chain including a fully automatic

geometry and CAD generation, automatic meshing

and high-fidelity performance evaluations by Com-

putational Fluid Dynamics (CFD) and Computa-

tional Structural Mechanics (CSM). The optimization

method is based on a two-level strategy coupling the

evolutionary optimization to a sequentially updated

metamodel. Prior to the optimization an initial de-

sign space sampling is performed using a fractional

factorial Design of Experiments containing 128 sam-

ples plus the baseline and a design at the center of the

design space. Each sample is evaluated by the high fi-

delity evaluation chain. The resulting relationships be-

tween optimization parameters and performance are stored in a database which serves to train the first metamodel.

On the next level the optimization is performed using exclusively the metamodel for the performance evaluations.

Since metamodel evaluations are computationally cheap, thousands of generations can be computed by the Differ-

ential Evolution algorithm within a few minutes. However, since the metamodel predictions at early stages of the

process can be expected to be rather inaccurate, eight of the best performing designs of the Pareto front predicted

by the metamodel are chosen for re-evaluation by the high-fidelity evaluation chain. The results are added to the

database and used to re-train the metamodel, making it more accurate in the regions where it previously predicted

optimal designs. In the remainder of this paper, one loop consisting of optimization, high-fidelity re-evaluation

and metamodel generation is termed an iteration. Ordinary Kriging is used as metamodel. Each performance

parameter is predicted with one dedicated metamodel, which reduces prediction error and training cost. Further

implementation details of the system can be found in e.g. [4],[5].

6. Fan blade parametrization
The geometry of the fan blade is defined by parametric Bézier and B-Spline curves which specify the blade chord,

blade angles, the thickness distributions at hub and tip sections and the profile stacking axis by lean and sweep,

see Figs. 2 and 3. The blade metal angles at the leading edge, trailing edge and an intermediate point as well as the

chord length are defined by spanwise B-Spline curves, as shown in Fig. 2. Control points for these distributions are

defined on four spanwise positions which are being fixed for three of the points at 0, 50 and 100% span. The span-

wise position of the fourth control point is added as an optimization parameter in order to allow additional control

of the blade geometry close to the bypass splitter. Some of the control points are directly defined as optimization

parameters and are indicated with arrows, while others are defined via geometric dependencies to other control

points (e.g. angles and distances). The blade thicknesses at hub and tip sections are defined by B-Spline curves as
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Figure 4: Computational domains of the baseline fan blade.

shown in Fig. 2 and are designed based on [6]. Both distributions can be scaled independently by a uniform scaling

factor, therefore allowing thickness changes without altering the actual distributions. In addition, the number of

blades is allowed to be modified resulting in a total of 26 optimization parameters.

7. High fidelity performance evaluations
The aerodynamic performance of the fan blade is assessed using the commercially available 3D Reynolds-Averaged

Navier-Stokes solver FINETM/Turbo from Numeca. The solver is a structured, density based code using a finite

volume method. The fluid domain is discretized using a multi-block structured mesh consisting of about 2 mil-

lion grid points with a domain averaged non-dimensional height of the first cell near the wall (y+) of about 3.

Turbulence effects are taken into account with the one-equation Spalart-Allmaras turbulence model.

To meet the aerodynamic design and off-design targets of the fan blade, its performance is evaluated at two key

flight conditions, namely top-of-climb (ToC) and cruise. In total nine operating points are computed for each

design, including four points on the top-of-climb speedline and five points on the cruise speedline. An automatic

convergence check is performed after each CFD computation, which assesses the mass flow error between domain

inlet and outlet and the iteration errors of isentropic efficiency and total pressure ratio. Only converged cases are

subsequently assessed by an automatic postprocessing step, which extracts the required performance parameters

needed by the optimizer. Non-converged cases are considered as failed and are automatically excluded from the

optimization process.

The computational domains of the baseline fan blade for both solid and fluid are shown in Fig. 4. The fluid domain

comprises one periodic section of the full annulus with periodic boundary conditions being applied at each side of

the domain. Total pressure, total temperature, absolute inflow angle and turbulent kinematic viscosity are imposed

as boundary conditions at the inlet. The low hub-to-tip radius ratio of the blade results in a transonic flow at all

considered operating conditions with the relative inlet flow to the blade being subsonic for the lower part of the

blade extending to about 50 percent span and supersonic for the remaining part of the blade up to the blade tip.

The flow at the subsonic root section (the portion of the blade feeding the engine core) is highly sensitive towards

outlet pressure differences, requiring the mass flow to be imposed as the core outlet boundary condition in order to

obtain a stable flow solution. In contrast the static pressure with the radial equilibrium law is defined as boundary

condition for the bypass outlet. Performance curves are computed by changing the bypass outlet static pressure.

The solid domain of the fan is discretized with an unstructured mesh consisting of quadratic tetrahedral elements.

The computations are performed using the open-source finite element solver CalculiX [7]. Stresses in the blade

3
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are computed by means of a static analysis at take-off conditions taking into account geometric non-linearities.

The blade is subjected to centrifugal and gas loads whereas the gas loads are extracted from the converged take-off

CFD computation of the baseline geometry and interpolated onto the FEM grid.

Additionally to the structural static evaluation, fan blade vibration is considered at all previously mentioned key

operating points (take-off, top-of-climb and cruise) to assess the risk of possible high-cycle fatigue failure. Modal

analysis is used to determine the natural frequencies of the fan blade while centrifugal stiffening is included in

the computations in order to take into account the non-linear increase of blade stiffness with increasing rotational

speed (an effect known as centrifugal stiffening). The margins between excitation frequencies and blade natu-

ral frequencies at the rotational speeds associated with the aforementioned operating points are evaluated using

the Campbell diagram. Excitations from one-per-revolution and two-per-revolution disturbances are considered

covering possible sources like unbalance and cross-wind. The fan blade is modelled using material properties of

Ti-6Al-4V.

An important detail of the solid domain is the blade root and its restraint, which is the part of the solid extending

out of the fluid domain as shown in Fig. 4. The root has important structural implications for both stresses and

vibrations as it is the portion of the blade that connects to the fan disk and therefore defines the boundary condi-

tions for the structural simulations. A typical blade-disk assembly is shown on the left bottom part of Fig. 4. In the

structural computation all mesh nodes on the upper dovetail root surface are restrained in all degrees of freedom

in order to simulate the disk assembly. In reality, these surfaces are in contact with the disk and small relative

movements between disk and blade root are possible. Fixing the nodes will thus result in unrealistically high stress

concentrations on the surface. These stresses are not taken into account in the postprocessing step.

8. Objectives and constraints
Two objectives and in total 12 aerodynamic and structural constraints are defined for the optimization problem. The

objectives are defined to maximize peak efficiency at cruise rotational speed and maximize stall margin, defined as

the non-dimensional mass flow difference between the cruise design point and the last converged CFD operating

point towards low mass flows, see Fig. 5. The maximization problem is converted to an equivalent minimization

problem, such that both objectives are stated as

minimize =

⎧⎪⎪⎨
⎪⎪⎩
−ηcruise,peak

−
(

ṁcruise,design−ṁcruise,stall
ṁcruise,stall

) (1)

The stall margin objective implies the assumption that numerical instabilities occuring at lower mass flows resem-

ble the physical process of stall/surge in a real fan.

Figure 5: Definition of objectives and the top-of-climb

evaluation point shown on the performance map of the

baseline design.

The constraints are defined as follows

ṁcruise,stall ≤ ṁcruise,design ≤ ṁcruise,choke (2)

0.97 · ṁtoc,design < ṁeval,toc < 1.03 · ṁtoc,design (3)

Πt−t,bypass,eval,toc > 1.7 (4)

Πt−t,core,eval,toc > 1.4 (5)

Mamax,bypass,eval,toc < 0.9 (6)

Mamax,core,eval,toc < 0.9 (7)

αmax,bypass,eval,toc < 70 deg (8)

αmax,core,eval,toc < 70 deg (9)

σvM < 800 MPa (10)

ΔF̂cruise +ΔF̂ToC +ΔF̂T/O > 12 (11)

Four constraints (Eq. (2) and (3)) are imposed to

ensure that the operating range of the fan matches

the engine cycle design requirements at cruise and

top-of-climb defined as ṁcruise,design = 541 kg/s and

ṁtoc,design = 699 kg/s. A top-of-climb evaluation point

with a 6% stall margin with respect to the total pres-

sure ratio is defined as shown in Fig. 5. This is the operating point where the required total pressure ratio is the

highest throughout the mission. Two constraints are therefore defined to ensure that the pressure ratios for core
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and bypass flows are not lower than the design requirements, see Eq. (4) and (5). Additionally, Eq. (6)-(9) limit

the maximum absolute inlet Mach numbers and the maximum absolute flow angles at the bypass and core inlet

to ensure that the stators located further downstream (Outlet Guide Vane in the bypass and Engine Section Sta-

tor in the core) receive a healthy inlet flow and performance improvements of the fan blade are not obtained at

the cost of overall stage performance. The absolute flow angle is measured with respect to the meridional plane.

Equation (10) defines that the maximum von Mises stresses in the fan blade are required to be lower than 800 MPa,

leaving a 130 MPa dynamic stress margin towards the yield stress of the titanium alloy. Blade vibration is assessed

at cruise, top-of-climb and take-off. A minimum required frequency margin between the first bending mode of the

blade and the first harmonic of a one and two per revolution excitation are defined as constraint (Eq. (11)).

Figure 6: Objective space of the optimization after a total

of 10 iterations.

9. Results
In Fig. 6 the objective space is shown after a total of

10 iterations. Each symbol in the plot represents a de-

sign which was evaluated by the high-fidelity evalua-

tion chain. DOE samples are shown as circles while

designs generated during the optimization appear as

squares. Samples that are satisfying the constraints are

shown in light blue. Improved performance is obtained

towards the lower left corner of the objective space.

An indication of all designs generated during the op-

timization is given in the upper right corner of Fig. 6.

However, the designs which are satisfying all imposed

constraints are located in the region marked with the

red square. The main part of Fig. 6 shows a close up

on this region.

As the optimization problem is highly constrained,

only three designs in the DOE database initially sat-

isfied all constraints. After nine iterations the Kriging

metamodel became sufficiently accurate to guide the

optimizer to the feasible region of the design space.

Subsequently, all designs generated during the ninth

and tenth iteration were feasible.

Figure 7: Comparison of performance maps of the base-

line design (orange) and the optimized design (light

blue).

The best design found after 10 iterations is designated

as IT010 IND001 in Fig. 6. The baseline design is

shown as orange diamond to enable a performance

comparison. It should again be emphasized that the

baseline design violates a number of constraints and is

therefore not part of the feasible set of designs. In con-

trast, design IT010 IND001 is satisfying all imposed

constraints and at the same time shows improvements

in both objectives.

A more detailed assessment of the aerodynamic perfor-

mances of both designs is possible by comparing their

performance maps, as shown in Fig. 7. The cruise de-

sign point mass flow is indicated by the dashed line. As

shown in the lower part of Fig. 7, the pressure ratio of

the fan was successfully increased over the entire oper-

ating range to meet the core and bypass pressure ratio

requirements at top-of-climb. The baseline design gen-

erates overall a lower pressure ratio, which generally

translates to higher obtainable efficiencies. However,

with the increase in pressure ratio the optimized de-

sign still obtains a peak efficiency of 93.7%; an 0.05%

improvement over the baseline design. The peak ef-

ficiency occurs at a mass flow of 561kg/s which is

0.037% above the design point mass flow. This can be

deemed as reasonably close for a numerical prediction.
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Figure 8: Von Mises stress distribution in the baseline

(left) and the optimized design.

An analysis of the optimization process reveals that the

structural constraints were among the most difficult to

satisfy. As the baseline design was generated purely

based on aerodynamic considerations, it violated both

the stress and the vibration constraints. A comparison

of the von Mises stress distributions on the suction side

surfaces of baseline and optimized design is shown in

Fig. 8. Peak stresses exceeding the constraint value

occur in the baseline design at the leading edge close

to the transition to the dovetail root and on the suction

side hub region close to the trailing edge (both regions

are indicated by ellipses in Fig. 8). The stress levels

in the critical regions were successfully lowered by the

optimizer as shown on the right hand side of Fig. 8.

As noted above, the high stresses in the dovetail root

are not taken into account in the postprocessing step

as these are artificially increased due to the boundary

conditions applied in the structural computations.

10. Conclusions
This paper presents the application of a two-level optimization system based on a Differential Evolution algorithm

coupled to a sequentially updated Kriging metamodel to the multidisciplinary and multiobjective optimization of

a transonic fan blade for a high-bypass ratio turbofan engine. Aerodynamic performance requirements for bypass

and core sections are simultaneously taken into account in the optimization problem formulation. Stresses and

vibrations are furthermore considered as structural constraints. The result is a problem with a total of 12 aerody-

namic and structural constraints. The optimization system successfully identified the feasible region in the design

space after 9 iterations. Subsequently, the objectives (efficiency and stall margin) were rapidly improved. The best

design was found after 10 iterations, which showed an improvement of both objectives with respect to the baseline

design; a significant improvement, as the baseline design did not satisfy all imposed constraints.
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technique de Mons/ von Karman Institute for Fluid Dynamics, 1999.

[2] T. Verstraete, Multidisciplinary Turbomachinery Component Optimization Considering Performance, Stress,
and Internal Heat Transfer, PhD thesis, University of Ghent/ von Karman Institute for Fluid Dynamics,

2008.

[3] R. Storn and K. Price, Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over

Continuous Spaces, Journal of Global Optimization, 11(4), 341-359, 1997.

[4] T. Verstraete, Multidisciplinary Optimization of Turbomachinery Components using Differential Evolution,

VKI LS 2010-07 Introduction to Optimization and Multidisciplinary Design in Aeronautics and Turboma-
chinery, Rhode-Saint-Genèse, Belgium, 2010.
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1. Abstract
The usage of multi material structures in industry, especially in the automotive industry are increasing. To over-

come the difficulties in joining these structures, adhesives have several benefits over traditional joining methods.

Therefore, accurate simulations of the entire process of fracture including the adhesive layer is crucial. In this pa-

per, material parameters of a previously developed meso mechanical finite element (FE) model of a thin adhesive

layer are optimized using the Strength Pareto Evolutionary Algorithm (SPEA2). Objective functions are defined

as the error between experimental data and simulation data. The experimental data is provided by previously per-

formed experiments where an adhesive layer was loaded in monotonically increasing peel and shear. Two objective

functions are dependent on 9 model parameters (decision variables) in total and are evaluated by running two FE

simulations, one is loading the adhesive layer in peel and the other in shear. The original study converted the two

objective functions into one function that resulted in one optimal solution. In this study, however, a Pareto front

is obtained by employing the SPEA2 algorithm. Thus, more insight into the material model, objective functions,

optimal solutions and decision space is acquired using the Pareto front. We compare the results and show good

agreement with the experimental data.

2. Keywords: Multi-objective optimization, parameter identification, micro mechanical model, adhesive, CZM

3. Introduction
Nowadays, adhesive joints are broadly used in industry due to providing galvanic insulation, vibration damping,

and sealing capacity. In case adhesive joints are utilized to carry loads, finite element methods and constitutive laws

are required to be developed in order to facilitate simulations in the product development process. The accuracy

of the constitutive material model is highly dependent on the proper material parameters. Emphasis has to be

put on accurately identifying these material parameters. Determination of material parameters have been done

previously using inverse methods. Mahneken [1] introduces a unified strategy for identifying material parameters,

by coupling a gradient based optimization algorithm with a FEM framework for inelastic material models. The

constitutive model parameters of a thin walled tube in axial crushing were identified by Markiewicz [2]. Two

identified parameters were optimized by using the BFGS algorithm. Traditionally only one objective, one load

case, has been studied in literature. However, depending on the nature of the problem several load cases (ex.

tensile and shear) might occur simultaneously. Optimizing parameters with consideration to only one load case,

despite more cases being required, will result in an inaccurate numerical model. Accordingly, more than one

objective is needed to be optimized, consequently it will require more experiments and simulations [3, 4]. Aguir et

al. studied the behavior of an elasto-plastic material in a sheet metal forming process. They identified the material

parameters of stainless steel based on shear and bulge experiments. The error between the experimental results and

the FEM simulations were minimized by using surrogate base multi-objective optimization [4].

In optimization problems with more than one objective, one extreme solution would not satisfy both objective

functions and the optimal solution of one objective will not necessarily be the best solution for the other objec-

tive(s). Thus, different solutions will produce a trade-off between different objectives and a set of solutions is

required to represent the optimal solutions for all objectives. The characteristic of evolutionary methods which use

a population of solutions that evolve in each generation is well suited for multi-objective optimization problems.

There are a number of significant studies comparing different MOEAs [5, 6, 7, 8, 9, 10, 11]. The most represen-

tative, discussed and compared evolutionary algorithms are Non-dominated Sorting GA (NSGA-II) [12], strength

Pareto evolutionary algorithm (SPEA, SPEA2) [5, 13], Pareto archived evolution strategy (PAES)[14, 8], and

Pareto enveloped based selection algorithm (PESA, PESA II) [15, 16]. Extensive comparison studies and numer-

ical simulation on various test problems concludes to a better overall behavior of NSGA-II and SPEA2 compared

to other algorithms.
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Table 1: Parameter settings for the SPEA2 algorithm.

Init. pop. Arch. pop. Cross over prob. Mutation prob. SBX distr. index Mutation distr. index

40 40 0.8 0.2 10 10

In this work, material parameters of an adhesive layer based on the previous work by Salomonsson and Andersson

[17] are optimized by using SPEA2. The strength Pareto evolutionary algorithm has been applied on real world

engineering applications previously [18]. The two objectives are defined as the error between the experiments and

finite element simulations, to identify the optimal value of the material parameters. In the next section the material

model and the original study are briefly introduced. The optimization process is outlined in section 5. Whereas

section 6 presents the results and section 7 is devoted to the conclusions.

4. Problem definition
In adhesive material models, two deformation modes dominate; 1) peel deformation, and 2) shear deformation [19].

In research literature, a number of experimental methods have been developed to measure the stress elongation

relations. An alternative approach is to develop a constitutive law for the adhesive layer, also referred as the

cohesive zone model, that couples the peel and shear stresses in an integrated manner. Salomonsson and Andersson

[17] developed a meso mechanical model in order to compare with experimental data [20, 21]. A representative

volume element (RVE) of the adhesive layer was designed and the parameters for the interface elements in the FE-

model were determined by calibrating the simulated peel and shear stress-elongation curves to the experimental

curves.

The proposed model by Salomonsson and Andersson can to a sufficient extent simulate the stress-elongation rela-

tion in peel and shear. The study defined two objective functions as the fitness of the peel and shear simulations.

They transformed the two objectives into one by using the product of the two. There is no prior knowledge about

the objectives, whether they are conflicting or non-conflicting. In case of conflicting objectives, a set of Pareto op-

timal solutions would be needed while in non-conflicting objectives the optimization would result in one optimal

solution. Therefore, their provided solution might have been one of the optimal solutions. The aim of this paper is

to analyze the problem using a true multi-objective optimization method and generate a number of Pareto optimal

points. Comparing the results of this paper and the previous research performed by Salomonsson and Andersson,

either confirms global optimality of their solution or shows that there exist a set of trade-off solutions.

5. Procedure
The same mesomechanical model created by Salomonsson and Andersson [17] is used in this project. The model

consists of a representative volume element (RVE) of an adhesive layer. The thickness of RVE is the same as the

thickness of adhesive layer in the experiment which was 0.2 mm. Based on studies and preliminary simulations,

the length of 0.8 mm for the RVE is chosen to be enough to capture the fracture process. A set of 9 parameters is

chosen as the variables to be calibrated by the optimization study. The parameters with superscript I are related to

the polymer blend and for the minerals the parameters are identified by superscript II. The set of nine variables are:

κ = [σ I
Y ,λ

I
2 ,σ

I
0,δ

I
nc,δ

I
tc,λ

II
2 ,σ II

0 ,δ II
nc,δ

II
tc ] (1)

See [17] for a detailed explanation.

The Young’s modulus for the polymer blend is set to EI = 2GPa and the hardening modulus is HI = 200MPa.

Poisson’s ratio for the polymer is set to ν I = 0.35. The Young’s modulus and Poisson’s ratio for mineral grains are

set to EII = 70GPa and ν II = 0.35 and is considered elastic. The aforementioned parameters are fixed during all

simulations. The two objective functions are defined by using FE simulations and the results from experiments. In

this report, the case in pure peel load is denoted as MOD1 and the shear load is denoted as MOD2. The MOOP is

defined by minimizing the two objectives.

The strength Pareto evolutionary algorithm (SPEA2) [13] is used to solve this optimization problem. Simulated

binary crossover (SBX) and polynomial mutation are the operators employed in the SPEA2 algorithm. The param-

eter setting for the algorithm and the genetic operators are based on the recommendations in the literature and the

author’s experience which are presented in table 1.

The lower and upper limit for the all 9 variables are defined by Salomonsson, one of the authors of the original

paper. The variables and their bounds are shown in table 2. The 40 initial sampling points known as design of

experiment (DoE) are generated by using the Latin hypercube sampling method. The iterative Latin hypercube

sampling method using maximin (maximize minimum distance between the point) with 20 iterations is the specific

2

250

Leo
Rectangle



Table 2: The upper and lower limits of the variables and the optimal solutions in the original study.

σ I
Y (MPa) λ I

2(−) σ I
0(MPa) δ I

nc(μm) δ I
tc(μm) λ II

2 (−) σ II
0 (MPa) δ II

nc(μm) δ II
tc (μm)

Range [45,55] [0.1,0.8] [20,25] [45, 80] [20, 60] [0.1, 0.8] [9, 11] [10, 60] [30, 100]

Optimal 50 0.31 23 53 38 0.39 10 21 49

method employed in this study. In order to reduce the convergence time and create better comparable results, one

of the initial DoEs is replaced by the optimal solution obtained in the original study, listed in table 2.

The objective function for peel and shear are defined as the L2-norm of the error between the experimental data

and the simulation data.

f :=
1

n
γ‖ED−SD‖ (2)

where ED and SD denote the experimental stress data and the simulated stress data and n denotes the number of

simulation points. The objectives are penalized by γ in order to capture the crucial parts of the curves. This would

also improve the accuracy of the comparison between the two curves.

In the simulation of the shear load case (MOD2) it is cumbersome to catch the descending part of the curve. The

elements in the FE model become distorted and the analysis fails because of large deformation in some parts of the

RVE when a large crack coalesce. Thus, in the simulation of the second objective only the stress values within the

range of 0 to 70 μm of elongations are considered.

Each FE simulation of MOD1 varies between 30 min to approximately 2 hours, while MOD2 can take up to 8

hours. In every generation of the SPEA2 algorithm, 40 new fitness evaluations of both objectives are performed.

Therefore, parallel computation across several work stations is beneficial.

In order to reduce the computation time of FE simulation one way could be to employ meta-modeling techniques.

Employing meta-modeling methods to reduce the cost of FE simulations computational time is more or less manda-

tory. However, the “curse of dimensionality” is a known problem in surrogate modeling of high dimensional

problems, that can affect the accuracy of the meta-models. Consequently the final non-dominated solutions can

be affected. In this project, dealing with surrogate models generated from 9 variables for MOD1 and MOD2 can

increase the error in computing the fitness functions. This approximation along with the definition of the objective

functions, which are rough calculation of the errors between the two curves, will increase the error. This can lead

the search direction of the MOO algorithm to an incorrect path. Thus, in this study it has been decided not to

employ any surrogate modeling and compute the fitness functions by running the actual FE simulations. Despite

that, the obtained results can be used to compare the accuracy of different meta-modeling methods.

Table 3: Original optimal parameters and optimal parameters of MOO

σ I
Y (MPa) λ I

2(−) σ I
0(MPa) δ I

nc(μm) δ I
tc(μm) λ II

2 (−) σ II
0 (MPa) δ II

nc(μm) δ II
tc (μm)

Orig. study 50 0.31 23 53 38 0.39 10 21 49

This study 49.67 0.29 22.88 52.6 38.51 0.36 10 20.39 52.39

3

251

Leo
Rectangle



f1

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

f 2

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2 Estimated Pareto
Original Optimum
Selected solution

Figure 1: Pareto front (non-dominated solutions)

6. Results
The set of non-dominated solutions are illustrated in figure 1. It is clear that the objectives are conflicting and the

original solution, indicated by the square, is not far off from the optimal set of solutions in the lower left corner.

This can also be seen in both figures 2a and 2b, where the similarity between the curves is evident. On the other

hand, a better fit to the experimental data is observed in figure 2d compared to figure 2c. The authors of the

original study stated three reasons for not reaching a better fit to the peel curve: 1) A too narrow search space for

the parameters, 2) the nature of conflicting objectives, 3) the inherit property of the cohesive model [17]. In this

study the search space of the parameters is broadened. The conflicting nature of peel and shear can still be a reason

for not reaching a better fit. The discrepancy between the MOD1 simulation curve and experimental curve is due

to the nature of the cohesive zone model. As suggested by the original authors, using a different cohesive law with

different fracture energies in peel and shear could improve the fitness.

Table 3 shows the decision variables generating the selected optimal solution. The similarity in the values of the

parameters indicate a need for a sensitivity analysis in order to further map the dependencies of variable changes

to the objectives. However, by comparing the parameters σ I
0 and σ II

0 during the evolutions in the original study

and the optimal selected solution in this study, it can be concluded that these parameters are almost constant.
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Figure 2: Stress-elongation curves.

7. Conclusion
In the future, the MOO of the adhesive layer can be further studied by performing sensitivity analysis in order

to better understand the nature of the problem and provide a broad insight to the decision makers. Also, further

studies on the parameter setting of the optimization algorithm for a faster convergence is useful. By obtaining the

best set of non-dominated solutions, an interesting study can be carried out in employing or developing proper,

accurate and fast meta models for these types of problems, including curve fitting and parameter identification.

Another interesting study is to employ the guided evolutionary multi objective optimization method which focuses

on finding more solutions in a user defined objective space.
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1. Abstract
Structures designed by topology optimization (TO) are frequently sensitive to loads different from the ones ac-

counted for in the optimization. In extreme cases this means that loads differing ever so slightly from the ones it

was designed to carry may cause a structure to collapse. It is therefore clear that handling uncertainty regarding the

actual loadings is important. To address this issue in a systematic manner is one of the main goals in the field of

robust TO. In this work we present a deterministic robust formulation of TO for maximum stiffness design which

accounts for uncertain variations around a set of nominal loads. The idea is to find a design which minimizes the

maximum compliance obtained as the loads vary in infinite, so-called uncertainty sets. This naturally gives rise to

a semi-infinite optimization problem, which we here reformulate into a non-linear, semi-definite program. With

appropriate numerical algorithms this optimization problem can be solved at a cost similar to that of solving a

standard multiple load-case TO problem with the number of loads equal to the number of spatial dimensions plus

one, times the number of nominal loads. In contrast to most previously suggested methods, which can only be

applied to small-scale problems, the presented method is – as illustrated by a numerical example – well-suited for

large-scale TO problems.

2. Keywords: Robust optimization, Topology optimization, Large-scale optimization, Non-linear semi-definite

programming

3. Introduction
Robust problem formulations in structural optimization can be divided into two groups [3]: (i) stochastic and (ii)

deterministic, or worst-case. The stochastic approach is perhaps the most common. It can essentially be divided

into two classes: reliability-based methods [15], often based on an inner loop where the structure is optimized and

an outer loop where the uncertainty parameters are modified, and ”sampling-based” methods, where the stochastic

problem is converted into a deterministic by sampling from a probability distribution [10]. A drawback of stochas-

tic methods is their reliance on good statistical data, and, in certain applications more importantly [3], they only

provide probabilistic guarantees of robustness.

In this paper we consider robust deterministic topology optimization of discretized continuum bodies governed

by a linear equilibrium equation of the form

Ku = f0 + fvar

where f0 is a given fixed load and fvar is allowed to vary in some uncertainty set. The special case when

f0 = 0 has been treated in both finite- and infinite-dimensional settings by several authors [2, 8, 17, 5, 13]. The

general case with a non-zero f0 is however less explored. Ben-Tal et al. [3, p. 215] showed how to formulate

the problem as a semi-definite program, which was however not suitable for large-scale problems (see also [7]).

Kanno [14] proposed an optimization problem in the form of a mathematical program with equilibrium constraints

(MPEC). That formulation resembles the so-called simultaneous formulation in traditional stiffness optimization

[9] involving the equilibrium equation as an explicit constraint; consequently it may be difficult to solve large-

scale instances of the MPEC-formulation. To the authors’ knowledge, the only paper dealing with large-scale,

deterministic robust structural optimization is [12]. Therein the authors propose a special algorithm to solve a

generalized, inhomogeneous eigenvalue problem arising from the maximization of the compliance. That algorithm

however requires up to 15 factorizations of a system matrix (involving the stiffness matrix) for each design, while

the method we propose requires just one. In addition, the method proposed herein is readily implemented using

standard linear solvers and software for non-linear programming.

In the following the space of symmetric n × n matrices with real entries is denoted S
n. For A and B in S

n,

”A 	 B” (”A 
 B”) means that A−B is positive semi-definite (positive definite). The set of symmetric, positive

1
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semi-definite matrices is denoted S
n
+. The Euclidean vector norm is denoted || · ||, R+ is the set of non-negative

real numbers, and I denotes an identity matrix of appropriate size.

4. The model
We consider a linearly elastic continuum body divided into m elements. Associated with each element is a design

variable xi which determines whether there is material in the element or not. The design variables are collected in

a vector x of length m. To avoid numerical issues such as checkerboards and mesh dependency a different set of

variables, referred to as physical variables, are used to compute the stiffness matrix (and mass). These variables

are related to the design variables through a so-called filter [6], using which the i-th physical variable is written as

ρi(x) =
m∑
j=1

Ψijxj , Ψij =
φijvj∑m

k=1 φikvk
, φij = max (0, R− ||ei − ej ||) ,

where vj and ej denotes the volume and the position of the geometric center, respectively, of element j, and R is

the filter radius.

The structure is assumed to be in quasi-static equilibrium undergoing small deformations when subject to a

nodal load vector fr. By the standard displacement-based FEM the nodal displacement vector u should therefore

satisfy

K(x)u = fr, (1)

where, following the SIMP-approach to TO, the stiffness matrix K(x) =
∑m

i=1 ρi(x)
pKi, in which p is a positive

constant and Ki ∈ S
n
+ are element stiffness matrices. Here n denotes the number of degrees of freedom. We

assume that rigid body motions are prevented, so K(1) 
 0, where 1 is a vector of ones.

The load vector in (1) is defined as

fr = f0 +BTr, (2)

where r ∈ T = {r ∈ R
d | ||r|| ≤ 1}, with d the number of spatial dimensions. The vector f0, the nominal load, is

fixed during optimization, while BTr, where BT ∈ R
n×d, is allowed to vary — it is through this variation that un-

certainty is accounted for. The (fixed) matrix B can be used to specify which nodes are subject to load-uncertainty,

and in which direction the uncertainty (if any) is greatest.

5. Optimization problem
We begin by defining the worst-case compliance as

max
r∈T

fT
rur(x), (3)

where ur(x) solves (1). Assuming constant density, the problem of minimizing the worst-case compliance with

an upper bound on the weight can now be written as

min
x∈H

max
||r||≤1

fT
rK(x)−1fr,

where H = {x ∈ R
m | ε ≤ xi ≤ 1, i = 1, . . . ,m,

∑m
i=1 viρi(x) ≤ v}, in which the positive constant v is the

upper bound on the volume. The small positive constant ε ensures that the stiffness matrix is positive definite if

the structure is appropriately supported.

A natural thing to do when confronted with a min-max problem is to reformulate it into a bound formulation:

min
x∈H,z∈R+

z

subject to fT
rK(x)−1fr ≤ z, ∀r ∈ R

d : ||r|| ≤ 1,
(4)

where z is an additional variable and ”:” should be read as ”such that”. Since there is now an infinite number

of constraints it is not immediately clear that anything has been gained from this reformulation. However, the

semi-infinite problem (4) can be reformulated as a non-linear semi-definite program using the following result.

Theorem 1. fT
rK(x)−1fr ≤ z for all r ∈ R

d : ||r|| ≤ 1 if and only if there exists a λ ∈ R+ such that(
λI 0
0 z − λ

)
−
(

B

fT
0

)
K(x)−1

(
BT f0

)
	 0.

To prove Theorem 1 we use two lemmas:
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Lemma 1. [S-lemma] (See [3, p. 483] for a proof.) For A1 and A2 in S
n, with yT

0A1y0 > 0 for some y0,

yTA1y ≥ 0 ⇒ yTA2y ≥ 0 ⇔ ∃λ ∈ R+ : A2 	 λA1.

Lemma 2. For A ∈ R
n×n,(

y
1

)T(
A b

bT c

)(
y
1

)
≥ 0 ∀y : ||y||2 ≤ 1 ⇔

(
y
w

)T(
A b

bT c

)(
y
w

)
≥ 0 ∀(y, w) : ||y||2 ≤ w2.

Proof. The implication from right to left follows immediately by taking w = 1. Now consider going from left to

right, beginning with(
y
1

)T(
A b

bT c

)(
y
1

)
= yTAy + 2bTy + c ≥ 0 ∀y : ||y||2 ≤ 1. (5)

Let y = u/w, with ||u||2 ≤ w2 and w �= 0. Clearly ||y||2 = ||u/w||2 = ||u||2/w2 ≤ 1. Substituting y = u/w
in (5) gives

uTAu+ 2bTuw + cw2 ≥ 0, ∀(u, w) : ||u||2 ≤ w2, w �= 0.

Going back to the statement of the lemma it is clear that w = 0 implies y = 0, reducing the right side to the trivial

inequality 0 ≥ 0. �
Proof of Theorem 1. Straightforward algebraic manipulations show that (the argument ”x” is omitted)

fT
rK

−1fr ≤ z, ∀r ∈ R
d : ||r|| ≤ 1 ⇔

z − fT
0K

−1f0 − rTBK−1BTr − 2rTBK−1f0 ≥ 0 ∀r ∈ R
d : ||r|| ≤ 1.

By Lemma 2 the last statement is equivalent to

w2
(
z − fT

0K
−1f0

)− yTBK−1BTy − 2yTBK−1f0w ≥ 0, ∀(y, w) ∈ R
d+1 : ||y||2 ≤ w2. (6)

Since the condition ||y||2 ≤ w2 can be written as

(
y
w

)T

A1

(
y
w

)
≥ 0, where A1 =

( −I 0
0 1

)
,

Lemma 1 can be invoked to conclude that (6) is equivalent to

∃λ ∈ R+ :

(
λI 0
0 z − λ

)
−
(

B

fT
0

)
K−1

(
BT f0

)
	 0.

�
Remark. A different proof of Theorem 1 can be obtained by using Theorem 8.2.3 in [3] together with the Schur-

complement theorem [3, Lemma 6.3.4]. By the former theorem one can also obtain a formulation where K need

not be invertible [7, Proposition 2],[3, p. 215]; the price to pay is a matrix inequality of large size, something which

is, at present, difficult to handle numerically.

Using Theorem 1 we now replace (4) by the following problem:

min
x∈H, z∈R+, λ∈R+

z

subject to

(
λI 0
0 z − λ

)
−
(

B

fT
0

)
K(x)−1

(
BT f0

)
	 0.

(7)

It can be shown [4, Prop. 5.72 (i)] that if K is linear in x, the matrix inequality defines a convex set, making (7) a

convex problem. An extension to include multiple loads, each in the form of a nominal load plus an uncertainty, is

straightforward, but for notational simplicity we have refrained from doing this here.

Theorem 2. The set of globally optimal solutions to (7) is non-empty and compact.

Proof. Take x0 ∈ H and let

A(x) =

(
B

fT
0

)
K(x)−1

(
BT f0

)
, (8)
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and A0 = A(x0). Let λ0 = λmax(A0) ≥ 0 and z0 = 2λmax(A0) ≥ 0, where λmax(·) denotes the maximum

eigenvalue. The inequality

A0 � λmax(A0)I =

(
λ0I 0
0 z0 − λ0

)
,

then shows that the feasible set of (7) is non-empty.

The inequality A(x) 	 0 holds for all x ∈ H and implies that z ≥ λ for any feasible (x, z, λ). The globally

optimal solutions to (7) are thus contained in the set

F = {(x, z, λ) | x ∈ H, 0 ≤ z ≤ z0, 0 ≤ λ ≤ z0, (x, z, λ) satisfies the matrix inequality in (7)}.

We now consider the problem

min
(x,z,λ)∈F

z,

which has the same set of globally optimal solutions as (7). Since F is the intersection of a compact and a closed

set, hence compact, and the objective function is lower semi-continuous, existence of a non-empty, compact set of

globally optimal solutions follows from Weierstrass’ theorem [1, Theorem 4.7]. �
The proof of Theorem 2 shows how a feasible initial point for (7) may be chosen, and provides upper bounds

on z and λ.

Remark. The worst-case uncertainty vector, and therefore the worst-case load vector fr, depends on the design

through

r(x) ∈ argmax
||r||≤1

(rTB + fT
0)K(x)−1(f0 +BTr) = argmax

||r||≤1

[
rTH(x)r + 2fT

0K(x)−1BTr
]
,

where H(x) = BK(x)−1BT. The first-order necessary optimality conditions for this problem read

H(x)r − b(x) = μr, ||r|| = 1, (9)

where b(x) = −2BK(x)−1f0 and μ ∈ R+ is a Lagrange multiplier. (9) is an inhomogeneous eigenvalue prob-

lem [16]; r(x) is an eigenvector associated with the maximum eigenvalue. Since the multiplicity of the latter may

be greater than one we do not expect x → r(x) to be smooth in general.

6. Numerical treatment
To evaluate the left-hand side of the matrix constraint, rather than forming K(x)−1 explicitly, we solve the linear

system

K(x)U =
(
BT f0

)
(10)

for U ∈ R
n×(d+1). The computational cost, which is dominated by the factorization of K(x), for this is the same

as that of solving the equilibrium equations in a standard multiple-load case formulation with d+ 1 loads.

Scaling is important when solving optimization problems numerically. To this end, in view of the proof of

Theorem 2, we introduce new variables z := z/z0 and λ := λ/z0, where z0 = 2λmax(A0), with A0 defined in

the proof of Theorem 2. Now (7) can be replaced by

min
x∈H, z∈[0,1], λ∈[0,1]

z

subject to

(
λI 0
0 z − λ

)
− 1

z0

(
B

fT
0

)
U(x) 	 0.

(11)

where U(x) denotes the solution to (10).

Problem (11) is converted into an ordinary non-linear optimization problem (NLP) by noting that S
q
+ � A ⇔

∃L ∈ Lq : A = LLT, where Lq denotes the set of lower triangular q × q-matrices with non-negative diagonal

entries. This leads to the problem

min
x∈H, z∈[0,1], λ∈[0,1],L∈Ld+1

[−1,1]

z

subject to

(
λI 0
0 z − λ

)
− 1

z0

(
B

fT
0

)
U(x) = LLT,

(12)
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where Ld+1
[−1,1] denotes the set of lower triangular q × q-matrices with each diagonal entry in [0, 1] and each off-

diagonal entry in [−1, 1]. These bounds are motivated by the fact that(
λI 0
0 z − λ

)
− 1

z0

(
B

fT
0

)
U(x) � I,

which holds since λ ≤ 1 and z ≤ 1 and the second matrix to the left is positive semi-definite [recall (8)]. At a

feasible point then, LLT � I , showing that the diagonal elements of LLT − I must be non-positive. The latter

implies the aforementioned bounds on the entries of L.

A theoretical drawback of the NLP-formulation (12) is that it might have stationary points not present in prob-

lem (11). In practise we have however never experienced convergence to such points, and this theoretical drawback

therefore outweighs practical drawbacks of e.g. PENLAB [11] which requires evaluation of second-order deriva-

tives.

7. Numerical example
Figure 1 shows a numerical example. The ground structure is a cylinder, meshed with m = 14640 8-node hexahe-

dral elements, resulting in a total of n = 46800 displacement degrees of freedom. Problem (12) is solved with the

x

z

y x

z

y

Figure 1: Numerical example. Left: Ground structure, with dimensions in [mm]. The figure shows the total load as

the sum of a nominal load (dashed arrow in negative z-direction) and an uncertain part which varies in the sphere.

Middle: Minimum compliance design for a single load case. Right: Worst-case compliance design.

code fminsdp for non-linear SDPs [18], using Ipopt [19] as NLP-solver. First-order derivatives of the non-linear

part of the matrix constraint are computed using the adjoint method [9], and Ipopt’s limited-memory quasi-Newton

approximation, with 90 correction pairs, is used for the Hessian of the Lagrangian. The update strategy for the

barrier parameter is set to ”adaptive”, and default settings used otherwise.

A load of 1000 [N] applied at the top of the structure pointing in the negative z-direction is used as the nominal

load, and in the robust formulation we allow for variations of up to 100 [N] in each coordinate direction, i.e. the

matrix B ∈ R
3×46800 in (2) is given by B = (0 100I 0), where I is a three-by-three identity matrix positioned

at the degrees of freedoms associated with the loaded node.

The middle plot in Fig. 1 shows a design obtained when uncertainty is not accounted for; the result is a curved

column. The right plot shows a designed obtained when taking load variations into account. Now the column is

supported by two legs – intuitively a more robust design.

8. Concluding remarks
We have presented a problem formulation for deterministic worst-case compliance design in the form of a non-

linear semi-definite program whose computational cost is similar to that of solving an ordinary minimum compli-

ance problem with three (in 2D) or four (in 3D) load cases. The optimization problems are readily solved using

software for ordinary NLPs.
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1. Abstract 
To assess the impact of manuever load alleviation parameter changes on the buckling reserve factor a
multidisciplinary high fidelity analysis is necessary. To this end flight maneuver calculation, linear static analysis 
using a global Finite Element Model and a structural sizing need to be performed. The use of surrogate modeling 
techniques helps to avoid the time consuming high fidelity analysis but still provides accurate results. In the frame 
of global sensitivity analysis the surrogate model is used to apply variance based extended Fourier amplitude 
sensitivity test. The contribution of input parameter variation of the manuever load alleviation system to the
variance of the surrogate model output in terms of buckling reserve factors is measured. The sensitivity study is 
performed on the upper cover of a backward swept composite wing and the results are compared to those of the 
high fidelity analysis. Note that the variation of maneuver load alleviation parameters is nowadays assessed by 
external loads resulting from the flight maneuver calculation only. The presented approach includes reserve factors 
and hence provides an insight into the structural response. In this way those maneuver load alleviation parameters
are found that affect the structure in terms of buckling reserve factors the most and can be used for future design 
changes and weight reductions.
2. Keywords: Surrogate model, sensitivity analysis, maneuver load alleviation, buckling, reserve factor

3. Introduction
Recent developments in the field of multidisciplinary analysis have led to an increased investigation of Maneuver 
Load Alleviation (MLA) effects on the aircraft wing [7]. Especially during early design phase of the aircraft the 
use of an active load alleviation system has a significant impact on the overall aircraft design and flight 
performance evaluation [8]. In this scope the present work demonstrates a surrogate model based sensitivity 
analysis on MLA parameters for the wing upper cover. The surrogate model is constructed using an already 
existing data basis which contains MLA parameter values and local skin buckling Reserve Factor ( ) values 
provided by the Airbus Operations GmbH. Note that the preparation of such a data basis takes in general several 
months and includes the work of different departments and disciplines. Figure 1 demonstrates how the high fidelity 
process looks like and in which way this long process is replaced by a surrogate model.

Figure 1: High fidelity versus surrogate model process overview

The surrogate model replaces the flight maneuver calculation, the de-integration of the Shear Moment Torque 
(SMT) values to strip loads along the wing and the linear static analysis using a Global Finite Element Model 
(GFEM), which consists of 1- and 2-dimensional elements, and finally the calculation.
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High Dimensional Approximation (HDA) is used for the construction of the surrogate model and is based on the 
works of [5] and [6]. HDA uses a linear expansion of non-linear functions and works in a similar way as artificial 
neural networks. Internal validation of the surrogate model is performed using the concept of cross validation and 
the Root Mean Square (RMS) error as a failure index. The constructed surrogate model can be used to assess the 
effect of MLA parameter changes on the structure in terms of quickly. Previous works from [3] and [4] have 
shown a proper use of extended Fourier Amplitude Sensitivity Test (eFAST) applied on a surrogate model in order 
to perform sensitivity analysis. The combined use of both approximation and sensitivity analysis technique is 
called Surrogate Model Based Fourier Amplitude Sensitivity Test (SMBFAST).

4. Maneuver load alleviation vs local skin buckling reserve factor
The MLA is used for the reduction of the loads acting on the wing during flight maneuvers. For this purpose the 
vertical load factor at center of gravity is measured by an accelerometer and is compared against a threshold 
value. If the threshold value is reached inner and outer ailerons are deflected upwards for positive values. For 
negative values the ailerons are deflected downwards. The aileron deflections lead to a redistribution of the lift 
along the wing with an additional reduction of the wing bending moment. This effect is shown on a simple 
example in Figure 2 for the left wing of a schematic passenger aircraft. Here the aileron upward deflections shift
the center of pressure inboards which yield a reduction of the wing root bending moment. Note that the resulting 
pitching moments are compensated with additional deflections of the elevators included in the MLA law.

Figure 2: Schematic change of lift distribution with and without MLA

The MLA is integrated into the flight maneuver calculation software at Airbus and consists of different control 
laws depending on the flight condition. The load factor is the main driving parameter for the activation of the MLA 
and in addition positive/negative load factor values steer the upward/downward deflection of the ailerons. But still 
the available control laws prescribe aileron deflections based on the Mach number and calibrated airspeed 
as well. Hence in the scope of this study the chosen MLA parameters for analysis are 3 of its steering quantities and 
the resulting deflection angles of the inner aileron and the outer aileron . Eq. (1) shows the relationship 
between the SMT values by which the change of lift distribution can be seen and the MLA as a function of 
previous 5 parameters. The same order of MLA parameters is used for the construction of the surrogate model.= ( , , , , ) (1)

The change of the lift distribution along the wing with an active MLA leads to different wing bending moments 
which again influence the wing torque due to the sweep angle. This combined bending and torque leads to 
compression and shear loads in the skin panels of the wing upper covers while the supporting stringers are axially 
loaded only. The value is an estimator in order to evaluate if the structure can sustain these loads. The 
value is the comparison of the allowable stress value against the stress values of the applied loads, cf. Eq. (2). The 
structure is statically sized if the value is higher than 1 and fails for values lower than 1.=  1 (2)

After the internal loads are computed on GFEM level many ways exist to compute the values during the 
structural sizing. For local skin buckling an analytical approach based on energy method is used for the presented
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study. The different stringer bays are computed individually for local skin buckling what reduces the region of 
analysis to 1 stringer and 2 skin panels. The idealized stiffened panel is shown in Figure 3. The skin panels are 
simply supported at all edges with the stringer itself providing simply support. The approach of Rayleigh-Ritz is 
used then to solve the energy equation. More about the solution of stability problems is found in [10].

Figure 3: Schematic view of a stiffened panel

5. Surrogate model based extended Fourier amplitude sensitivity Test
In order to perform SMBFAST the software toolkit MACROS is used which is developed by the company 
DATADVANCE. The chosen method for the construction of the surrogate model is called HDA. Previous 
observations of [5] have shown superiority in time performance and accuracy compared to techniques like 
artificial neural networks, Kriging and radial basis functions. Unlike artificial neural networks which is based on a 
single type of basis functions HDA is based on linear expansion of different types of functions which are namely 
sigmoid, radial basis and linear functions. The linear expansion of the basis functions is done according to the 
approach shown in Eq. (3). Here the exact function ( ) is approximated by a superimposition of mentioned basis 
functions and their weighting values  . The number of superimpositions is estimated by a boosting 
algorithm until the accuracy is converging, cf. [6].( )  ( ) =  ( ) (3)

For the purpose of linear expansion techniques like elastic net and regularization are used for parameter 
initialization and an additional hybrid learning algorithm is used to improve these initial parameters. The latter is 
based on regression analysis and gradient based optimization.
In order to check the accuracy of the surrogate model the data basis is partitioned into a training set and a 
test set following the principles of cross validation. The training set is used to build the model while the 
purpose of the latter is its validation. The RMS error is recommended by [9] for the cross validation of the 
surrogate model and takes into account the exact sample values and the predicted values ( ) as shown in 
Eq. (4).

=  ( ) =  ( ) (4)

eFAST is applied on the constructed surrogate model in order to assess the sensitivity of input parameter variations 
on the output values. eFAST is a variance decomposition method for global sensitivity analysis, cf. [3]. The 
presented core ideas are mainly based on the work of [1] with a proposal for computational implementation 
described in [2].
The variance value takes into account the model output as well as its mean value and is an estimator for the 
change of the model output resulting by input changes. Eq. (5) shows the variance value in a general notation.= ( ) (5)

The idea using eFAST is to split the total variance value into partial variances according to the contribution of each 
input dimension. This variance splitting is performed in the frequency domain using a Fourier transformation of 
the surrogate model. The input parameters are then varied at frequencies according to [1] for which the Fourier 
coefficients are determined. If an input parameter has high influence on the model output the amplitude of the 
oscillation in the frequency domain is high. The surrogate model is expanded into a Fourier series in the frequency 
domain as follows: ( ) = { ( ) + ( )} (6)
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Here the Fourier coefficients and are defined as:= ( )  ( )  ;  = ( )  ( ) (7)

Using these Fourier coefficients the partial variance value for each input dimension is calculated in the 
following way: = 2 ( + ) (8)

Finally the main effect is determined using the partial and total variance values:

= (9)

The main effect can take values between 0 and 1 while higher values indicate more influence of the input 
parameter on the model output. For example a main effect value of 0.3 for an input parameter means that this 
parameter contributes by 30% to the total variance.
The main effect takes only the individual contribution of each input parameter variation on the model output into 
account. On the other hand the total effect which is only available using the eFAST considers the interaction 
effects between the input parameters as well. Interaction effects quantify the impact on the output variance 
when multiple parameters are varied simultaneously. For instance the main effect of one input parameter can tend 
to zero whereas its total effect can reach high values due to its high effect on the model output in combination with 
another input parameter. Eq. (10) shows how the interaction effects are added to the main effect of each input 
dimension. = + ,  (10)

6. Available data basis for the construction of the surrogate model
The data basis for the construction of the surrogate model is provided by the Airbus Operations GmbH and consists 
of MLA parameter values and local skin buckling values. For the MLA parameters input as well as output
quantities of the control law are chosen. The main input quantities that affect the results of the MLA are the load 
factor , the Mach number and the calibrated airspeed . The resulting inner and outer aileron deflections 
are taken into account as well. The values are computed for each skin panel of the wing upper cover but the 
minimum value for each load case overall skin panels is considered only.
1522 different steady longitudinal maneuvers are provided using different flight parameters and which correspond 
to EASA CS 25.331 requirements. The load cases are purely mechanical ones and don’t consider any thermal or 
pressure contribution.
Table 1 summarizes the 5 different input dimensions and the output dimension with the range of their values. In 
this way the input matrix for the HDA has the size 1522x5 and the output vector 1522x1.

Table 1: Available data basis for surrogate model construction

/ deg / deg / m/s
[ ; ] [0; -25] [15; -30] [-1; 2.5] [0.4; 0.96] [123; 193]

While the input parameters are mentioned in their original scale the values are stated in form of and 
. Here and refer to the minimum and maximum values overall load cases which are already in 

the output vector.

7. Results using surrogate model based Fourier amplitude sensitivity test
For the interpretation of the results the surrogate model is discussed first and later on a conclusion on the main and 
total effects resulting from the eFAST follows. In order to construct the surrogate model the RMS error value is 
taken as an indicator for its reliability.
In the original data basis with 1522 load cases very high values exist which are like noise for the training set. 
Hence the data basis is reduced by the number of load cases using the values in order to minimize the RMS 
error. The HDA is run 4 times with a different threshold for the each. From the first to the second run all the 
load cases which yield a value that is higher than 1.77% * are removed which reduces the number of 
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load cases in the data basis from 1522 to 783. At the same time the RMS error is reduced from 3.04 to 0.11. Further 
due to this load case selection all the negative load factors are removed and with this all the positive aileron 
deflections. One can conclude that the flight cases with negative load factors are not relevant for the structure in the 
scope of this study since these cases are noisy data in terms of very high . The same principle of load case 
selection is applied to the following HDA runs, which is summarized in Table 2.

Table 2: Internal validation of surrogate model using data basis in original and reduced form

HDA 1 HDA 2 HDA 3 HDA 4
Nr. Load Cases 1522 783 567 366

1.77% * 1.50% * 1.33% *
RMS 3.04 0.11 0.08 0.05

The optimal solution is found in the third HDA run because here we have a RMS error below 0.10 and still have an 
adequate number of load cases for later SMBFAST (according to DATADVANCE sample size needs to be at least 
around 100 times dimensionality of input matrix).
Figure 4 shows the absolute error between real and predicted values using the different HDA runs as described 
in Eq. (11). Here the predicted values resulting from the constructed surrogate models are compared to the real 

values overall available load cases. One can see that the absolute error value decreases from the first until the 
last run with a reducing number of load cases. =  (11)

Figure 4: Comparison of HDA runs using 

In addition Table 3 shows the change of the design space for each HDA run. The biggest change in the design 
space occurs from the first HDA run to the second one. In addition to the previously mentioned removal of positive 
aileron deflections and negative load factors here the smallest value for the calibrated airspeed has changed from 
123 m/s to 141 m/s. The design space for the following HDA runs is still filled properly although the number of 
load cases is reduced by around 200 cases each.
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Table 3: Change of the design space due to load case reduction by values

HDA loop / deg / deg / m/s
1 [ ; ] [0; -25] [15; -30] [-1; 2.5] [0.4; 0.96] [123; 193]
2 [ ; 1.77% * ] [0; -25] [0; -30] [1.5; 2.5] [0.4; 0.96] [141; 193]
3 [ ; 1.50% * ] [0; -25] [0; -30] [1.7; 2.5] [0.4; 0.96] [141; 193]
4 [ ; 1.33% * ] [0; -25] [0; -30] [1.7; 2.5] [0.4; 0.87] [141; 193]

The third HDA run is used for the application of the eFAST. Figure 5 shows a comparison of the total and main 
effect values for the chosen MLA parameters. The diagram demonstrates that in terms of ranking both main and 
total effect are identical. In both cases changes of the load factor result in the highest changes of values. The 
main effect value for the load factor is 0.037 which means that the load factor causes 3.7% of the total variance 
only. On the other hand the total effect value for the load factor is 0.73 which means that 73% of the total variance 
relates to this input parameter.
The Mach number and the calibrated airspeed are listed next in the ranking. One can conclude that the flight 
parameters itself which are more an input for the MLA law have much higher influence on the than the aileron
deflections. Furthermore the total effects have much higher values than the main effects which yield high influence 
on the by varying the input parameters simultaneously. The combinational effect of the MLA parameters
drives the value more than just changing one parameter and keeping the others constant. Hence the main effect
contributions are negligible whereas the interaction effects are the main drivers.
Note that the shown behaviour of main and total effects is confirmed with results coming from high fidelity 
analysis inside Airbus Operations GmbH.

Figure 5: Main and total effects of MLA parameters on value

The application of eFAST on the constructed surrogate model from the first HDA run has shown different ranking 
and values for the total and main effects compared to the results shown in Figure 5. One can conclude that the 
results of the SMBFAST are strongly dependent on the quality of the sampled data basis and can lead in the worst 
case to conclusions which are not consistent with engineering judgment.

8. Summary and outlook
HDA is used in order to construct a cheap and fast to evaluate surrogate model compared to the overall industrial 
process. The application of eFAST yield in main and total effect values which are confirmed with high fidelity 
analysis inside Airbus Operations GmbH. The study has shown much higher influence of the flight parameters on 
the values compared to the aileron deflections for different flight points. But still for a given flight point the 
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load factor, the Mach number and the calibrated airspeed are constant while the aileron deflections can be 
modified. Hence the aileron deflections are the only parameters that can be varied in order to affect the values 
and thus to reach a reduction of the structural weight.
In future applications the constructed surrogate model can be used for instance for optimization of the aileron 
deflections as shown in Figure 6. Here the surrogate model of the third HDA run is used in order to plot the 
evolution of the value with the outer aileron deflection as the variable parameter and the other parameters hold 
on constant value. The values in the plot are normalized to 1. In Figure 6 the change of from its minimum 
to its maximum value is around 13% which can result in weight savings even if they are small. Hence in this way
one can choose a certain flight condition and find the optimum value for the aileron deflections using surrogate 
model based optimization algorithms.

Figure 6: Evolution of normalized by outer aileron deflection changes for constant flight parameters
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Abstract
A magnetorheological (MR) damper is one of the most advanced devices used in a semi-active control system to 
mitigate unwanted vibration because the damping force can be controlled by changing the viscosity of the internal 
magnetorheological fluids (MRF). This study proposes a typical double coil MR damper where the damping force 
and dynamic range were derived from a quasi-static model based on the Bingham model of MR fluid. A finite 
element model was built to study the performance of this double coil MR damper by investigating seven different 
piston configurations, including the numbers and shapes of their chamfered ends. The objective function of an 
optimisation problem was proposed and then an optimisation procedure was constructed using the ANSYS 
parametric design language (APDL) to obtain the optimal value of a double coil MR damper. Furthermore, an 
experimental analysis was also carried out. These results were then compared with the optimised MR damper’s 
simulation results, which clearly validated the simulated results. The relevant results of this analysis can easily be 
extended to other MR dampers. 
Keywords: MRF, MR damper, Double coil, Finite element analysis, Optimal design 

1. Introduction 
The rheological properties of a magnetorheological fluid (MRF) can be continuously changed within several 

milliseconds by applying or removing external magnetic fields. These unique features have led to the development 
of many MRF-based devices such as the MR damper, MR valve, MR brake, MR clutch, and so on. 

Recently, some studies in literature have focused on the geometric optimisation of an MR damper, with the 
results showing that their performance can be improved significantly by optimising the design of the magnetic 
circuit that controls these systems. Zhang et al. [1] proposed the use of finite elements to improve the magnetic 
design of an MR damper.  Kham et al. [2] used finite element software to simulate nine different configurations of 
the pistons for an MR damper and investigate how these configurations would affect and influence the maximum 
pressure drop; the results showed that a single coil piston with chamfered ends was better than the other 
configurations for the same magnitude of input current and piston velocity. Ferdaus et al. [3] established 2D 
axi-symmetric and a 3D model of an MR damper that considered the shape of the piston, the MR fluid gap, the air 
gap, and the thickness of the damper’s housing. All these models were simulated with different currents, different 
piston velocities, and different strokes. Parlak et al. [4] investigated the geometrical optimisation of an MR shock 
damper using the Taguchi experimental design approach by specifying four parameters (gap, flange thickness, 
radius of piston core, and current excitation) and by selecting the maximum dynamic range required as the target 
value; this analysis was carried out using analytical equations rather than experimental data. Parlak et al. [5] 
presented a method for optimising the design of the target damper force and maximum magnetic flux density of an 
MR damper; this new approach used an electromagnetic analysis of the magnetic field and a CFD analysis of MR 
flow together to obtain the optimal value of the design parameters. Nguyen and Choi [6] presented an optimal 
design of a passenger vehicle MR damper that was constrained in a specific cylindrical volume, and an advanced 
objective function that collectively included the damping force, the dynamic range, and an inductive time constant.  
Nguyen and Choi [7] also proposed two types of shear mode MR dampers for a front loader washing machine, 
where an optimisation methodology based on a finite element analysis integrated with an optimisation tool was 
used to obtain the optimal geometric dimensions of the MR dampers; the results showed that an MR damper with 
three coils and without a non-magnetic bobbin was the best configuration for this application.  

In this study a double coil MR damper was developed and prototyped, and the damping force and dynamic 
range were also derived. A finite element model was built to investigate the performance of the double coil MR 
damper by considering seven pistons with different configurations. An optimisation procedure was then 
constructed with the ANSYS parametric design language (APDL) to obtain the optimal parameters of the double 
coil MR damper. Finally, a series of dynamic experimental tests were also carried out.
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2. Design considerations for a double coil MR damper with an annular gap 
Figure 1 shows a schematic for the proposed double coil MR damper under consideration. Two chambers in 

the cylinder are separated by a floating piston. The section with the piston head is filled with MR fluid and the 
accumulator that compensates for the changes in volume induced as the piston rod moves is filled with pressurised 
nitrogen gas. As the damper piston rod moves, the MR fluid flows through the annular gap to the other side of the 
piston.  There is a double coil of wire inside the piston head used for winding is heat resistant and electrically 
insulated. When a direct current is applied to the double coil, a magnetic field occurs around the piston head. It is 
noted that the direction of the current applied onto the double coil can be the same or the reverse, and it can enlarge 
the maximum damping force or the dynamic range to some extent. 

Figure 2 shows the magnetic circuit of the double coil MR damper with an annular gap at both ends of the 
flanges and in the middle of the flange, where the flux lines are perpendicular to the flow direction and caused a 
field-dependent resistance to the fluid flow. The double coil MR damper is shaped to guide the magnetic flux 
axially through the damper core, across the length of the core flange and the gap at one end, then on through the 
flux return and across the gap and core flange at the opposite end. The volume of fluid through which the magnetic 
field passes is defined as an active volume, and the MR effects only occur within the active volume. The most 
effective MR dampers have a high magnetic flux density passing through a large active volume, but a lot of 
magnetic coils are needed to produce large magnetic fields. An optimised circuit would maintain a balance 
between the field produced and power required by the magnetic coils. 

Accumlator Floating piston Annular gap Coil

Figure 1: Schematic diagram of a double coil MR damper with annular gap 
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Figure 2: Magnetic circuit of the double coil MR damper with annular gap 

Some of the important dimensions of double coil MR damper are also listed in Fig.2. Damper geometry is 
characterised by the length of the gap L, the length of the end flange L1, the length of the middle flange L2, the 
length of the coil Lc, the thickness of the piston head housing Rh, the width of the annular gap h, the radius of the 
piston head R, the internal radius of the piston core Rc, the external radius of the piston core R1, and the width of the 
coil Wc.

The total damping force F generated by the double coil MR damper consists of three components: the 
field-dependent force F due to the magnetic field, the viscous force F due to the viscous effects, and the frictional 
force Ff.

fFFFF ++=                                                                    (1) 
where 
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where Ap is the cross-sectional area of the piston head, and  is the plastic viscosity. q is the flow rate through the 
double coil MR damper, and it can be calculated from the velocity of the piston p. y1 and y2 are the yield stresses 
of the MR fluid in the end flange and middle flange, respectively. c1 and c2 are coefficients which depended on the 
flow velocity profile, and have a value ranging from a minimum value of 2.07 to a maximum value of 3.07. 

As shown in Eq. (1), the first term is called the controllable force because it varies with the applied field, 
whereas the sum of the latter two terms is referred to as the uncontrollable force because they generate a constant 
force according to the velocity of the piston.   

The dynamic range D is defined as the ratio of the total damping force to the uncontrollable force, and it is 
given by 

ff
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FFF
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+=
+

++
= 1                                                          (6) 

Here, the dynamic range D was introduced to evaluate the performance of the double coil MR damper. 
Normally, it is better to keep the dynamic range as large as possible to maximise the effectiveness of the MR 
damper. The dynamic range is proportional to the shear force and is a function of the size of the gap. The width of 
the annular gap h is inversely proportional to the controllable force, so a small gap width will increase the range of 
the controllable force, but when h is less than 0.5 mm, the viscous force F  is much faster than the controllable 
force F ’ this reduces the dynamic range. Again when the gap becomes wider both F and F fall, so finding an 
optimal width gap that maximises the dynamic range is very important. Moreover, parameters such as the length of 
the flange L1 and L2, the radius of the piston head R, the yield stress y1 and y2, the thickness of the piston head 
housing Rh and the internal radius of the core of the piston Rc will also play an important role in searching for the 
right design. 

3. Modelling an optimal design of a double coil MR damper using the finite element method 
The magnetic field in an MR damper is produced by an electromagnet. Here in the ANSYS simulation model 

the excitation coil is considered to be the electromagnet, and the magnetic field provided by this excitation coil is 
needed to energise the MR fluid. By varying the current through the excitation coil the density of the magnetic flux 
can be varied and the MR fluid is energised accordingly.  

To investigate how the shape of the piston affects the performance of a double coil MR damper, seven models 
with different shaped pistons were designed, as shown in Fig.3. The model 1 piston was defined as having a plain 
end, the model 2 piston was defined as have each end of the piston chamfered, the model 3 piston was defined as 
having a radius on each end, the model 4 piston was defined as having chamfers on the top, bottom, and in the 
middle, the model 5 piston was defined as having a radius on the top, bottom and in the middle, the model 6 piston 
was defined as having both ends chamfered, and the model 7 piston was defined as having a radius on every edge.  

(a) Model 1       (b) Model 2      (c) Model 3      (d) Model 4        (e) Model 5      (f) Model 6        (g) Model 7 
Figure 3: Simulation models with different piston shapes 

Figure 4 shows the results of the magnetic flux densities between the different models when the current varied 
from 0.1A to 1.0A. Here the magnetic flux densities decreased with the number of chamfers on the damper piston, 
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the maximum density of magnetic flux appeared in Model 1, which means that this piston had the optimal 
geometrical shape. Moreover, density of magnetic flux in the model with a radius was greater than the chamfered 
model; the reason can be found in Figure 5 which shows that the distribution of magnetic flux lines along the 
resistance gap in model 1 were more even that in models 6 and 7. The damper piston with chamfers had larger 
reluctances at its core because is the core was larger and the cross-sectional area through which the magnetic flux 
passed decreased, which in turn caused the magnetic flux densities in the fluid resistance gap to decrease as well.   

  Model 1 
  Model 2   Model 3 
  Model 4   Model 5 
  Model 6   Model 7

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

B
/T

I/A

Figure 4: Magnetic flux density of different models 

(a) Model 1                (b) Model 6                   (c) Model 7 
Figure 5: Distributions of magnetic flux lines of different models 
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Figure 6: Dynamic range of MR damper under different currents 

Figure 6 shows the dynamic range of the proposed MR damper under different piston configurations when the 
applied current varied from 0.1A to 1.0A. Here the dynamic range decreased as the number of chamfers on the 
pistons increased, and so too did the damping performance.  Moreover, the dynamic range in the model with a 
radius on the edges was greater than the model with chamfered edges.  When the current varied from 0.1A to 1.0A, 
the damping force steadily increased and then stabilised when the current was close to 1.0A due to the magnetic 
saturation of MRF in the resistance gap. From Figure 4 to Figure 6, model 1 with square ends had the maximum B 
value under different currents, while the damping force and dynamic range was also better in model 1 than in the 
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other models. So the piston with square ends was selected as the optimal geometry for the double coil MR damper.  
To optimise the double coil MR damper using FEM, an analysis log file to solve the damper’s magnetic 

circuit calculate the objective function was built using the ANSYS parametric design language (APDL). In the 
analytical log file, the length of resistance L1 and the radius of the damper core r1 were used as the design 
variables (DVs), and initial values were assigned to them, respectively. First, starting with the initial values of 
the DVs, the magnetic flux density, damping force and dynamic range were calculated by executing the log file. 
The ANSYS optimisation tool then transformed the optimisation problem with constrained DVs to an 
unconstrained one via penalty functions. The search direction of DVs was assumed to be the negative of the 
gradient of unconstrained objective function, and a combination of a golden-section algorithm and local 
quadratic fitting techniques were used to calculate new DVs. If convergence occurs, the DVs at this iteration 
would be the optimum, but if not then subsequent iterations would be carried out.  

Figure 7 shows the results of the damping force between the initial design and optimal design, respectively. 
Here the damping force with an optimal design was greater than the initial design, although the difference between 
both of them improved significantly when the applied current exceeded 0.5A. 

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0

1

2

3

4
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F/
K

N

I/A

 Optimal
 Initial

Figure 7: Comparison of damping force between initial design and optimal design 

4. Experimental evaluation of double coil MR damper 
Figure 8 shows the change in the damping force under different damper displacements and applied current 

directions. Here, the INSTRON 8801 test machine was set at sinusoidal loading with a frequency of 0.5Hz and 
displacement amplitude of 5mm and 7.5mm, respectively. The applied current I1 and I2 in the double coils were set 
to 0.5A with the same direction and reverse direction, respectively. The figure shows that the damping force with 
the currents in a reverse direction were much greater that currents in the same direction.  Moreover, the damping 
force increased as the displacement amplitude increased, because the increased velocity of the damper led to an 
increase in the viscous force in Eq.(2), so the damping force also increased.  
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 S=7.5mm I1=I2=0.5A  S=7.5mm I1=-I2=0.5A

Figure 8: Damping forces under different displacements and different current directions 

Figure 9 shows the damping force under the applied currents changed from 0A to 1.0A. Here, the INSTRON 
8801 test machine was set at a sinusoidal loading with displacement amplitude of 10mm and a frequency of 1.0Hz, 
while the applied currents I1 and I2 in the double coils were applied the reverse direction. As expected, the damping 
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force increased from 0.33KN at 0A to 1.21KN at 1.0A, and the dynamic range nearly equal 4. 
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Figure 9: Damping force under different current  

5. Conclusion 
A double coil MR damper was proposed and the damping force and dynamic range were also derived. A finite 

element model was built to investigate the performance of a double coil MR damper while considering pistons 
with different configurations; the simulation results showed that the piston with square ends had a better damping 
performance. An optimisation procedure was constructed using the ANSYS APDL to obtain the optimal value of 
the double coil MR damper. Further, an experimental analysis was also carried out to verify the damping 
performance of the proposed MR damper.  
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1. Abstract  
Topology-optimized designs for minimum compliance or minimum stress at minimum mass are often framework 
structures due to their homogeneous stress distribution over the cross section and therefore the best possible 
material utilization. From the manufacturing’s point of view complex framework structures, which often develops 
during topology optimization, are difficult to manufacture because of possible undercuts. Manufacturing of these 
designs is often only possible by joining of numerous components or by 3D printing. 
For mass production sheet metal parts manufactured by deep drawing are often more efficient concerning the costs 
in relation to their performance. Therefore we implemented a manufacturing constraint to the 3D topology 
optimization based on the density method ensuring that thin walled structure results. Thereby more flexibility for 
the mid surface design and also for cut-outs is reached compared to the optimization based on CAD-parameters. 
Also a variable thickness distribution for tailored blanks can be achieved. 
Results for deep drawing structures with optimized topologies will be compared with optimized structures without 
manufacturing restriction due to their performance. 

2. Keywords: topology optimization, sheet metals, deep drawing, manufacturing constraint, thin walled structures 

3. Introduction 
The optimization of shell structures is important in the field of mechanical engineering, but also in civil 
engineering and architecture (roof structures). In these fields a strengthened research has taken place in recent 
years. 
Ansola et. al [1] propose a combination of CAD-parameters for the mid surface description and the 
SIMP-algorithm for the identification of optimal cut-outs. Thereby the optimization algorithm runs serially 
through the shape optimization of the mid surface and afterwards the topology optimization. This approach was 
taken up by Hassani et al. [2] and a simultaneous shape- and topology-optimization was introduced. The shape 
optimization takes place in the Finite Element Model, which shape can be modified by control points of splines. 
Both methods highly depend on the parametrization of the mid surface. 
Zienkiewicz and Campbell [3] use the node coordinates as design variables instead of the CAD-parameters. 
Thereby a larger freedom of design is achieved. However by using sensitivities of coordinates of boundary nodes 
the finite element mesh becomes irregular. Yonekura et al. [4] keep the mesh regularity for small shape 
modifications. 
In literature there are few attempts for the optimization of shells based on solid elements. Lochner-Aldinger and 
Schumacher [5] use the density method and extract isosurfaces of the element densities as mid surfaces. 

4. The new approach for topology optimization for deep-drawn sheet metals 
Our new approach uses the homogenisation method [6] on a linear voxel mesh. The derived method Solid Isotropic 
Material with Penalisation (SIMP) introduces material with the artificial density 10 i  and Young’s modulus 

iE  in element i (see equation 1). 0E  is the Young’s modulus of the basic material. By increasing the penalty 
exponent s  over 1.0 intermediate densities are penalized and thereby the optimized design rather converges to a 
black&white design. 

0EE s
ii  (1) 

Because of the use of sensitivities our approach is suitable for linear static load cases. All kinds of objective 
functions or constraints can be used, if their sensitivities are known. 
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4.1. Calculation of the mid surface 
To allow the manufacturing by deep drawing in a single forming step, the optimized structure must have 

- no undercuts.  
- a constant wall thickness. Thereby the thinning during the forming process is neglected. By not considering 

the forming process also the material hardening and residual stresses are ignored. 
These two manufacturing constraints can be achieved by modifying the sensitivities of the objective function. An 
increase of the element densities is only allowed near the current mid surface. Thus the mid surface can move 
according to the sensitivities. The mid surface can be found by calculating the average of the element coordinates 
in the punch direction weighted with the element densities. Figure 1 shows the procedure of deriving the mid 
surface from the volume mesh. Only a single cross section is displayed. Initially the user has to define the global 
punch direction. The mesh is divided into columns with the same width w, which is the element edge length. The 
midpoint of each column is calculated by equation 2. 

1.0
0.8
0.6
0.4
0.2
0.0

element density
element midpoint

punch direction

column boundary

ground line

element position

point of mid surface 

i

Figure 1: Calculation of mid surface 

i

ii
m  (2) 

i  are the distances between the element midpoints from a ground line. For one exemplary column these distances 
are marked as grey arrows. The midpoint of each element decides to which column the element belongs. The 
connection of all midpoints with distance m  present the mid surface. 

4.2 Penalization of sensitivities 
In order to get a shell structure sensitivities far away from the mid surface are penalized. The penalization factor 

iP  for the sensitivities of each element is calculated by equation 3. 

2
atan21

2
1 bd

b
aP ii  (3) 

id  is the minimum distances between the midpoint of element i and the mid surface. b  is the user defined desired 
wall thickness, ba /  describes the discreteness of the penalty function (see Figure 2). A larger quotient ba /
ensures that the shell thickness does not exceed b , but slows down the convergence rate. The penalisation factor is 
normalized 1,0iP .
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Figure 2: Graph of penalisation function for element sensitivities as a function of the distance from the mid surface 

4.3. Convergence 
The movement of the mid surface can stagnate, if the penalisation of the sensitivities is stronger than the 
improvement of the objective function. This problem is solved by alternating the desired wall thickness b . By 
increasing the desired wall thickness, elements are accumulated at the side of the shell, where the sensitivities are 
larger, by decreasing the desired wall thickness the shell’s midface has moved to an improved design. 
Also the penalisation of intermediate densities has an influence on the convergence. Figure 3 shows the movement 
of the mid surface. Only a single cross section is displayed. Even if a lower located mid surface would be better for 
the possible objective function compliance, the stiffness of the structure would temporarily decrease due to the 
lower stiffness of elements with penalized intermediate density (image at the right). That is the reason why the 
optimization starts without penalisation of intermediate densities (penalty exponent 1s ) until a convergence 
criterion is reached. Thereby at least the tensile/compressive stiffness remains the same between the images on the 
left and the right. After the increase of the penalty exponent this convergence problem is also solved by alternating 
the desired wall thickness. 

1.0
0.8
0.6
0.4
0.2
0.0

element density

mid surface

Figure 3: Movement of mid surface through change of elements densities 

4.4 Optimization procedure 
Figure 4 shows the optimization algorithm. Convergence criterion 1 can be the change of the objective function 
from one iteration to the next one or the maximum change of element densities. Convergence criterion 2 is the 
improvement of the objective function after the alternation of the desired wall thickness. During the alternation of 
the desired wall thickness and at the start of the optimization, the current desired wall thickness currb is larger than 
the desired wall thickness b .

5. Examples 
In the following example topology optimizations of a cantilever beam (see Figure 5a) with and without 
manufacturing constraint are performed. The compliance is minimized considering a volume fraction constraint of 
6.25 %. The design space is discretised by 120 80 48 elements. One end of the structure is fixed, at one edge a 
line load of 200 N/mm is applied. The elements at the line load are defined as non-design space. A sensitivity filter 
with the radius of lengthsedgeelement1.7r  and a penalty exponent 3s  are used. The material is steel with 
Young’s Modulus MPaE 2100000  and Poisson’s Ratio 3.0 .
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Figure 4: Optimization procedure 

5.1 Cantilever Beam without manufacturing constraint 
Without the manufacturing constraint a compliance of 32181.7 Nmm is achieved (see Figure 5b/c). 416 iterations 
were necessary followed by a final conversion to a black&white design. The convergence criterion is the 
improvement of the objective function per iteration of less than 0.01 % per iteration. 
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Figure 5: Cantilever Beam: a) FE-Model with loads and boundary condition, b) Stresses of final design (converted 
to black&white design) without manufacturing constraint, c) Compliance history 
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5.2 Cantilever Beam with manufacturing constraint 
The same optimization task as in chapter 5.1 is performed by using the optimization procedure for thin walled 
structures described in chapter 4.4. The desired wall thickness is lengthsedgeelement3b . This is the thinnest 
possible structure that ensures that a bending stress state can be represented with linear volume elements. The 
punch direction was chosen as z. The convergence criteria 1 and 2 were the improvement of the objective function 
per iteration of less than 0.1 %. The penalisation parameter for the manufacturing restriction is chosen as 25a .
Figure 6a shows the compliance history of the topology optimization process. In Figure 6b) the success of the 
alternation of the desired wall thickness between intermediate result 3  and 4  can be seen. In Figure 7 the design 
changes during the optimization process are shown. 
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Figure 6: Compliance history: a) whole Optimization (logarithmic scale) with change of penalty exponent s,  
b) detail of convergence history with change of desired wall thickness 
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Figure 7: Element densities of intermediate results during the optimization (elements with density 1.0ix )
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In Figure 8a the final black&white design of the shell structure is shown. This structure reaches a compliance of 
40121.4 Nmm at a buckling safety of 5.98. In comparison to the optimization without manufacturing constraint the 
compliance is 24.7 % worse, whereby the manufacturing is much easier. 

300
240
180
120
60
0

Mises Stress [MPa]

a) b) 

Figure 8: Stress a) of final design with manufacturing constraint (converted to black&white design), b) converted 
to surface model with shell elements 

In order to check the quality of the finite element model with solid elements, a surface model of the optimized 
design with the same volume has been created. Thereby the compliance increases by 1.6 %. As to be seen in 
Figure 8, also the stresses are very similar, although the solid model is calculated with only three linear voxels 
across the sheet metal thickness. 

6. Final remarks
Besides the shown application examples, the manufacturing constraint for the topology optimization of deep 
drawable sheet metals has been tested for several structures with multiple load cases. The results are promising, but 
we have to note that the gradient based optimization method will find most probably only local optima. 
Compared to gradient based topology optimizations without manufacturing constraint the presented method needs 
more iterations and the objective function of the optimized designs is usually worse, but it can be guaranteed that 
the structures can be manufactured easily. 
Further research activities will focus on the improvement of the computational efficiency, multishell structures, 
stress- and buckling constraints, the implementation of the deep drawing simulation in the optimization and 
automatization of the conversion to a surface model in order to perform a following shape optimization. 
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1. Abstract  
This paper presents an optimization based approach for the design of additively manufactured (AM), or 3D 
printed, multi-material parts with embedded functional systems (for example, a structural part with 
electronic/electrical components and associated conductive paths). The main contribution of this paper is the 
coupling strategy that enables the structural topology optimization (TO) of a part to be carried out in conjunction 
with the internal system design. This is achieved by accommodating the effects of system integration on the 
structural response of the part within TO. This work aims to demonstrate that the presented coupled optimization 
approach provides improved designs for 3D printed circuit volumes (PCVs) which provide benefits including: 
optimal system design, miniaturization, circuit encapsulation (protection) and tailored structure-system 
performance.  
The coupled optimization strategy outlined in this work consists of: 1) a placement method used to determine 
suitable component locations (influenced by information extracted from the skeleton i.e. medial axis of the 
structure), 2) a routing method for optimal shortest distance connections between points (here, Dijkstra’s algorithm 
is used to route between two fixed points by tracing skeletal members), and 3) integration into a TO routine taking 
account of the effect of routing on structure and vice-versa. This paper will report the developments made on the 
proposed coupled optimization strategy by detailing how the results from automatic placement and routing 
techniques are considered for the TO. 

2. Keywords: additive manufacturing, 3D printing, multifunctional devices, topology optimization.

3. Introduction 
A multifunctional part, by definition, has multiple uses, such as structural and electrical functions, for example, a 
structural health monitoring (SHM) part. Multifunctional designs could be physically realized using additive 
manufacturing (AM) or 3D printing multi-material processes which are still under development. A variety of 
techniques have been proposed, primarily using stereolithography and direct write/print technologies and the 
reader is directed to [1] for a history of work carried out in this area. The EPSRC Centre in Innovative 
Manufacturing in Additive Manufacturing at the University of Nottingham, UK, has the development of 
multi-functional 3D printing processes, specifically multi-material jetting, as one of its main aims. The Centre also 
focuses on developing design optimization strategies and methods to enable this multifunctional design paradigm. 
The motivation for this work lies in the realization of the ultimate aim which is to be able to intelligently optimize 
the design of a multifunctional part, such as the concepts included in Figure 1. Such multifunctional AM (MFAM) 
designs require coupling of the embedded system optimization (i.e. intelligent placement of system components 
and the associated routing) with a topology optimization (TO) routine (i.e. structural optimization technique that 
iteratively improves the material layout within a given design space, for a given set of loads and boundary 
conditions [2][3]). This coupling, in principle, should enable in a more compact, better integrated and capable 
design and is the focus of this paper. 
The paper takes the following structure: firstly, the strategy for optimization of multifunctional design is outlined; 
secondly, the details of the coupling strategies are discussed; and thirdly, the appropriateness and effectiveness of 
the strategy is demonstrated by evaluating and discussing the results for an example test case. 

4. Methodology 
4.1 Coupling Strategy 
Figure 2a shows a coupling between a TO routine (specifically, bi-directional evolutionary structural optimization 
(BESO) algorithm [3]) and a system optimization (specifically, placement of components and associated 
connection routing). This coupled optimization strategy is essential to fully exploit the design freedoms offered by 
MFAM. The main reason for the choice of BESO was the well-defined solid-void representation provided at every 
iteration within the TO which meant that the internal system optimization could be performed at every iteration of 
TO (if necessary). In previous works [4][5], the authors demonstrated a single direction coupling of the 
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aforementioned optimization strategy. This preliminary work looked at integrating the system optimization into a 
structural TO algorithm such that the finite element analysis (FEA) conducted as part of TO accounted for updated 
material properties for regions where the components were placed and the routes were identified. In this paper, the 
authors extend this work to benefit from a bi-directional coupling between the TO and internal system 
optimization. This is best illustrated by Figure 3 wherein we can observe the use of elemental sensitivities from 
both the structural and system aspect of our design to update the design variables for subsequent optimization runs.    

a) b) 

Figure 1: Multi-material jetted concept prototype - a) an example of a topologically optimized structural part with 
integrated internal system of placed components and the associated routing, b) a prosthetic arm with embedded 

systems and the associated connections between components [6]. 

a) b) 

Figure 2: Coupling placement and routing optimization with structural topology optimization 

Figure 3: Flowchart showing the coupled optimization procedure 
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4.2 System Optimization: Placement and Routing Methodology 
In this work, system design/optimization means the intelligent placement of components (based on some 
performance and/or geometry criterion) and the associated connection routing. A wide range of automated 
placement and/or routing techniques have been employed in numerous fields, including electronics, civil 
(buildings), aerospace, navigation systems, and artificial intelligence (robotics). The electronics community has 
benefited significantly from advancements in these techniques and this is evident from the highly miniaturized and 
optimized very large scale integration (VLSI) and printed circuit board (PCB) designs. Although in principle it 
would be best to perform placement and routing in one step as placement has significant repercussions on the 
routing but due to the nested dependencies these can be more efficiently (in terms of computational expense) 
tackled independently. The reader is directed to the authors previous works [4][5] for details on the placement and 
routing strategies/techniques within the context of MFAM design. Currently, PCBs within electronic devices are 
limited to a stacked 2D (i.e. 2.5D) paradigm [7], however, with the development of multi-material AM the design 
of functional devices in true 3D, termed printed circuit volumes (PCVs), can be considered. The 3D placement of 
internal components and the associated routing of connecting tracks should enable more compact, better integrated 
and capable MFAM systems. 
One of the key enablers for MFAM system design is the skeletal information. This can be obtained through the 
process of skeletonization which is the general name given to a process which reduces the quantity of geometric 
information (i.e. dimensionality) required to represent a structure whilst preserving the essence of the topology. In 
3D, this means a 2D medial surface and a 1D medial axis. A thinning algorithm, as detailed in [8][9], has been used 
to obtain the skeletal information of the part’s topology. For this study, the medial axis is used to obtain 
appropriate orientations of placed components in accordance with the approach outlined in [5] and to identify the 
optimal routes. 
With regards to the system design considered herein, placement of the component involves: identifying potential 
locations; identifying the orientation for the component under consideration; and finally assessing the location 
suitability for this component. Once the internal components have been placed, the next task is to generate the 
connections to form a circuit, commonly termed routing. The routing optimization aims to improve the circuit 
efficiency by lowering resistance, which is proportional to the conductive track length. This is, achieved by 
identifying the shortest paths between components subject to design rules and constraints. By doing so, we also 
minimize the utilization of the conductive track material. 
In this study, a MATLAB [10] implementation utilizing the Dijkstra’s algorithm [11] is employed to route between 
two points by tracing members on the medial axis. This approach is described by the following steps: 
1. Obtain the medial axis for the current structural topology. 
2. Compute the length of each medial axis member (i.e. branch point to branch point). 
3. Identify the link and the points on it that are nearest to the placement location. Find the distance from the 

aforementioned points to the branch points of the link they lie on (see Figure 4). 
4. Develop a graph (network) representing the path finding problem. 
5. Solve the graph problem using Dijkstra’s algorithm. 

   
Figure 4: Routing method: shortest path identification based on the medial axis. Distances between points are 

represented by double ended arrows. 

4.3 Coupled Optimization Procedure
The combined elemental sensitivity of an element within the design domain or ‘ ’ , as outlined in Figure 3, is 
computed using Eq.(1)  

(1) 

where,  represents the normalized structural elemental sensitivities (i.e. normalized strain energies) after 
thresholding the outliers (e.g. at the regions where the loads and boundary conditions are applied),  represents 
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the normalized system elemental sensitivities, and  is a weighting factor influencing the relative importance of 
the structural and system sensitivities. 
For this study, a heuristic was defined (Eq.(2)) for the computation of internal system elemental sensitivities. 

(2) 

where,  is the Euclidian distance between ‘ith’ element within the design domain and the closest point from it on 
the routed paths. Doing so, assigns a value of ‘1’ to those elements which form a route and a lower value for 
elements that are further away from the routed paths.  
As combined elemental sensitivities ‘ ’ is used for updating the design variables in our modified BESO 
implementation, it can therefore be claimed that the objective function being minimized in this problem is  .

5. Simulation, Results and Discussion 
In order to assess the proposed coupling strategy, a test case with the problem definition of Figure 5, is considered. 
Herein, four pre-placed components (based on the static arbitrary performance map of Figure 5a – two components 
at maximum values and two at minimum values) are chosen with the component connection topology of Figure 5b. 
Table 1 details the parameters set for the coupled optimization formulation (modified BESO) for the considered 
test case of Figure 5. 

a) b) 

Figure 5: Problem definition a) four components placed within the design domain based on a static external 
performance map for the considered cantilever problem b) topology of the connected components defining the 

system configuration. 

Table 1: Parameters used for the coupled optimization formulation 

Parameter Description Value 
Parameter used for the single objective weighted sum formulation 1
Modulus of elasticity used for structure 1
Modulus of elasticity used for the void region 1e-6 
Modulus of elasticity used for system 1e-3 
Poisson’s ratio used for all materials  0.3 
Filter used to avoid checker-boarding 2
Evolution rate used for BESO 2% 
Target volume fraction used for optimization 40% 
Number of optimization iterations after which the process is terminated 60 

Figure 6 shows the sensitivities of the structure and internal system as well as the combined sensitivities from 
which the design variables are updated (c), plus the optimized structure and system results (d) and the results from 
the TO with just structural sensitivities (e). Figure 7 shows the history of the artificial objective function calculated 
as a weighted sum of the structural and system sensitivities. Optimization progress was observed to be generally 
stable with only a few discontinuities over the history which correspond to sudden changes in the structural 
members selected for routing through. 
In the coupled results (Figure 6d), the skeleton is shown with the red portions representing the actual routes used 
(overlapping routes are allowed at this stage in the design process). It was observed that the structural members 
that had routes within them had increased thickness that those that didn’t and in comparison with the reference 
structure for which there are two contributing reasons. The first reason is that the routes affect the mechanical 
performance of the structure due to a lower Young’s modulus being used for the material property of those 
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elements in the FEA and so the structure is thickened up to compensate. The second reason is that due to the 
heuristic nature of the internal system sensitivity definition where the sensitivities are linked to Euclidean distance 
from the medial axis (Eq.(2)), the combined sensitivities for those regions of the structural members are higher 
than they would be otherwise which affects the design variable update. 
The differences in the evolution of the solutions between the coupled structure and system optimization problem, 
and the structure only TO can also be observed. It can be seen that the structural topology looks identical for the 
early stages in both optimization problems. This can be understood by examining the element removal criterion, 
i.e. lower   values, and as medial axis is going to be well within the mostly solid structure, one can expect 
similar elements being chosen for removal. However, with removal of more material from the structure, the 
influence of system elemental sensitivities can be witnessed and it is evident that the coupled formulation has a 
significant effect on the material layout for the structure.  

Early iteration Middle iteration End iteration 
a)

b) 

c)

d) 

e)

Figure 6 – a) Sensitivities for structure, b) sensitivities for internal system, c) combined sensitivities using Eq.(1), 
d) resulting coupled solution, and e) TO using just structural sensitivities for comparison. 

Figure 7 – Objective function formed as a weighted sum of the structure and system sensitivities.
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6. Concluding Remarks 
This paper has presented a coupled optimization formulation for the design of additively manufactured 
multi-material parts with embedded functional systems (e.g., a structural part with electronic/electrical 
components and associated conductive paths). This marks a significant step towards being able to exploit the 
design freedom offered by these manufacturing processes.  
The main contribution of this paper is the coupling strategy that enables the structural TO of a part to be carried out 
in conjunction with the system design through the use of combined structural and internal system sensitivities, 
based on the routing between components placed based on a performance map. Following each structural 
optimization iteration, the placement of the components was determined, associated routing performed, and the 
design variables then updated for the next iteration of the TO phase. 
The results have demonstrated that the method through the evaluation on a 2D cantilever test case for a simple 
connection topology. There is work to be done on tuning the heuristic internal system sensitivity definition to 
ensure it is not inappropriately biasing the structural member thickness through the use of the ‘distance from 
medial axis’ measure. The next steps are to evaluate this method on a non-static performance map that changes in 
response to changes in the structure.  
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1. Abstract
Mesh adaptation is rarely used in topology optimisation, with exceptions found in continuous methods such as

phase field and some level-set techniques. Anisotropic mesh adaptation involve not only refinement and coarsen-

ing operations, but also smoothing and swapping, which allow for the appearance of elongated elements aligned

with physical features, such as those found in structural optimisation. We use an anisotropic mesh generator based

on local mesh modifications and an open source finite element engine (FEniCS) in combination with the method

of moving asymptotes. Discrete sensitivities are calculated automatically and converted to continuous ones, such

that they can drive the mesh adaptation and be interpolated between meshes. Results for stress and compliance

constrained volume minimisation indicate that mesh independence is possible in a rounded 2D L-bracket geometry,

the rounding fillet being 1 % of the characteristic length scale. Finally, the combination is tested for 3D compliance

minimisation, where 50 is found to be a typical average element aspect ratio, indicative of the speed-up relative to

isotropic mesh adaptation.

2. Keywords: Anisotropic; mesh; adaptation; topology; optimization

3. Introduction
Fixed structured meshes remain popular for topology optimisation due to ease of implementation and parallelisa-

tion [1, 2]. Adapted meshes have, however, also seen some use in the context of continuous sensitivities [3, 4]

and recently also for discrete sensitivities [5], but we are not aware of any work employing mesh adaptation of

the anisotropic kind, which is the aim of this work. The hypothesis is that stretching of elements to accommodate

anisotropic features in the design and the physics will enable a more efficient use of computational resources com-

pared to isotropic mesh adaptation.

4. Anisotropic Mesh Adaptation
We choose to apply a continuous framework [6] for anisotropic mesh adaptation. That is, we estimate the optimal

local size and orientation of elements by means of a spatially varying symmetric positive definite tensor field, a

metric tensor field, M . If one wishes to minimise the interpolation error of some scalar, ρ̃ , then the metric is [7]

M =
1

η
(
det[abs(H(ρ̃))]

)− 1
2q+d abs(H(ρ̃)), (1)

where det(· · ·) returns the determinant, H(· · ·), returns the Hessian, abs(· · ·) takes the absolute value of the tensor

in the principal frame, q is the error norm to be minimised, d is the dimension and finally, η is a scaling factor used

to control the number of elements. Several metrics can be combined using the inner ellipse method [8] illustrated

in figure 1, where it can also be seen that the metric has units of inverse squared length. The metric can be used

Figure 1: The process of combining two metrics using the inner ellipse method is shown for the case where there

is an intersection and thus also a loss of anisotropy, but anisotropy is preserved whenever one ellipse is entirely

within the other.

to map elements to metric space, where the ideal elements are regular triangles or tetrahedra. Various heuristic

quality metrics exists to quantify the difference from the perfect element [9]. These metrics are generally invariant

1
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under rotations in metric space, which can give rise to large angles in real space and thus also problems with iter-

ative solvers. This is, however, mostly an issue for extreme aspect ratio elements, and it is possible to reduce the

occurrence of large angles with advancing front techniques [10]. We use a popular technique [8, 11] based on the

local mesh modifications shown in figure 2. The results presented here are based on an Octave/MATLAB imple-

mentation, which is fully vectorised. It is, however, still around an order of magnitude slower than an equivalent

C++ implementation [12].

Figure 2: Local swapping mesh modification operations are illustrated

in two and three dimensions (top row), while coarsening, refinement and

smoothing are sketched for two dimensions. Smoothing and swapping

operations are only allowed, when they improve the worst local element

quality, and in three dimensions this is also true for the refinement.

Figure 3: The flowchart for a

optimisation is sketched with the

mesh adaptation between the sen-

sitivity analysis and the optimiser.

5. Topology Optimisation
We use the standard approach of Solid Isotropic Material with Penalisation (SIMP) [13] together with the method

of moving asymptotes [14],

E = Emin +(Emax −Emin)ρPE , where 0 ≤ ρ ≤ 1, (2)

where E is the Young’s modulus, ρ is the design variable and PE is the SIMP penalisation exponent. For compliance

minimisation, PE = 1 gives rise to a convex problem, which does not have a discrete solution. Its solution, however,

constitutes a good initial guess for an optimisation with larger PE , where the optimal solution is discrete. This kind

of continuation approach is common for addressing problems with local minima within the field of structural

optimisation [15].

We calculate the discrete sensitivity with respect to the design variables automatically [16], and then normalise the

sensitivity with the design variable volumes to calculate an approximate continuous sensitivity, ∂ρ . To this, we

apply Helmholtz smoothing [17], such as to impose a minimum length scale, Lmin,

∂ρ − ∂̃ρ +L2
min∇2∂̃ρ = 0. (3)

The filter is also applied on the design variable and both scalar fields are then used to calculate metrics using

equation (1). The metrics are combined using the inner ellipse method, and the result is passed to the mesh

generator. The filtered continuous sensitivities, mma asymptotes as well as current, old and older design variables

are interpolate on to the new mesh. The discrete sensitivity on the new mesh is estimate by multiplying with the

new design variable volumes, and then design variables are optimised completing the optimisation loop sketched

in figure 3.

We use an open source high level finite element package [18] (FEniCS) for solving the forward problem. Both

displacements and design variable are represented with continuous linear basis functions. The Hessian calculation

in equation (1) involves Galerkin projection and these are performed with an iterative solver, but a direct solver is

applied for the forward, adjoint and filter problems.

6. Setup
We show results in the context of linear elasticity in three dimensions as well as for plane stress, but in both cases

we use Emax and a characteristic length, Lchar to non-dimensionalise the problem,

ν = 0.3, Emin = 10−3Emax, L1 = 0.1Lchar, σ
load

= Emax/Lchar, q = 2 and cMMA = 103,

where ν is the Poisson ratio, L1 is a length scale associated with the load boundary condition and cMMA is the

MMA c parameter for controlling the enforcement of constraints. We also use move limits

abs(ρi+1 −ρi) = Δρ ,

2
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and we fix these at Δρ = 0.1.

6.1 Stress and compliance constrained volume minimisation in two dimensions

This setup is specific to a L-bracket geometry with a rounded corner (fillet 1% of the characteristic length scale).

For these optimisations, we use a stress penalisation scheme [19] to avoid problems with void stress, and we use

a 10-norm to convert the local constraints to a single global one [20]. We also smooth the stress sensitivity with a

Helmholtz filter based on the element metric calculated as Steiner ellipses and use a factor of four higher tolerance

for the metric associated with the stress sensitivity. We scale the number of iterations with the mesh tolerance:

itmax = round(600
√

0.02/ηρ̃), Cmax = 2.5EmaxL2
char, σmax = 1.5Emax, PE = 3 and Lmin = 5 ·10−2Lchar,

where Cmax and σmax is the maximum compliance and von misses stress, respectively.

6.2 Volume constrained compliance minimisation in three dimensions

The implementation is tested for a cantilever, stool and crank geometry, which correspond to bending, compression

and torsion, respectively. The tests are described as part of another work [21]. We use volume fractions of 10 %, 20

% and 50 %, minimum length scales of 5 ·10−3, 1 ·10−2 and 1 ·10−2, respectively. Convergence is investigated for

the cantilever, but mesh tolerances for the stool and crank are fixed at 0.04 and 0.02. We use as much symmetry as

possible and fix the maximum number of iterations at itmax = 300. To reduce issues with local minima, the SIMP

exponent is increased exponentially throughout the first 2/3rds of the optimisation

Pi
E = min(43i/(2itmax),4).

7. Results
Due to the inconsistent formulation of our approach, we do not expect convergence in a strict sense and thus plot

the best results satisfying the constraints to the tolerance of the MMA c parameter∗.

The two dimensional results are shown in figure 4 with the volume throughout the optimisations plotted in figure

5(a). Both the topology and objective function seems to converge, which was not the case for a sharp corner. The

maximum von misses stress is twice the allowed value underlining the need for post processing of designs obtained

with stress constrained topology optimisation. We attribute the fact that the volume and compliance in figure 5

converge from above to the continuous design variables, that is the area of intermediate, and thus suboptimal

design, is reduced with mesh refinement. The opposite behaviour would be expected, if the convergence of the

forward problem was the dominating effect.

The compliance for the three dimensional results is plotted in figure 5(b) with the actual designs shown in figures

6 and 7 by means of ρ = 0.5 iso-surfaces and slices at constant x. Note that these representations can produce

quadrilaterals from purely tetrahedral meshes, and that the blue wireframe represents the computational domain in

which objective function and node count are calculated, see top of each design. All designs agree with a previous

work [21] and in the case of the cantilever we get convergence of topology as well as objective function, but we

did find a different topology, if the cantilever was optimised with Lmin = 5 ·10−2. The oscillations for the objective

functions plotted in figure 5(b) seem stronger than for the two dimensional case, but the absence of a stress con-

straint seems to improve the ability to recover from infeasible designs.

7.1 Computational cost

The computational time in hours† is printed above the designs in figures 4, 6 and 7. An estimate for the aspect ratio

(AR) is also printed for the three dimensional results. This is calculated by first computing the Steiner ellipsoid and

then dividing the product of the radii with the cubed minimum radii. The aspect ratio can be used as an estimate of

speed-up relative to isotropic adaptation and it seems to vary with mesh resolution, but values below 50 are rare.

One can make an equivalent analysis for the two-dimensional results and arrive at 4-5, but as seen from figures 4,

6 and 7, it also depends on the problem.

The mesh adaptation takes up 20-30 % of the total computational time for the two dimensional results and 40-50

% in three dimensions. This is with single threaded computations, a direct solver and an Octave/MATLAB imple-

mentation for the mesh adaptation, so it might be possible to decrease the total computational time with an order of

magnitude, by employing an optimised C++ mesh adaptation implementation [12] in combination with an iterative

solver. In this regard, the influence of elements with large angles would be particularly interesting.

∗In three dimensions we use cmma = 103, but show designs satisfying the constraints to within 0.5%
†Using an Intel(R) Core(TM) i7 870 @ 2.93GHz, everything being run single threaded
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Figure 4: Optimisations with a rounded corner for ηρ̃ equal to 0.03 (left), 0.015 (middle) and 0.0075 (right). The

design variables and mesh elements are shown for the iteration (i) at which the lowest volume fraction (V ) occurs,

while the stress and compliance constraints are satisfied. The designs are shown in the upper row (a-c) with the

von misses stress below (d-e).

(a) (b)

Figure 5: The volumes of optimisations for a stress and compliance constrained L-bracket problem is plotted to the

left (a), while the compliance for a volume constrained three dimensional cantilever problem is plotted to the right

(b). In both cases three different values for the tolerances of the mesh adaptation is shown. Note how the coarse

stress constrained optimisation becomes infeasible and fails to recover. The spike of the coarse three dimensional

could also be due to infeasible designs. For the three dimensional problems, the PE parameter is smaller than 4

before iteration 200.

8. Conclusion
We have combined topology optimisation with anisotropic mesh adaptation and tested the implementation on

stress and compliance constrained volume minimisation for the two dimensional L-bracket problem with a ever so

slightly rounded corner as well as on volume constrained compliance minimisation in three dimensions. In both

cases we are able to get mesh independence for the topology and convergence of the objective function.
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Figure 6: The best cantilever designs that satisfy the volume constraint to a relative tolerance of 0.5% are shown in

terms of the ρ = 0.5 isosurfaces as well as slices at x/Ly equal to 0, 0.25, 0.5, 0.75 and 1. They all give the same

topology, but the slice through x = 0.25Ly shows significant variations.

Figure 7: The best stool (left) and crank (center, right) designs are plotted in terms of their ρ = 0.5 isosurfaces. The

crank shown from the side (center) with the support visible and from the bottom where the load is applied (right).

Note that the title statistics pertain to the actual computational domain as illustrated with the blue wireframe.
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1. Abstract
This study investigates the robust topology optimization of the thin plate under concentrated load with uncertain
load point. Several researches investigated the effect of uncertain load direction, load magnitude or load distri-
bution on the topology optimization. However, the robust topology optimization considering uncertainty of the
load point has not been studied yet. In this study, the load point uncertainty is modelled through the convex hull
model. The nominal concentrated load in out-of-plane direction is applied at the center of the plate modeled based
on Reissner-Mindlin plate theory. The load point uncertainty is limited in a circle centered at the nominal load
point. The worst load condition is defined as the applied load at the worst point in the convex hull that gives the
worst value of the mean compliance. The worst point is easily obtained from the convex hull approach. Then, the
robust objective function is formulated as a weighted sum of the mean compliance obtained from the mean load
condition and the worst compliance obtained from the worst load condition. This robust topology optimization
is constructed using the level set-based topology optimization method. Through numerical examples, the robust
optimum configuration is compared with the deterministic optimum configuration. Then, validity of the proposed
robust design method is discussed.

2. Keywords: Level Set-Based Topology Optimization, Robust Optimization, Thin Plate Structure, Convex Hull,
Worst Load Case

3. Introduction
Recently, the robust optimum design is widely applied to the field of engineering design problems that consider
uncertainties of design parameters such as material constants and applied load conditions [1, 2]. Integrating the
topology optimization and the robust design is generally called the robust topology optimum design. Several
studies have been conducted on the robust topology optimization. Takezawa et al. [3] introduced the worst
load condition of the applied load direction or the load distribution in the topology optimization. Chen et al. [4]
applied the random field process to evaluate the space-varied random parameters. We proposed the robust topology
optimization method [5] that integrates the level set-based topology optimization [6] and the sensitivity based
robust optimization method [7]. Then, we applied the stationary stochastic process to model spatially-variable
uncertain parameters for the robust topology optimization [8]. On the research, uncertain design parameters such
as Young’s modulus and distributed load with spatial distribution are modeled by using the stationary stochastic
process with a reduced set of random variables.
This study considers the robust topology optimization for the thin plate structure. On the authors’ previous study
[9], deterministic level set-based topology optimization method for the thin-plate structure was proposed, where
the bending plate is modeled based on Reissner-Mindlin theory, This study extends it to the robust topology opti-
mization in consideration of the applied load point uncertainty. Under actual situation, the applied load point may
be varied. Therefore, the variation of the applied load point is modeled by using the convex hull modeling [10].
The convex hull is applied to obtain the worst case of uncertain parameters. By approximating the uncertainty
parameter range in the convex hull, the worst case is easily obtained. Then, the objective function is formulated as
a weighted sum of the mean compliance by the mean applied load and the worst compliance that is given by the
worst load condition. Through numerical example, the validity of the robust topology design is discussed.

4. Topology Optimization
4.1 Level Set-Based Topology Optimization
This study uses the level set-based topology optimization method [6]. The method can create holes in the solid
domain during optimization by introducing energy term derived from the phase field theory. Additionally, the
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method allows qualitative control of the geometry complexity of optimal configurations.
The level set function φ(x) is introduced to represent a clear shape boundary ∂Ω between the material domain
Ω and the void domain D\Ω as φ(x) = 0 where x indicates an arbitrary position in D. The level set function is
defined to take a positive value in the material domain and negative in the void domain as follows:⎧⎪⎨

⎪⎩
0 < φ(x)≤ 1 ∀x ∈ Ω\∂Ω
φ(x) = 0 ∀x ∈ ∂Ω
−1 ≤ φ(x)< 0 ∀x ∈ D\Ω

(1)

The limit state function is bounded in [−1,1] for introducing a fictitious interface energy based on the concepts of
phase field method to the objective functional.
The design optimization is formulated as following equation that contains an objective functional F(Ω(φ)).

inf
φ

F(Ω(φ)) =
∫

Ω
f (x)dΩ (2)

where f (x) is the integrand function.
Since the above formulation allows to have discontinuous at every point, the regularization term is introduced
based on the concept of phase field method [6].

inf
φ

FR(Ω(φ)) =
∫

Ω
f (x) dΩ+

∫
D

1
2

τ|∇φ |2dΩ (3)

subject to G(Ω) =

∫
Ω

dΩ−Vmax ≤ 0 (4)

where FR is a regularized objective functional, τ is a regularization parameter that represents the ratio of the
fictitious interface energy, and G(Ω) indicates the volume constraint with the upper limit Vmax.
Using Eq (3) and (4), Lagrangian F̄R is define as below:

F̄R (Ω(φ),φ) =
∫

Ω
f (x)dΩ+λG(Ω(φ))+

∫
D

1
2

τ |∇φ |2 dΩ (5)

The KKT conditions of the above optimization problem are derived as follows:

F̄ ′
R = 0, λG = 0, λ ≥ 0, G ≤ 0 (6)

where F̄R and λ indicate the Lagrangian and the Lagrange multiplier, respectively.

4.2 Updating the Level Set Function
Level set function that satisfies the KKT conditions in Eq. (6) is candidate solutions of the optimization problem.
Introducing a fictitious time t, and assuming that the variation of the level set function with respect to the time t is
proportional to the gradient of Lagrangian, as follows:

∂φ
∂ t

=−K(φ)F̄ ′
R (7)

where K(φ)> 0 is the positive proportionality coefficient.
Substitute Eq. (5) into Eq. (7) and applying Dirichlet boundary condition to the body domain boundary ∂DN and
Neumann boundary condition to the other boundary, the following time evolution equation is obtained:

∂φ
∂ t

=−K(φ)
(
F̄ ′ − τ∇2φ

)
(8)

∂φ
∂n

= 0 on ∂D\∂DN

φ = 1 on ∂DN

where H(φ) is Heaviside function. Note that Eq. (8) is a reaction-diffusion equation, and the smoothness of the
level set function is ensured. Further details are provided in [6].

5. Robust Topology Optimization
Robust optimum design considers the effect of uncertainty of design variables and parameters on the objective
function and constraints. As shown in Fig. 1, the robust optimum design has smaller deterioration of the perfor-
mance under variation of design parameters than that of the deterministic optimum design where z0 and Δz denote
nominal value and variation of design parameter, respectively.
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Figure 1: Concept of robust optimization

Concentrated
out-of-plane load

Nominal load point
Plate

Variation range
of load point

Figure 2: Variation range of applied load point on
the plate

Figure 3: Reissner-Mindlin assumption

5.1 Design Problem of Thin Plate Structure
This study considers the variation of the load point of the applied concentrated load. As shown in Fig. 2, the
square plate with fixed four vertices with applied the concentrated out-of-plane load is considered. The load point
is modeled as uncertain parameter, where the nominal point is set at the center and the variation range is limited
inside of the circle.
The conventional topology design problem is to minimize the mean compliance. That is, by using the strain energy
a(u,v) and the mean compliance l(u), the objective functional is defined as follows:

inf
Ω

: F(Ω) = l(u) (9)

subject to : a(u,v) = l(v) for ∀v, u ∈U (10)

where a(u,v) and l(v) are defined as follows:

a(u,v) =
∫

Ω
ε(u) : E : ε(v)dΩ (11)

l(v) =
∫

Γt
t ·vdΓ (12)

where ε is the linearized strain tensor, E is the elasticity tensor and the U is defined as follows:

U =
{
v = viei : vi ∈ H1 (D)

}
with v = 0 in Γu (13)

Based on Reissner-Mindlin theory, the strain energy for the thin plate structure is described as follows:

1
2

a(u,u) =
1
2

∫∫ {
Mx

∂βx
∂x

+My
∂βy

∂y
+Mxy

(
∂βy

∂x
+

∂βx
∂y

)
+Qx

(
∂w
∂x

+βx

)
+Qy

(
∂w
∂y

+βy

)}
dxdy (14)

where Mx,My,Mxy are the bending and the torsional moments, Qx and Qy are the shear force, βx and βy are the
rotational angle, and h is the plate thickness as shown in Fig. 3.
The worst load case is defined as the load case that gives the worst value of the mean compliance in the given
convex hull. In this study, the worst case is found to lie on the boundary on the convex hull by preliminary
analysis. Therefore, the convex hull model is adopted. The worst case is easily obtained as solving the sub-
optimization problem in each iteration of the topology optimization loop.
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Figure 4: Flowchart of robust topology optimization
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Figure 6: Plate model for robustness evaluation

5.2 Robust Topology Optimization
The objective of the robust topology optimization is defined as a weighted sum of the mean and the worst compli-
ance as follows:

frobust(x) = (1−α)anom(u,u)+αaworst(u,u) (15)

where anom(u,u)/2 is the strain energy density under the deterministic nominal load, and aworst(u,u)/2 is the
strain energy density under the worst load in the convex hull, and 0 < α < 1 is a positive weighting coefficient.
The computational flow of the proposed robust topology optimization method is shown in Fig. 4. Starting the
initialization of the level set function, the equilibrium equation of the nominal load is solved using FEM to evaluate
the mean compliance. Then, the worst load condition is searched in the convex hull and the robust objective
function is evaluated. After the convergence cheek, the level set function is updated. Then, the volume is modified
to fit the upper limit by the enclosure and bisection method [8]. The equilibrium equation is solved for the updated
geometry and the process is repeated until convergence.

6. Numerical Examples
As a simple numerical example, the square plate with 2.0m on a side and 0.01m in thickness with the fixed four
vertices as shown in Fig. 5 is considered as a fixed design domain D. Young’s modulus and Poisson’s ratio are
set as 210GPa, and 0.33, respectively. The fixed design domain D is discretized to 21850 elements for evaluating
the mean and the worst compliance. For the topology optimization, the regularization parameter τ and the volume
constraint are set as 5.0×10−5 and 50%, respectively.
The concentrated out-of-plane load of 1000N is applied at the center of the plate as a nominal load point. As a
random parameter, the load point is assumed to be varied in the circle centered at the nominal load point. The
convex hull is set as the quarter sector shown in Fig. 5, because of considering the symmetry condition,
It is expected that the unsymmetric load condition for the worst case will yield the unsymmetric optimum config-
uration. However, since the uncertain point will be lie on the other sectors, the unsymmetric configuration is not
suitable as the robust optimum configuration. Therefore, the other three symmetric points to the worst load point
are also considered as the worst load points. For evaluating the worst compliance aworst in Eq. (15), the plate model
is arranged to apply the four concentrated loads of four divided magnitude of 250N at the worst points as shown in
Fig. 6.
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Figure 7: Deterministic optimum configuration Figure 8: Robust optimum configuration (α = 0.70)

Table 1: Mean compliance under deterministic load

Configuration Load point [m] Mean Compliance [J/m3]

Deterministic (0.0, 0.0) 7.606×104

Robust (α = 0.30) (0.0, 0.0) 7.572×104

Robust (α = 0.50) (0.0, 0.0) 7.559×104

Robust (α = 0.70) (0.0, 0.0) 7.545×104

Table 2: Mean compliance under worst load

Configuration Load point [m] Mean Compliance [J/m3] Increase rate [%]

Deterministic (0.0, 0.40) 8.127×104 6.848
Robust (α = 0.30) (0.0, 0.40) 8.048×104 6.292
Robust (α = 0.50) (0.0, 0.40) 8.016×104 6.049
Robust (α = 0.70) (0.40, 0.0) 7.984×104 5.813

Deterministic (0.40, 0.0) 8.126×104 6.832
Robust (α = 0.30) (0.40, 0.0) 8.047×104 6.284
Robust (α = 0.50) (0.40, 0.0) 8.008×104 5.951
Robust (α = 0.70) (0.0, 0.40) 7.974×104 5.680

The deterministic optimum configuration obtained under the nominal load condition is shown in Fig. 7. The robust
optimum configuration under α = 0.7 in Eq. (15) is shown in Fig. 8. These configurations are very similar with
each other except for the hole shape closed to the vertices. Fig. 8 shows the robust design under the case of α = 0.7.
The other optimum configurations for the smaller values of the weighting factors are almost the same in Fig. 8.
Table 1 compares the mean compliance values under the deterministic load between the deterministic and the
robust optimum configurations with α = 0.3,0.5 and 0.7. It is found that the mean compliance of the robust
configuration under the deterministic load is smaller than that of the deterministic configuration.
Then, Table 2 compares the mean compliance values under the worst load conditions. The load point shows
the worst load point. The values of the mean compliance under the rotationally symmetric load point are also
listed. The deterioration of the compliance value are almost the same between the deterministic and the robust
configurations, though the deterioration rates of the robust configurations are smaller than that of the deterministic
configuration. It means that the deterministic optimum configuration has higher robustness in this case. That’s
why the optimum configurations are the similar configurations.
It is expected that the research concerning the robust optimum design will expect to obtain the different design
from the deterministic one. However, that is not always true. We must consider the effect of the random parameter
on the deterministic optimum configuration first.
For the purpose, the out-of-plane deformation distributions for the deterministic optimum configuration are com-
pared between the nominal and the worst load conditions in Fig. 9. The maximum displacement occurs at the load
point under the nominal case. On the other hand, the maximum occurs not at the load point under the worst load
case, at the righter position from the worst load point, at the edge of the hole. It is considered that the hole makes
the maximum displacement position shift form the worst load point to the edge of the hole, that will make the
deterioration of the worst compliance smaller. As a result, the deterministic optimum configuration happens to be
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Nominal load point
worst load point

(a) Nominal load (b) Worst load
Figure 9: Out-of-plane deformation distribution for deterministic optimum configuration

robust for variations of the load point in this example.

7. Conclusion
This paper investigates the robust topology optimum design for the thin plate structure under the concentrated load
with uncertain load point. The uncertainty is modeled by using the convex hull to find the worst load condition that
yield the worst value of the mean compliance. The robust objective function is formulated as a weighted sum of
the mean and the worst compliance. The optimum configuration is obtained by using the level set-based topology
optimization.
Through the numerical examples, the robust configuration is almost similar to the deterministic configuration. It
means that we must consider the effect of uncertainties of the design parameters on the deterministic optimum
configuration at first.
We will investigate the effect of the other design parameters on the optimum configuration for the thin plate
structure.
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1. Abstract
In structural optimization subject to failure constraints, computing the gradients of a large number of functions

with respect to a large number of design variables may not be computationally practical. Often, the number of

constraints in these optimization problems is reduced using constraint aggregation at the expense of a higher mass

of the optimal structural design. This work presents results of structural and coupled aerodynamic and struc-

tural design optimization of aircraft wings using a novel matrix-free augmented Lagrangian optimizer. By using

a matrix-free optimizer, the computation of the full constraint Jacobian at each iteration is replaced by the com-

putation of a small number of Jacobian-vector products. The low cost of the Jacobian-vector products allows

optimization problems with thousands of failure constraints to be solved directly without resorting to constraint

aggregation. The results indicate that the matrix-free optimizer reduces the computational work of solving the opti-

mization problem by an order of magnitude compared to a traditional sequential quadratic programming optimizer.

Furthermore, the use of a matrix-free optimizer makes the solution of large multidisciplinary design problems, in

which gradient information must be obtained through iterative methods, computationally tractable.

2. Keywords: Matrix-free optimizer, multidisciplinary design optimization, structural optimization, constraint

aggregation

3. Introduction
When solving structural optimization problems or multidisciplinary design optimization (MDO) [9] problems in-

volving a structural analysis, we want to use failure constraints directly in our problem formulation. However,

constraining the optimization problem in this way for complex structures like aircraft wings leads to a problem

formulation with thousands of constraints. Often, constraint aggregation, such as Kreisselmeier–Steinhauser (KS)

aggregation [7, 12], is employed to reduce the number of constraints in the problem yet still obtain a feasible final

design. While this approach is effective in reducing the computational cost of the optimization, it compromises the

quality of the final structural design. The KS parameter must be chosen to balance accuracy of the feasible design

space with the conditioning of the optimization problem itself.

We propose to avoid excessive constraint aggregation by using a gradient-based optimizer that, instead of

requiring the gradients explicitly, requires only matrix-vector products with the constraint Jacobian. When a struc-

tural or multidisciplinary analysis is solved at each optimizer iteration, the expression for the constraint Jacobian

is [
dc
dx

]
=

[
∂C
∂x

]
−
[

∂C
∂y

][
∂R
∂y

]−1 [∂R
∂x

]
(1)

where R are the governing equations of the analysis, y are the state variables, x are the design variables, and C are

the design constraints. To form both forward and transpose matrix-vector products with (1), only a single linear

system needs to be solved per product, thus avoiding the high cost of forming Jacobian. An optimizer that accesses

gradient information through matrix-vector products alone is referred to as a matrix-free optimizer. The research

discussed in this paper follows our previous work developing a matrix-free augmented Lagrangian algorithm [1, 8].

In this paper, we present the results of applying our matrix-free optimizer to a pair of aircraft wing design

optimization problems. The first problem is a minimum-mass problem subject to failure constraints on the wing at

two load conditions. The second problem is an MDO problem in which the take-off gross weight (TOGW) of an

aircraft is minimized for a design mission considering both structural and aerodynamic characteristics of the wing.

4. Matrix-Free Augmented Lagrangian Method

We chose to modify the classical augmented Lagrangian algorithm [2] to create a matrix-free optimizer capable

of solving optimization problems with nonlinear equality and inequality constraints. In the augmented Lagrangian
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algorithm, the nonlinear constraints in the optimization problem

minimize F(x)

with respect to x

subject to C(x)≥ 0

xL ≤ x ≤ xU

(2)

are relaxed to yield

minimize Φ(x, t;λ ,ρ) = F(x)−λ T (C(x)− t)+
ρ
2
(C(x)− t)T (C(x)− t)

with respect to x, t

subject to xL ≤ x ≤ xU

t ≥ 0,

(3)

where Φ is the augmented Lagrangian function, λ is a vector of Lagrange multiplier estimates, ρ is a penalty

parameter, and t is a vector of slack variables. Each major iteration of the augmented Lagrangian method consists

in solving problem (3) and updating ρ and λ based on the constraint infeasibility at the optimal choice of x and t.
We use the updating scheme proposed by Conn et al. [2] to solve problem (3) approximately.

Problem (3) is solved by an L∞ trust-region approach. The trust region subproblem is given by

minimize Q(p) =
1

2
pT Bp+gT p

with respect to p

such that pL ≤ p ≤ pU ,

(4)

where B is an estimate of the Hessian ∇2Φ, g is the gradient ∇Φ, and p is the search direction in both x and t.
The choice of the L∞ trust region makes handling the bound constraints in problem (3) easy. Subproblem (4) is

solved by the algorithm of Moré and Toraldo [10], modified to account for the case where the approximate Hessian

B is indefinite. Moré and Toraldo’s algorithm needs only matrix-vector products with B to solve (4), so all that is

needed to make the algorithm matrix-free is a suitable approximation to ∇2Φ.

In our optimization problems of interest, we do not have access to second derivatives of any of the functions.

Therefore, we use quasi-Newton methods to approximate ∇2Φ in the trust-region subproblem. To increase the

accuracy of our model Hessian B, we use two quasi-Newton approximations within B instead of a single one. We

have developed two approaches to approximating ∇2Φ that balance a low cost of implementation with the ability

to exploit the structure of ∇2Φ. Analytically, the true Hessian of the Lagrangian is given by

∇2Φ =

[
∇2F −∑m

i=1 λi∇2Ci +∑m
i=1 (ρ(Ci(x)− ti))∇2Ci +ρJT J ρJT

ρJ ρI

]
, (5)

where J = [∇C(x)]T .

In the split-quasi-Newton approach, the augmented Lagrangian is broken up into Lagrangian and infeasibility

functions and a separate quasi-Newton method is used to approximate the Hessian of each function. In particular,

Φ(x, t;λ ,ρ) = L (x, t;λ )+ρI (x, t)

L (x, t;λ ) = F(x)−λ T (C(x)− t)

I (x, t) =
1

2
(C(x)− t)T (C(x)− t).

(6)

We use a symmetric rank-one (SR1) [11] quasi-Newton approximation to ∇2L and a Broyden–Fletcher–Goldfarb–

Shanno (BFGS) [11] quasi-Newton approximation to ∇2I . These choices were made based on the fact that ∇2I
is positive-semidefinite near a local minimum, while ∇2L could be indefinite. Both quasi-Newton approximations

are of the limited-memory variety to allow us to solve large problems efficiently.

In the approximate-Jacobian approach, we directly approximate the Jacobian itself using a quasi-Newton

method and truncate the term ∑m
i=1 (ρ(Ci(x)− ti))∇2Ci in (5). This truncation is justified by the fact that C(x)− t =

0 at an optimal solution, so the term becomes negligible as optimality is approached. Again, we use a limited-

memory SR1 approximation to ∇2L for the Lagrangian Hessian, while the Jacobian is approximated by a full-

memory adjoint Broyden method [13]. The adjoint Broyden update is given by

Ak+1 = Ak +
σ kσ k,T

σ k,T σ k

(
Jk+1 −Ak

)
, (7)
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Figure 1: Exploded view of structure layout used in the test problems. The contours represent stress as a fraction

of the yield stress for the optimal wing structure using a KS parameter value of 100.

where Ak is the approximate Jacobian at iteration k and

σ k = (Jk+1 −Ak)sk. (8)

In contrast to quasi-Newton methods for square matrices, there are no limited-memory variants of the adjoint

Broyden method with a convergence guarantee, so we use the full memory version. To improve the computational

performance of this method on large problems in a parallel computing environment, message passing interface

(MPI) standard instructions are used to distribute the matrix approximation over multiple processors and form

matrix-vector products with A.

5. Analysis Software

Our matrix-free optimizer, AUGLAG, is benchmarked against the SQP optimizer SNOPT [3]. SNOPT also

uses a limited-memory quasi-Newton approximation to ∇2L to solve a given optimization problem. How-

ever, SNOPT requires the full constraint Jacobian to be computed at each iteration, while AUGLAG needs only

Jacobian-vector products. While we expect to see a difference in the results due to the difference in optimization al-

gorithms, our aim is to show that AUGLAG is still competitive with SNOPT due to the low cost of the trust-region

iterations in AUGLAG.

The wing structure used in our test problems is analyzed using the Tookit for the Analysis of Composite

Structures (TACS) [4], a finite-element analysis code. The wing aerodynamics were analyzed using the three-

dimensional panel code TriPan [5]. All analysis and optimization codes were accessed through the MACH frame-

work (MDO of aircraft configurations at high fidelity) [6]. The MACH framework includes modules for aerostruc-

tural analysis and geometry warping.

Prior to this project, both the TACS and TriPan codes and the MACH framework possessed modules for ef-

ficiently computing derivatives using the adjoint method. However, in order to enable the matrix-free approach

to optimization, modules needed to be added to compute forward and transpose matrix-vector products with the

partial derivative matrices shown in (1). We expect other researchers interested in using a matrix-free optimizer

would need to undertake similar modifications to their solvers. However, if the direct and adjoint methods are

already available, the implementation is relatively straightforward.

6. Structural Optimization Results

The first problem we study is the minimization of a wing box mass subject to failure constraints. The outer

wing geometry is based on the Boeing 777-200ER civil transport. Figure 1 shows the structural layout used. The

wing is 30.5 m from root to tip, and the assumed aircraft mass is 298 000 kg. The wing is analyzed at two load
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Table 1: Average run times for specific computations in the wing structure optimization problem

Computation Wall Time, 32 proc.
Objective and 2832 constraints 2.31 s

Jacobian of 2832 constraints 188.50 s

Objective gradient only 0.02 s

Jacobian-vector product with 2832 constraints 0.40 s

Transpose Jacobian-vector product with 2832 constraints 0.33 s
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Figure 2: Run time to solve the wing structure opti-

mization problem for a range of KS parameter values
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Figure 3: Number of linear solve operations to solve

the wing structure optimization problem for a range of

KS parameter values

cases: a 2.5g pull-up maneuver and a 1g push-over maneuver. The wing model itself contains nearly 46 000 finite

elements and 250 000 degrees of freedom. Individual thickness design variables and yield stress failure constraints

are assigned to consistent patches of elements. Note that KS aggregation is still used in the failure constraints of

this problem, but only at the level of the element patches. The optimization problem has 1416 variables and 2832

constraints.

Figures 2 and 3 show the cost of the optimization using SNOPT and the two versions of AUGLAG over a range

of KS parameters in terms of both run time and the number of linear solve operations. The latter metric treats one

matrix-vector product as equivalent in cost to forming a single row or column of the constraint Jacobian. Because

the linear solve operation is the most expensive in forming the Jacobian (1), the number of linear solves acts as a

computational cost estimate. Figure 3 shows that AUGLAG is far more efficient than SNOPT at optimizing the

wing design, in terms of the number of linear solves, for a range of KS parameter values. Reductions in the number

of linear solves can be up to an order of magnitude. However, Figure 2 shows that AUGLAG is only more efficient

in terms of run time when using the split-quasi-Newton Hessian approximation.

The variation in the results with the increasing KS parameter value shown in Figures 2 and 3 raises the question

of whether or not this is a random phenomenon based on the starting point. The starting point used was a constant
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Figure 4: Run time to solve the wing structure opti-

mization problem from a random starting point
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Figure 5: Number of linear solve operations to solve

the wing structure optimization problem from a ran-

dom starting point
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Table 2: Average run times for specific computations in the aerostructural optimization problem

Computation Wall Time, 32 proc.
Objective and 4251 constraints 16.82 s

Jacobian of 4251 constraints 26 926.00 s

Objective gradient only 3.86 s

Jacobian-vector product with 4251 constraints 14.36 s

Transpose Jacobian product with 4251 constraints 8.15 s

Table 3: Computational resources to solve the aerostructural optimization problem

Optimizer Number of Linear Solves Wall Time, 32 proc.
SNOPT (50 iteration estimate) 217107 382.5 hr

AUGLAG Split QN (average) 38481 38.0 hr

thickness in all elements. Figures 4 and 5 show results for SNOPT and the split-quasi-Newton version of AUGLAG

using sets of randomly-generated thickness values as the starting points. The data in Figures 4 and 5 fall into a

particular range for each optimizer, suggesting that the oscillations observed in Figures 2 and 3 are indeed a random

occurrence.

The difference in the results between Figures 2 and 3 comes from the fact that the relative cost of computing the

Jacobian in this problem is low compared to evaluating the constraints. Table 1 shows that, using 32 processors in

parallel, obtaining the Jacobian requires only 90 times as much time as computing the objective and all the failure

constraints. If all linear solves were near-equal effort, we would expect a factor closer to a thousand. However,

TACS is designed to compute gradients very efficiently once the functions have been evaluated. As a result, the

large number of iterations taken by AUGLAG hinders the performance more than the matrix-free interface helps.

The results are further tempered by the fact that both versions of AUGLAG could only converge reliably to an op-

timality tolerance of 3×10−4 while SNOPT was able to converge to a tolerance of 10−5. We believe this is caused

by the inability of the augmented Lagrangian algorithm to update the Lagrange multipliers as frequently. Despite

the different tolerances, AUGLAG computes optimal mass values that are within 1-3% of the mass predicted by

SNOPT. Because of this similarity in solutions, we can say that AUGLAG provides a fast estimate of an optimal

solution for problems with many design variables and many constraints.

7. Aerostructural Optimization Results

The wing design optimization problem is now expanded to include aerodynamic analysis and aerostructural

coupling. The objective of the new problem is to minimize the TOGW of the aircraft for a 7725-nautical-mile

design mission. TOGW includes the weight of the wing structure, the weight of the fuel burned, and fixed weights

representing the payload and the rest of the aircraft structure. A third load case and another 1416 failure constraints

are added to model the wing at cruise. An angle-of-attack design variable is introduced for each load case along

with corresponding constraints to match the aircraft weight to the lift generated by the wing. Finally, five twist

variables are introduced to allow the optimizer to twist the jig shape of the wing to alleviate high loads. The final

design problem contains 1424 design variables and 4251 constraints.

The critical feature of this problem is the high cost of computing the Jacobian. Because the problem is mul-

tidisciplinary, the linear system that is solved in forming the Jacobian or Jacobian-vector products can only be

solved iteratively, so the cost of the Jacobian is far higher than the cost of the objective and constraint functions.

Our tests (see Table 2) suggest that computing the full Jacobian would take about 7.5 hours using 32 processors.

Under this time constraint, an optimizer like SNOPT would only be able to complete five iterations in a typical

two-day high-performance computing job. Given that the structural optimization problem shown in Section 6

required approximately 50 iterations to converge, this run time is estimated to be 16 days, which is too long.

Using the split-quasi-Newton version of AUGLAG and a convergence tolerance of 3× 10−4, we are able to

compute optimal wing designs within the two-day limit. Table 3 shows the run time and number of linear solves

required by AUGLAG, averaged over seven KS parameter values, compared with our estimate of the resources re-

quired for SNOPT to solve the same problem. In terms of both the number of linear solves and run time, AUGLAG

is up to an order of magnitude faster than the estimated results of SNOPT.
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8. Conclusions

We have presented results for the optimization of a wing structure using a new matrix-free optimizer. We

deliberately avoided aggressive constraint aggregation and formulated problems with both thousands of variables

and thousands of constraints. Our matrix-free optimizer is capable of solving these large optimization problems

much more quickly than a traditional optimizer. Depending on the relative cost of the Jacobian evaluation, the total

computational effort can be reduced by up to an order of magnitude. We expect that further gains are possible if

more advanced optimization algorithms are adapted to be matrix-free.
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1. Abstract
In this article, generative design algorithms are investigated as a strategy for solving two-dimensional steady-state

heat conduction topology optimization problems. The motivation for this study is to investigate alternative nu-

merical strategies for the eventual solution of richer three-dimensional multidisciplinary electro-thermal design

problems related to functional electrical power systems. The efficient solution of such problems is critical for

future power-dense electronics, where the optimal layout of heat sources (e.g., electrical devices) and heat sinks in

combination with heat flow control structures and devices is important. Thus, as a first step toward this greater goal,

generative algorithms are explored for their possible benefits, which include enabling a broader variety of objective

functions, design constraints, and design variables plus separation of the design description from the computational

mesh. Specifically, a new design method based the Space Colonization Algorithm is investigated. The generative

algorithm is implemented using two distinct techniques. The first method is to use the generative algorithm to pro-

duce a starting topology for the SIMP Method; this will be referred to here as the Hybrid Approach. The second

technique is to use the generative algorithm to produce topologies that can be meshed directly and evaluated with

a finite element solver; this will be referred to here as the Generative Design Approach. A two-dimensional case

study is used to compare the effectiveness of the SIMP, Hybrid, and Generative Design approaches. These initial

studies involve a homogeneously heated square design domain where the thermal compliance design objective and

computational cost are assessed.

2. Keywords: Topology Optimization, Generative Algorithms, Conduction

3. Introduction
Topology optimization was first explored in structural design. Given a design domain, topology optimization al-

gorithms determine the distribution of material within the domain to achieve the best structural performance. Nu-

merous approaches have been developed to assign material distribution, from density to evolutionary approaches.

A recent review describes existing topology optimization approaches in more detail [1]. Beyond structural design,

topology optimization algorithms have been tailored to solve heat transfer problems, including two-dimensional

heat conduction problems [2, 3, 4] and multiphysics thermo-fluid problems [5, 6]. Extensions to three-dimensional

heat conduction problems [7] and transient heat transfer problems [8, 9] have been made.

Generative algorithms involve the iterative application of simple recursive rules to produce sophisticated al-

gorithm outputs. These algorithms have gained popularity in generative art and architecture in recent decades

[10]. More recently, they have been used in engineering design, both for their ability to explore novel designs, and

for use as design abstractions that allow exploration of high-dimension system designs using a low-dimension set

of generative algorithm parameters. More specifically, instead of adjusting system design variables directly, we

adjust generative algorithm rule parameters to produce new designs. This indirect representation reduces prob-

lem dimension, and can support faster design space search when coupled with optimization algorithms. Applying

an optimization algorithm on generative algorithm parameters is analogous to optimizing on a mapping. For

some complex design problems, optimization of these indirect system representations have been found to produce

meaningful and improved solutions, whereas conventional direct design representations can fail to produce useful

designs [11].

In this work, we look to compare three different strategies with respect to their abilities to produce designs

for effective heat extraction. The first strategy is the Solid Isotropic Material with Penalization (SIMP) approach,

which is a mature topology optimization method that will be used as a comparison baseline. The second strategy

is to use a generative algorithm to produce a topology that can be meshed and solved with a finite element solver.

The third strategy utilizes the same generative algorithm to create a starting topology for the SIMP approach [12],

which is then used to produce an optimal topology. A discussion of findings and suggestions for future work follow.
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4. Problem Formulation
Consider a homogeneously heated design domain, as shown in Fig 1. The steady-state conductive heat transfer

across the domain can be represented by the following governing equations:

∇ · (k∇T )+ f = 0 on Ω
T = 0 on ΓD

(k∇T ) ·n = 0 on ΓN ,

(1)
W

GD

GN

Figure 1: Homogeneously heated design domain.

where T is the temperature state variable, f is the heat generated, and k is the thermal conductivity of the material

in the domain, Ω. On the Dirchlet boundary, ΓD, referred to from here on as the heat sink, the temperature is

set to zero. The adiabatic Neumann boundary condition, ΓN , restricts heat flux out of the domain. The thermal

compliance of the system is given by the sum of the compliance across the design domain.

C =
∫

∇T ·q dA =
∫

∇T (k∇T )dA (2)

The initial design optimization problem considered here is:

minimize
x

C(x)

subject to V (x) =VD

R(x)≥ Rmin

(3)

where the amount of material, V (x), is constrained to be VD and the radius of a conductive path, R(x), must be

larger than Rmin. The design variable vector, x, is a general representation of the topology. This representation will

change between the different design approaches. The performance of the following three algorithms will be eval-

uated to assess the use of generative algorithms in topology design optimization for steady-state heat conduction.

4.1 SIMP Approach

The SIMP approach considers a design domain that is discretized into finite elements. Each element is assigned

a material amount, γ , which is treated as the design variable. The algorithm is driven by a sensitivity filter that

changes the material distribution from element to element. An ideal solution results in a domain consisting only

of void, γ = 0, and fully-dense material, γ = 1. A detailed description of the implementation of this approach is

outlined in [12].

4.2 Generative Design Approach

The generative design approach (GDA) is fundamentally different from SIMP. A gradient-free optimization method

is used to adjust generative algorithm parameters to minimize the objective function [11]. Each design candidate

considered in the search is represented using an abstract generative algorithm rule parameter vector. This vector is

then used to generate a design topology, which is then evaluated via finite element analysis to determine C(x). This

vector is much lower in dimension than a design vector based on direct design representation (e.g., γ for each finite

element, as in SIMP). Also, in SIMP and related approaches, the design domain discretization is used as the finite

element mesh. This can limit the numerical efficiency of thermal analysis. In the generative algorithm approach,

the design description is separate from the analysis mesh, allowing us to use a non-uniform mesh that is tailored

for each topology, improving analysis accuracy and efficiency. A novel meshing technique is introduced here that

is congruent with the unique properties of the GDA. A genetic algorithm (GA) is used here as the gradient-free

optimization method.

4.3 Hybrid Approach

The final approach considered here combines the SIMP approach with a generative algorithm. These tools are used

in a nested manner to search for an optimal topology. The outer loop GA adjusts generative algorithm parameters

to produce a topology that serves as a starting point for the SIMP algorithm (inner loop). The generated topology

is mapped to a discretized domain, and the SIMP algorithm uses gradient information to find a local minimum.

Using a local improvement strategy for individual designs within a GA population is sometimes referred to as a
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memetic algorithm [13].

5. Generative Algorithm
Optimal topologies for heat conduction problems typically resemble dendritic structures [2, 4, 5, 7]. Given this

tendency, we predict a faster convergence to optimal designs if the search is restricted to dendritic topologies. To

perform a targeted search of dendritic structures, a survey of prospective algorithms was completed. Dendritic

structures have been a topic of research interest earliest cited in 1976 [14]. In computer graphics, researchers have

attempted to efficiently and accurately reproduce dendritic structures [15, 16, 17]. In topology design, researchers

have applied different generative algorithms to various heat transfer applications [18, 19, 20, 21, 22]. Table 1 sum-

marizes the primary algorithms of interest, dividing them into three main groups. The L-System and constructal

theory algorithms use rules to define components and guide their assembly. The next class of the algorithms may

be considered “Interaction Based” where only the rules governing interactions are controlled. The Erosion Model

and SIMP techniques can also be looked at as generative algorithms as they evolve designs over time. Where the

SIMP procedure moves material, the Erosion Model adds material to the design domain. The algorithms were

evaluated on their relative number of design variables, whether or not they have a tendency to create overlapping

members, and whether or not the algorithm inherently stays within a prescribed design boundary.

Table 1: Generative algorithm assessment

Generative Algorithm # Design Vars Overlap Boundary Adherence

Building Block Based
L-System (LinenMayer) Med Yes No

Constructal Theory (Bejan) Med Yes No

Interaction Based

Reaction Diffusion Low No Yes

Particle System (Rodkaew) Low No Yes

Space Colonization (Runions) Low No Yes

Sensitivity Based
Erosion Model (Bejan) High No Yes

SIMP (Sigmund) High No Yes

The Reaction Diffusion, Particle System, and Space Colonization algorithms stand out as the best candidates due to

their low dimension and ability to handle boundary constraints. The Space Colonization algorithm was ultimately

chosen since it has been successfully scaled into three dimensions and its growth procedure intuitively translates

to a heat transfer framework. Future work should include the exploration of other candidate generative algorithms.

5.1 Space Colonization Algorithm

The Space Colonization Algorithm (SCA) used here is an adaptation of an algorithm develop by Rodkaew et al.

[15]. Hormone centers, called auxins, are strategically placed on the design domain. The algorithm begins from a

source node and grows a dendritic structure towards the auxins. This procedure is similar to the accepted theory

for vein growth in plant leaves called the canalization hypothesis [23]. This concept of growing a topology towards

hormone sources may be easily translated to a heat transfer problem where conductive paths can be grown towards

heat sources. A rigorous description of implementation in two- and three-dimensions can be followed in [16] and

[17], respectively.

Our SCA modifications for conductive heat transfer paths were made to ensure each topology satisfied con-

straints present when using the SIMP approach (Fig. 2). This supports a direct comparison between the three

algorithms presented here. The amount of conductive material is fixed, and the symmetry of boundary conditions

is used to reduce the design space by half (Fig. 2a-b). In the SCA, the endpoints of each branch are set to the

minimum radius, Rmin. Path width increases continuously closer to the heat sink (Fig. 2c). A discretized boundary

is created to better illustrate the final topology (Fig. 2d).
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(a) Initial topology (b) Enforced symmetry (c) Thickness distribution (d) Discretized domain

Figure 2: Space colonization modifications applied to a steady-state conductive heat trasnfer problem.

5.2 Application of Generative Design Approach

To use the generated topology with any of the desired approaches, the structure must be converted into a usable

form. Given the intricate nature of the generated topologies, standard meshing approaches often result in non-

conformal meshes. To handle this issue, a novel technique was developed to mesh the generated designs. This

technique was inspired by force-directed graphs [24] and particle generators. An evenly distributed grid of points

is generated on the design domain (Fig. 3a). Attractive forces are added between the discretized boundary nodes

and the grid nodes. The system is then simulated for a given time to create a point cloud with a dense particle

distribution near the boundaries (Fig. 3b). Additional particles can be introduced during the simulation to increase

node density. At the final time step, the initial grid is regenerated on the domain to enforce a minimum accuracy

for the finite element solver (Fig. 3c). Delaunay triangulation is then used to convert the point cloud into a mesh

that can be used with a finite element solver, shown in Fig. 3d.

(a) Initial grid (b) Simulate (c) Grid overlay (d) Triangulation

Figure 3: Automated meshing procedure based on force-directed particles and particle generation.

5.3 Application of Hybrid Approach

To use the generated topology with the SIMP approach it must be mapped on to a discretized domain. Starting

with a void domain, the parameter γ is set to 1 for every element which contains a node. All of the elements within

the minimum radius distance, Rmin, of each node are also set so γ = 1. The initial mapping can be seen in Fig. 4b

and is used by the SIMP algorithm to produce the optimal topology Fig. 4c.

(a) Initial topology (b) Mapping (c) Solution

Figure 4: Discretized domain mapping for the hybrid optimization approach.

4
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6. Results
The SIMP approach with a sensitivity filter and a homogeneous initial material distribution was used to develop a

baseline topology for comparison. The chosen parameters follow: nelx = nely = 80, penal = 3, volfrac = 0.2,

Rmin = 2, [25]. Equivalent parameters were enforced on the generative algorithm. A GA was implemented using

the MATLAB
R© global optimization toolbox. A population size of 100 and 5 generations were used with parallel

computing activated. The GA operates on each auxin location. Ten auxins were used to guide the growth of the

generative algorithm. The following experimental results were performed using an Intel R© CoreTMi5-4570 CPU

@ 3.20 GHz with 8.00 GB (RAM) 64-bit Operating System running Windows 8.1. The results presented in Table

2 are the best of 10 trials.

Table 2: Numerical results

SIMP GDA Hybrid

Objective Value 1709 1274 1528

# of Elements 6400 4710 6400

# of Design Variables 6400 40 6440

Total Time (s) 3.19 245.6 1574.0

Table 3: GA variation

GDA Hybrid

Best Objective 1274 1528

Worst Objective 1455 1598

Mean Objective 1373 1548

Std. Dev. 73 ≈ 5% 32 ≈ 2%

Mean Time (s) 220 1579

The SIMP approach was found to converge quickly to a local optimum. The GDA was found to produce the

best objective value at an increase in computational cost. The hybrid approach only produces a small improvement

in performance, but incurred significant computational expense. Table 3 presents the variation in the GA solutions

between the 10 trials. The computational cost of evaluating a topology using the GDA is outlined in Table 4, where

the amount of time to complete each task is presented.

(a) SIMP solution (b) Hybrid solution (c) Generative design solution

Figure 5: Best topologies obtained using the three optimization approaches.

Table 4: Generative design approach evaluation time

Section Generation Meshing Finite Element Solver Total

Time (s) 0.21 0.31 0.17 0.69

7. Conclusion
Given comparable resolution and topological structure, the generative design approach was found to converge on

higher performance solutions. Benefits of this approach include the explicit representation of thermally conductive

heat transfer paths, the binary assignment of material, and the low design problem dimension. While the GDA

design abstraction limits design space coverage, the search is more targeted and finds better performing designs. It

is important to note that there is a computational expense increase when comparing the generative design approach

to SIMP, yet this increase may be worthwhile due to the improvement in objective value, and for the potential to

solve more general problems.

The authors look to increase problem complexity to capitalize on the properties of generative algorithms. Sev-

eral additional studies are in progress. A concurrent path and layout planning problem that designs the optimal

placement of heat sources on a design domain, along with the best topology to extract heat, is being investigated.

An alternate formulation to maximize power density with trade-offs between the amount of conductive material

and computing elements is also being investigated. Future work will look to embed additional properties in gener-

ative algorithms that are important for multi-physics applications, as well extension to three-dimensional problems.
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1. Abstract  
Background: Flow diverter (FD) intervention is becoming increasingly popular for treatment of cerebral 
aneurysms (CAs), but post-stenting complications such as delayed rupture and post-stenting stenosis are 
frequently reported.  
Purpose: To reduce the risk of post-stenting complications, we designed an optimisation method for a practical 
FD composed of 3D helix-like wires using intra-aneurysmal maximum velocity (AMV) as the optimisation 
objective. 
Method: Random modification was performed at each stage to assign a slight change to the starting phase of an 
arbitrarily selected sub-wire, followed by computational fluid dynamics simulation to model the corresponding 
haemodynamic behaviours. The optimisation process employed a combination of lattice Boltzmann fluid 
simulation and simulated annealing. The method was applied to two idealized aneurysm geometries: the straight 
(S) and curve (C) models. 
Results: We evaluated the flow reduction  by measuring the AMVs before and after design optimisation with 
respect to the non-stented case. The of the FD in the S model showed an improvement from 83.63 to 92.77%, 
and the  for the C model increased from 92.75 to 95.49%, both having reached a pre-defined convergence 
status. By visualizing the streamlines entering an aneurysm after optimisation, we found that an efficient FD 
design may be closely associated with the disruption of the bundle of inflow by strut placement inside inflow 
area. 
Conclusions: The method improved the flow-diverting performance of an FD while maintaining its original 
porosity and helix-like structure. This study has provided a design optimisation method for the most commonly 
used helix-like FD devices. 

2. Keywords: cerebral aneurysm, flow diverter, design optimisation, computational fluid dynamics. 
 
3. Introduction 
Flow diverter (FD) intervention as an emerging endovascular treatment for cerebral aneurysms (CAs) is 
attracting growing interest among both clinicians and medical engineers. By blocking aneurysmal inflow, FD 
intervention is intended to induce thrombotic occlusion inside aneurysms and eventually lead to local 
haemodynamic rehabilitation. However, clinical reports reveal that complications including post-stenting 
stenosis and delayed CA rupture frequently occur, and further studies suggest that such complications are closely 
associated with FD structure design [1–4].  
Tominaga et al. observed that post-stenting in-stent stenosis was associated with a high metal-to-arterial tissue 
ratio of a stent [5], and Lieber et al. and Rhee et al. have shown that the porosity level of FD devices in 
modifying post-stenting haemodynamic is crucial [3,6]. These studies suggested that an FD design with high 
flow-diversion efficiency and proper porosity level could avert in-stent stenosis. As to delayed CA rupture, a 
previous study indicated that a concentrated inflow jet and small impingement regions may lead to rupture [7,8], 
whereas an increased maximum velocity inside the CA due to FD intervention may be a factor in impingement 
formation. Thus, an FD design reducing intra-aneurysmal maximum velocity (AMV) can likely contribute to the 
prognosis of FD intervention. 
Recently, the technique of design optimisation has been introduced to achieve an optimally designed FD device 
for a given CA geometry. Srinivas et al. and Lee et al. performed FD optimisation studies using the exploration 
of design space approach [9,10], and Anzai et al. studied the optimal FD strut placement for different shapes of 
CAs using simulated annealing (SA) [11]. These studies have practically shown that optimisation of FD structure 
can effectively improve device performance from the viewpoint of hemodynamics. However, a 
manufacture-oriented optimisation strategy that could be applied to the commonly used FD composed of 
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helix-like woven wires has not yet been performed. 
The purpose of this study is to develop an optimisation method for helix-like FD structures to reduce the AMV 
inside CAs. Based on the combination of LB fluid simulation and SA, this optimisation method automatically 
identifies optimal FD wire configurations corresponding to a given aneurysm geometry. In view of the 
correlation between device porosity and in-stent stenosis, we ensured that the porosity was maintained at the 
high level of 80% by appropriate design of the modification objective. The method can deal with FD devices 
composed of helical wires and can be flexibly integrated with modern FD manufacturing processes when 
patient-specific FD fabrication is desired. 

4. Methods 
4.1. Aneurysm and FD Models 
Different vascular geometries produce different aneurysmal inflow characteristics. As suggested by our previous 
study [11], the intra-aneurysmal hemodynamics differs markedly when the same aneurysm geometry is coupled 
with different configurations of the parent artery. To investigate the feasibility of the proposed optimisation 
method under different haemodynamic conditions, two configurations of idealized vascular geometry were used: 
a straight (S) and curved (C) model. Both models used an aneurysmal diameter of 4.8 mm with a neck diameter 
of 2.8 mm. The diameter of the parent artery and the curvature radius of the C model were defined as 3.5 and 6.0 
mm, respectively. 
Each FD was assumed to comprise 8 helix-like woven wires: four clockwise and four anticlockwise wires with 
strut thickness and width both of 50 m. The mathematical description of an FD helix trajectory was generated 
in accordance with the given vascular model and expressed as follows: 
 

where  and  denote the radius and starting phase of a helix, respectively,  represents the curvature 
radius of a helix and  and  are parameters associated with the length and pitch of the helix. To mimic the 
commonly applied FD stent with homogeneous wire configurations, we created an initial FD structure with 
uniform helix arrangements:  indicates the sequence of either the four clockwise  or the 
four anticlockwise  helical subsets. The helix radius  was set as 1.7 mm. In this manner, a deployed FD 
stent with its struts clinging to the wall of the parent artery was created. As determined by the FD parameters 
described above, the porosity of the deployed FD was 80%. 
 
4.2. Random Modification 
The random modification was designed to alter slightly the relative positions of the eight helices without 
changing the device porosity. At each stage of optimisation, the random modification function was invoked once. 
It arbitrarily selected one of the eight helices and added a stochastic variable  to the starting phase, 
the design variable, of the selected helix: 

In this manner, the one-step modification caused an axial displacement of the selected helix along the centre line 
of the parent artery. In this study, we just modified the starting phase and left other parameters defining a 
helix unchanged. 
 
4.3. Lattice Boltzmann (LB) Simulation 
LB fluid simulation was used as the CFD solver in our study. LB is a mesoscopic approach that simulates the 
time and space evolution of kinetic quantities using a particle-distribution function . The index  denotes 
the possible lattice directions, running from zero to the lattice coordinate number of the chosen lattice topology; 

 and  represent discrete positions on a regular lattice and discretised time steps, respectively [12]. Fluid in 
LB simulation is described in terms of the density distribution of idealized fluid particles moving and colliding 
on a regular lattice. The collision-propagation dynamic process can be written as 
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where  and  are the so-called local equilibrium distribution and relaxation time, respectively.  
Here we used D3Q19 lattice topology for 3D steady flow simulation. Bounceback rule was applied to define the 
non-slip boundary and FD wires. After sensitivity tests, the spatial discretization ( ) was set at 0.05 mm, 
corresponding to fluid cell quantities of  and  for the S and C models, respectively. In a 
previous study [11], blood flow was assumed to be an incompressible Newtonian fluid and to have a constant 
velocity of 0.23 m/s at the inlet, giving the same Reynolds number (Re) of 200 for both cases. Velocity was 
defined with parabolic profiles at inlets and a constant pressure boundary was imposed at outlets. Constant 
density and kinematic viscosity were assumed to be  and , respectively. Based on 
the above definition, the kinetic viscosity of the lattice ( ) was chosen as 0.012, giving a relaxation time  of 

 = 0.536. We used the open source LBM library Palabos version 1.4 [13] for its high flexibility 
and parallelism. 
 
4.4. Simulated Annealing 
The same cooling schedule of SA that we previously developed [11] was employed to control random 
modifications progressing towards the optimal solution. It was designed to identify the FD structure with the best 
flow diversion rate within a certain range of temperature drop. The AMV was selected as the objective function 
of SA.  
Optimisation started with a uniform FD structure and ended on reaching the lower temperature limit. We 
assumed that optimisation experienced 50 temperature decrements and accordingly calculated the lower limits 
for all cases as shown in Table 1. During each stage of optimisation, stent structure was first modified and then 
CFD was performed to obtain the corresponding AMV. The LB simulation and the optimisation process were 
fully automated by building the two parts into one program. On a parallel computing system with 256 cores at 
the Institute of Fluid Science, Tohoku University, CFD simulations of the S and C models required 
approximately 30 min and 45 min, respectively. 
 

Table 1: Initial temperature and lower temperature limits of SA for the S and C models. 
 

 S model C model 
Initial temperature   

Lower temperature limit   
 
4.5. Flow reduction rate 
To evaluate quantitatively the flow diversion efficiency of the FD device, we introduced a dimensionless index 
of flow reduction (FR) rate, 

where  is the AMV without FD intervention and  is the AMV calculated after FD implantation of 
a given wire configuration. 
 
5. Results 
The optimisation procedure required 913 and 908 SA iterations for the S and C models, respectively, until the 
lower temperature limits were reached. No further FR improvement of AMV was obtained during the final 100 
iterations for both cases. Compared with the initial uniform FD interventions, the  values of optimized FD 
interventions were improved by 9.12% and 2.74% for the S and C models, respectively. The AMV and  
under non-stent, initial stent and optimized FD intervention for both models are shown in Table 2. 
 
5.1. Optimisation Process 
Figure 1 shows the SA processes of both cases. The  of the S model increased during the initial 400 iterations, 
rising from around 84% at iteration 0 to approximately 92% at iteration 400 before stabilizing at 92%. For the C 
model, the  fluctuated between 92% and 88% during the initial 200 iterations before the best  of 95.49% 
was finally achieved. The models showed a similar trend, by which  increased during the first hundreds of 
iterations and then stabilized. 
 
5.2. FD Structures and Haemodynamic Differences 
Figure 2 shows the FD structures and the haemodynamic differences between the initial and the optimized FDs. 
As can be observed in both cases, the FD wires had a tendency of concentrating at the inflow proximal end. The 
homogeneous wire structures were disrupted and large holes could be observed in the optimized FD structures. 
Compared with the initial FD intervention, the magnitude of velocity components perpendicular to the 
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aneurysmal orifice markedly decreased, particularly in the inflow area, after optimized FD intervention. The 
isovelocity surfaces, colour-coded by velocity magnitude, corresponded to 0.01 and 0.015 m/s for the S and C 
models, respectively. As visualized from the isovelocity surface in the optimized case, the flow region with high 
velocity magnitude was reduced in the aneurysmal orifice compared with that in the initial case. 

Table 2: The AMV and the  under non-stent, initial stent and optimized FD conditions of S and C models, 
respectively. 

 
Non-stent Initial stent placement Optimal stent placement
        

S model 36 6.131 83.63 2.610 92.77 
C model 145.828 10.560 92.75 6.567 95.49 

 

 
 

Figure 1: SA process for S and C models. (Left: S model, right: C model, horizontal coordinate: SA step and 
vertical coordinate: FR rate) 

 

 
 

Figure 2: The initial/optimized FD structures (top), the visualization of velocity components perpendicular to the 
neck plane (middle) and the isovelocity surfaces (bottom) for S and C models. The left and right columns in the 

S/C models correspond to the initial and the optimized FD interventions, respectively. 
 
5.3. Alteration of intra-aneurysmal average velocity (AAV) reduction rate 
Figure 3 shows the alteration of AAV with respect to AMV during the optimisation process. As can be observed 
in the figure, an FR improvement of AMV did not accompany that of AAV. For the S model, the highest  of 
92.77% was obtained, whereas the reduction rate of AAV was only around 93% at this point (refer to point A in 
Figure 3). The highest reduction rate of AAV was observed as point B (just over 94%), whereas the  of AMV 
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was only approximately 87%. For the C model, optimal solutions are observed to concentrate in region C (Figure 
3); nonetheless, the maximum reductions of AMV (point D) and AAV (point E) are not at the same point. 

 
Figure 3: Reduction rates of AMV (horizontal coordinates) and AAV (vertical coordinates) of S model (left) and 

C model (right), respectively. 
 

6. Discussion 
In this study, we performed wire structure optimisation for an FD device composed of helix wires according to 
two idealized CA geometries. Results suggested that the optimized FD structures had flow-reducing capability 
superior to the initial uniform structures. The shape of each wire and the woven angle of two arbitrary wires 
were maintained over the optimisation period, following the intention of introducing minimal alterations to the 
FD’s initial configuration. 
 
6.1. Improving FR Rate by Disrupting the Bundle of Inflow (BOI) 
First introduced by Anzai et al. [11,14], disrupting the BOI of a given CA geometry is crucial for increasing the 
FR rate. BOI refers to the inflow bundle of an aneurysm and can be visualized as the concentrated streamlines 
that enter an aneurysm. As shown in Figure 4, the width and magnitude of BOI after optimized FD intervention 
decreased in both S and C models compared with those after initial FD intervention; the FD wires became denser 
within the BOI zones (refer to the yellow circles with dotted lines in Figure 4). Anzai et al. used AAV as the 
objective function for optimisation [11], whereas we used AMV in this study. However, the same trend of wire 
struts concentrating inside the BOI zone after optimisation was observed, confirming the importance of 
disrupting BOI to obtaining an increased FR rate. Moreover, in the S model, the flow complexity, a flow 
characteristic associated with CA rupture [7], was observed to decrease after optimisation, with the flow pattern 
within the aneurysm showing no flow divisions or separations. 
 
6.2. Selecting an Objective Function for Optimisation 
Different objective functions lead to different optimisation solutions. Selecting a proper objective function(s) is 
important for optimisation to identify meaningful modifications. Here we used AMV as the objective function 
because of its possible correlation with CA ruptures. In addition to AMV, many other haemodynamic parameters 
(such as AAV, vorticity, wall sheer stress and pressure) have been used for FD structure optimisation in previous 
studies. Performing optimisation for FD devices is driven by improving treatment prognosis, but no consensus 
on a critical parameter(s) that can clearly determine the prognosis has yet been reached. 
We measured the AAV during the simulation because it is considered to be associated with post-stenting 
thrombotic occlusion. As observed in Figure 3, an advanced AMV reduction does not always accompany 
increased AAV reduction. Thus, to achieve an FD structure with both lower AMV and AAV, the FD structures 
corresponding to point F and G in Figure 3 may be considered as optimal compromise solutions for the S and C 
models, respectively. Alternatively, optimisation using multiple objective functions can be applied, provided that 
the critical parameters correlated with short-term thrombotic occlusion or delayed CA rupture can be identified. 
 
7. Conclusion 
In this paper, we developed an optimisation method for FD wires with helix-like structure. This method 
improved the flow-diverting performance of an FD while maintaining its original porosity and helix-like 
structure. In addition, this study has provided a design optimisation method for the most commonly used 
helix-like FD devices. 
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Figure 4: BOI zones (the yellow circles with dotted lines) alterations after FD structure optimisation. The left 
and right columns in S/C models correspond to initial and optimized FD interventions, respectively. 
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 Topology optimization of plate structures subject to initial excitations for minimum 
dynamic performance index 

Kun Yan, Gengdong Cheng
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University of Technology, Dalian 116023, P. R. China 

1. Abstract
This paper studies optimal topology design of damped vibrating plate structures subject to initial excitation. The 
design objective is to minimize an integrated square performance measure, which is often used in optimal control 
theory. The artificial density of the plate element is the topology design variable. The Lyapunov’s second method 
is applied to reduce the calculation of performance measure to the solution of the Lyapunov equation. An adjoint 
variable method is developed in our study, which only needs to solve the Lyapunov equation twice. However, 
when the problem has a large number of degrees of freedom, the solution process of Lyapunov equation is 
computational costly. Thus, the full model is transform to a reduced space by mode reduction method. And we 
propose a selection method to decrease the number of eigenmodes to further reduce the scale of reduced model. 
Numerical example of optimum topology design of bending plates is presented for illustrating validity and 
efficiency of our new algorithm. 
2. Keywords: Adjoint method, vibration control, topology optimization 

3. Introduction 
Structural topology optimization and structural vibration control have called attention both in theoretical research 
and practical applications in engineering. Structural topology optimization provides a powerful automated tool for 
improving the structural performance in the initial conceptual design stage. Usually, optimization problems are 
formulated to minimize the material usage or to optimize the structural performance. Structural vibration control is 
a particularly important consideration in dynamic system design. Many control algorithms have been developed 
for passive and active control. Passive control systems that do not require any external power are widely used to 
reduce the response of structures. 
In engineering applications, shell structures are widely used. Structural topology optimization and structural 
vibration control of shell structures has received an ever increasing attention. Several researchers have applied 
structural topology optimization techniques to structural vibration control problems. In most of existing works, 
structural topology optimization techniques are used to obtain the layout of piezoelectric or damping material on a 
main structure. Kang et al. investigate the optimal distribution of damping material in vibrating structures subject 
to harmonic excitations by using topology optimization method [1]. Chia et al. introduced cellular automata 
algorithms into the layout optimization of damping layers [2]. Zheng et al. dealt with topology optimization of 
plates with constrained layer damping treatment for maximizing the sum of the modal damping ratios, which are 
approximated with the modal strain energy method [3]. In this paper, the problem of a plate or shell just contains 
damping material will be considered.  
Many performance indices have been considered in vibration control optimization problems, like 2H  or H
norms. In time domain, there is a classic problem formulation of passive structural vibration control that deals with 
the dynamic system disturbed by initial conditions. The objective is to find design parameters of the damped 
vibration system that minimize the performance index in the form of time integral of the quadratic function of state 
variables (displacement and velocities, e.g. see equation (5)). This performance index can be evaluated by 
Lyapunov’s second method [4]. Based on the Lyapunov equation, the evaluation of performance indices are 
simplified into matrix quadratic forms and do not require the time domain integration. Parameter optimization 
problems with a quadratic performance index have been solved by this method [5]. Wang et al. applied the 
Lyapunov equation to solve the transient response optimization problem of linear vibrating systems excited by 
initial conditions [6]. Du applied the Lyapunov equation to obtain the optimum configuration of dynamic vibration 
absorber (i.e., DVA) attached to an undamped or damped primary structure [7].  
A well-known efficient solution technique for calculating the dynamic response of structures is to transform the 
model into a reduced space. Various methods for this requirement are available now, such as the Guyan reduction, 
mode superposition, modal acceleration and Ritz vector methods [8]. Among others, the mode superposition 
method is generally recognized as an efficient approach for dealing with large-scale proportionally damped 
structures. Generally, the structural response of reduced model is expressed as a linear combination of their first 
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dozens or hundreds eigenmodes. However, for some cases, the eigenmodes of low order may have no effect on the 
structural response of reduced model. In this paper, a selection method is used to find these eigenmodes to decrease 
the number of basis vectors to further reduce the scale of the reduced model.  
In this paper, an approach is developed for topology optimization involving a quadratic performance index of 
linear elastic shell structure subject to initial excitations. Mode reduction method and eigenmode selection method 
are used to decrease the computing time of optimization process. At last, a cantilever plate example and several 
illustrative results are presented.

4. Topology optimization problem formulation  

4.1 Governing equations 
Consider a viscously damped linear vibration system governed by the equation: 

0KuuCuM =++ &&&                                                                    (1) 
where M(N N) is the mass matrix, C(N N) is the damping matrix, K(N N) is the stiffness matrix, and u(N 1) is 
displacement vector. N is the structural degree of freedoms. Assume the system is excited by initial displacements 
or velocities. And the design problem is to find in M, K and C matrices to minimize a performance matrix in the 
form 

( )=
T

tqJ
0

d,uu &                                                                      (2) 

where, ( ) uQuuQu &&& &uuuuq TT, += is a quadratic function of u  and u& . Transient dynamic responses have to be 
performed to evaluate the objective function. Direct or adjoint methods can be applied to evaluate the response 
sensitivity required for evaluation sensitivity of the performance. Alternative, if we replace the upper bound of 
integration to infinite, we can use Lyapunov’s second method to evaluate the performance without performing 
transient dynamic response analysis. 
To apply Lyapunov’s second method to this system, it is necessary to rewrite Eq.(1) in the state space form 

AXX =&                                                                            (3) 
Where 

=
CMKM

IO
A 11 =

u
u

X
&

                                                  (4) 

The matrix A is (2N 2N). The vector X is (2N 1). Structural design parameters such as mass density, damping 
ratio and spring stiffness are contained in the matrix A. The optimization problem is to choose these parameters to 
minimize the performance measure J defined by 

tJ d
0

T XQX=                                                                    (5) 

for a given initial excitation X(0). In Eq.(5), Q(2N 2N) is a positive semi-definite symmetric weighting matrix 
and t denotes time. According to Lyapunov theory of stability, for an asymptotically stable system, there exist a 
symmetric positive semi-definite matrix P(2N 2N) satisfying

QPAPA =+T                                                                   (6) 
Eq.(6) is the well-known Lyapunov equation. Based on the Lyapunov’s second equation, the Eq.(5) can be further 
simplified as 

( ) ( )00 T PXX=J                                                                    (7) 

That is to say, to minimize J in Eq.(5) is equivalent to minimize ( ) ( )00 T PXX , where ( )0X is the initial state 
vector and the unknown symmetric matrix P can be obtained by solving Eq.(6).

4.2 Mathematical formulation of topology optimization problem
In this paper, the topology optimization problem for finding the optimal distribution of given material to minimize 
the quadratic integral form structural performance index of a vibrating structure excited by initial excitation is 
considered. The mathematical formulation of topology optimization problem is expressed as 

( )
eNfind ...,,, 21

=
0

Tmin dtJ QXX

AXX =&..ts
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ei Ni ,...,2,1,10 min =                                        (8) 

where, i  is the artificial density of ith element, min  is lower bound of artificial density, e
iV  is the volume of ith

element, fracV  is the specific volume fraction, and eN  is the number of elements in design domain. 
An artificial damping material model that has a similar form as the SIMP approach is used and the artificial 
densities of elements are taken as design variables. The elemental mass matrix and stiffness matrix are expressed 
by

iii MM ~
= , ( ) i

p
i

p
ip

p

i KK ~1
1 min

minmin +=                                    (9) 

where, iM~  and iK~  are the elemental mass matrix and stiffness matrix of ith element with 1=i , respectively; 
p is the penalty parameter and it is set to be p=3 in this paper. The Rayleigh damping theory is employed, and the 
elemental damping matrix is obtained by 

( ) ( )ii
p

i
p

ip

p

i KMC ~~1
1 min

minmin ++=  (9) 

where,  and  are the damping parameters. 

5. Sensitivity analysis scheme 
The topology optimization problems always are solved by gradient-based mathematical programming algorithms, 
which need the sensitivity analysis of the objective function with respect to design variables. In this paper, a 
sensitivity analysis scheme derived by adjoint variable method is applied, which is more efficient than direct 
variable method in the problems involving a large number of design parameters. For the case, initial condition 
independent of design parameters, the sensitivity analysis scheme can be expressed as

( ) ( )
= =

==
N

k

N

l

i
klkl

ii

DJ 2

1

2

1

T 00 XPX                                                   (10) 

where,  is the adjoint matrix.  and D can be obtained by

0T =++ SAA                                                                     (11) 

where ( ) ( )T00 XXS =

iii

i ++=
APPAQD

T

                                                             (12) 

where ( ) ( )=

iiii
i

CMCMKMKMA
1

1
1

1
00

6. Transformation of equations to reduced space 
When the analysis model has a large numbers of DOFs, the solution of Lyapunov matrix equation is computational 
costly, which will makes the computing time of optimization process increased significantly. For example, for a 
1,000-dof system, the number of unknowns in P is 2,001,000. Thus model reduction is necessary to implement the 
proposed approach. The mode reduction method and eigenmode selection method are used to decrease the 
computing time of optimization process. 

6.1 mode reduction method 
To use mode reduction method, a linear transformation is employed, which can be expressed as

mTuu =                                                                             (13) 
where, u and um are the displacement vectors of full model and reduced model, respectively; T is the 
transformation matrix. Generally, matrix T contains the first several eigenmodes of full model. However, for some 
cases, the eigenmodes of lower order may have no effect on the structural response. A selection method is applied 
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to find these eigenmodes to decrease the number of basis vectors in transformation matrix to further reduce the 
scale of reduced model, and will be introduced in next section. The transformation matrix T is expressed as 

{ }
mcccT ,...,,

21
=                                                                (14) 

where, c1, c2, cm are the number of 1st, 2nd, mth reserved eigenmodes. The mass, damping, and stiffness matrices 
of reduced model are respectively obtained by 

MTTM T=re , CTTC T=re , KTTK T=re                                         (15) 
The initial conditions of reduced model are obtained by 

0
T1

0, MuTMu = rere
,

0
T1

0, MvTMv = rere
                                          (16) 

Include the sensitivity of matrix T with respect to design parameters in sensitivity analysis scheme will make the 
analysis much complicated. Thus, in this paper, the sensitivity of matrix T with respect to design parameters is 
ignored.

6.2 Eigenmode selection method 
We use the model participation factor (MPF) to evaluate which eigenmode in first several eigenmodes of full 
model have no effect on the structural response. High value of MPF of ith eigenmode means that this eigenmode 
has large effect on structural response. Low MPF value means that this eigenmode has a little effect on structural 
response. The MPF value is obtained by 

( )
( )( )ii

i

uu
u

T
0

T
0

2T
0MPF =  , 

( )
( )( )ii

i

vv
v

T
0

T
0

2T
0MPF =                                          (17) 

where, u0 and v0 are the initial displacement and velocity vector, respectively, and i  is the eigenvector of ith
eigenmode. The MPF values of all eigenmodes are located between 0 and 1. 
For the case an optimization problem has both initial velocity and displacement, the MPF values for initial velocity 
and displacement need to be calculated separately and weighted summed. The weighted coefficients are the 
objective function values from using the initial velocity and displacement as initial condition separately. 

7. Numerical example 
To avoid the checkerboard phenomenon, the sensitivity filter method is used, the filter radius is 1.5. For some 
cases, drastic change of the design may cause that the Lyapunov equation cannot be solved. Thus, the move limit 
of design parameter is set to be 0.02. 
In this section, a numerical example is presented to verify the sensitivity analysis scheme and the proposed 
approach.

Figure 1: Geometry model 

We consider a 2m×1m×0.1m rectangular plate. The left edge of the plate is clamped and other three edges are free 
as shown in figure 1. The material parameters is E=69GPa, v=0.3, 2700=i kg/m3. A concentrate mass element 
locates at the middle of the right edge of the plate, and m=50kg. The initial condition is that the Z-direction velocity 
of mass element is 10m/s. The plate is uniform meshed by 4-nodes square element, 40×20, as shown in Figure 2. 
The objective function is 

=
0

2 dtuJ mass                                                                       (18) 

where, umass is the Z direction displacement of mass element. 
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5

Figure 2: The finite model 

Considering the symmetry of the finite element model, initial condition, and constraints, only the artificial 
densities of the elements in bottom half of the structure are considered in the optimization process. The artificial 
density of the element in the top half of structure is set to be same with that of the element at symmetrical position. 
Considering the accuracy of sensitivity results and efficiency of optimization process, in this example, the 
transformation matrix T will contains 60 eigenmodes selected from first 300 eigenmodes of full model. 
To verify the accuracy of sensitivity results obtained by the proposed sensitivity analysis scheme, the finite 
difference method is also applied to obtain the sensitivity results. The sensitivity results of the purple element as 
shown in figure 3 by the finite difference method and adjoint method are both shown in figure 3. The damping 
parameters are 1.0= , 0= , and the analysis model is a uniform design ( 5.0=fracV ). Numerical results show 
that the relative error of the results obtained by two methods is small for most elements. 

Finite difference method 
Adjoint method

Se
ns

iti
vi

ty

Element number

*

Figure 3: Sensitivity results of several elements from two methods 

Iteration step

O
bj

ec
tiv

e 
fu
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Figure 4: Iteration history of objective function 

320

Leo
Rectangle



6

Firstly, perform a topology optimization with 1.0= , 0= , 5.0=fracV , and 001.0min =  by proposed 
approach. Figure 4 shows the iteration history of objective function and. From the results, a stable decrease of the 
objective function can be observed. Next, perform another topology optimization with 0= , 1.0= ,

5.0=fracV , and 001.0min =  by proposed approach. The optimized designs are shown in figure 5. The results 
witness that the optimized designs under different damping parameters are such different. Thus, obtain the 
accurate damping parameters are important to whether the optimized design is reasonable. 

(a) 1.0= , 0=                                         (b) 0= , 1.0=

Figure 5: Optimized designs under different damping parameters 

8. Conclusions 
The problem of topology optimization with respect to vibration control of a shell structure subject to initial 
excitation is considered. The design objective is minimization of dynamic performance index in the form of time 
integral of the quadratic function of state variables. An approach is developed to handle this topology optimization 
problem. Mode reduction method and an eigenmode selection method are applied to decrease the scale of reduced 
model. The numerical example is presented to verify the sensitivity analysis scheme and the proposed approach for 
topology optimization problem considered in this paper. The results show that the sensitivity analysis scheme for 
reduced model can obtain accurate results, and also witness that the damping parameters have a great effect on the 
optimized design. 
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1 Abstract
A way to approximate the response of, variable stiffness, composites for optimisation is explained. A two-level

approximation scheme is proposed inspired by traditional approximation concepts such as force approximations.

First an approximation in terms of the in- and out-of-plane stiffness matrices is made. In the stiffness approximation

a generalised convex linearisation approach is used: compliance, stress and inverse buckling load are approximated

in terms of the linear and reciprocal stiffness matrices. Either the lamination parameters, or the nodal fibre angle

distribution are used as design variables. A quadratic approximation is used to build the approximations in fibre

angle space. Conservativeness is guaranteed by adding a convex damping function to the approximations. The

method of conservative, convex separable approximations is used for the optimisation.

2 Keywords: Optimisation, variable stiffness, approximations, multi-level

3 Introduction
Composite materials are attractive due to their high stiffness- and strength-to-weight ratio. It has been shown that

by spatially varying the stiffness of the composite, better performance can be obtained without adding extra weight.

To optimise variable stiffness laminates, a three-step optimisation approach has been developed. [1, 2] In step one

the optimal stiffness distribution is found, in step two the optimal fibre angles are obtained, and in step three the

optimal fibre paths are retrieved. The critical numerical parts of this optimisation are the approximations used.

Response surfaces can be used as an approximation method to reduce the computational effort. This method is

accurate, but choosing the response surfaces is problem-dependent. [3] The Rayleigh-Ritz method is often used to

approximate eigenvalues, or buckling factors. It has been used to optimise buckling factors, but the shape functions

need to be chosen, which is also problem-dependent. [4]

A generally applicable method is linearisation. Since stress and displacement are linear functions of the recip-

rocal sizing variables in a statically determinate structure, they are often reciprocally approximated. The ’convex

linearisation’ (ConLin) method introduced by Fleury and Braibant is a generalisation of linear or reciprocal ap-

proximations [5]. Whether a variable is approximated linearly or reciprocally depends on the derivative at the

approximating point: linear if the derivative is positive, reciprocal if the derivative is negative. Vanderplaats recog-

nised that approximating structural responses using the force in a member led to better approximations, called

force approximations. [6] A two-level approximation is formulated. On level one, the stress is approximated as a

function of the section properties. On level two, the section properties are approximated in terms of the physical

properties. Once level two has converged, the stress is calculated based on the new properties, and a new level one

approximation is made. This is repeated until the stress converges. [6, 7]

In this paper the ideas of force approximations and the ConLin method are combined. In level one approxima-

tions the structural responses are approximated in terms of the stiffness matrices, using a generalised version of the

ConLin approximations. For level two approximation, a quadratic approximation of approximation is constructed

along the lines of the Gauss-Newton method.

This paper is organised as follows: the approximations in terms of the stiffness are given in section 4. The lam-

ination parameter and fibre angle approximation are discussed in sections 5 and 6. The way these approximations

are used is explained in section 7 and this paper is concluded in in section 8.

4 Approximations in stiffness space
The level one approximation, in stiffness space, is derived for three different structural responses. Compliance is

discussed first since, as will be shown, it is the most straight-forward. Next, stress and buckling are discussed.

4.1 Compliance approximations
To clarify the rationale of the approximation, the derivation is first done for elastic trusses, then for general struc-

tures.

1

322

Leo
Rectangle



4.1.1 Elastic trusses

The strain energy of a truss made of an elastic material, with only Ae, the area of each element, as design variables

is defined as:

U = ∑
e

1

2
·E · ε2

e ·Ae · le (1)

where E is the Young’s modulus, le is the length and εe is the strain of element e. Using the standard strain-

displacement equation, the principle of minimal total potential energy can be written as

min
ε,u ∑

e

1

2
·E · ε2

e ·Ae · le − f t ·u s.t. εe −be
T ·u = 0 (2)

The Lagrangian of this function can be formulated. Taking the Lagrange dual, and using the Young-Fenchel-

Moreau transform leads to

max
σ

(
−
(

∑
e

f ∗ (σe)Aele

)
+min

u

(
∑
e

σeAelebe − f
)T

·u
)

(3)

f ∗ (σe) = σe · εe −g(ε) and σe =
∂g(ε)

∂ε
(4)

Using the standard equation for stress and assuming that strong duality holds, equation (2) can be written as:

min
F ∑

e
f ∗
(

Fe

Ae

)
·Ae · le s.t. ∑

e
Fe ·be · le = f (5)

Implementing the correct expression for f ∗, the minimal total potential energy and minimal compliance can be

written as

C∗ = min
A

(
min

F
U∗
)
= min

A

(
min

F

(
1

2
∑
e

F2
e · le

E ·Ae

))
(6)

The minimisation over the, equilibrated, element forces corresponds to structural analysis, the minimisation

with respect to the element areas corresponds to structural design. Since this is a min-min formulation convergence

is guaranteed by alternating analysis and design.

Using the force Fe at iteration k in equation 6, the compliance is approximated in terms of Ae. This approxima-

tion has four desirable properties:

1. separable: each element area Ae only depends on properties of element e.

2. convex: the second derivative with respect to the element areas is larger than zero.

3. homogeneous: doubling Ae halves the compliance, hence the approximation is homogeneous of order -1.

4. conservative: the internal force Fe does not change as a function of the area, hence F(k) is always feasible,

furthermore the compliance of F(k+1) is at least as good as the approximation based on F(k).

These four properties mean the optimisation using this approximation is numerically efficient (separable), a feasible

solution can always be found (homogeneous), has a solution (convex) and is globally convergent (conservative).

Ideally, a good structural approximation should retain as much as possible of these four properties.

4.1.2 General structures
Three equations need to be satisfied for a general structure:

1. equilibrium: Nμν ,ν +bμ = 0

2. strain-displacement: ε0
μν = 1

2

(
uμ,ν +uν ,μ

)
3. material law: Nμν = Aμναβ · εαβ

where N is the generalised stress, ε0 is the strain at mid-plane, and A is the generalised stiffness matrix.
Assuming the strain-displacement is satisfied in weak form, and denoting the test function as Ñ:∫

Ω
Ñμν · ε0

μν −
1

2
· Ñμν

(
uμ,ν +uν ,μ

)
dΩ = 0 (7)

Taking the symmetry of the second term into account, noting that
(
Ñμν ·uμ

)
,ν = Ñμν ·uμ,ν + Ñμν ,ν ·uμ , and using

the Gauss theorem, equation 7 becomes:∫
Ω

Ñμν · ε0
μν dΩ+

∫
Ω

Ñμν ,ν ·uμ dΩ−
∮

Γt

Ñμν ·uμ ·nν dA = 0 (8)
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Defining Ñμν as a change in stress distribution that satisfies the equilibrium equation ∂Nμν , means the second

term equals zero. Furthermore, the normal of ∂Nμν is zero, thus the third term is zero as well. Hence∫
Ω

∂Nμν · ε0
μν dΩ = 0 (9)

Noting that ε0
μν =

∂U∗(Nμν )
∂Nμν

and using the material law, the total strain energy and minimum compliance can be

written as:

C∗ = min
A

min
N

∫
Ω

U∗(N,A)dΩ = min
A

min
N

∫
Ω

1

2
·A−1

αβ μν Nμν Nαβ dΩ (10)

In the general case, the compliance is in terms of A−1, thus the approximation should also be in this form.

Defining the load and strain at mid-plane as:

N =
[
Nx Ny Nxy

]T ε0 =
[
ε0

x ε0
y γ0

xy
]T

(11)

the compliance can be written as:

U∗ =
1

2
NT ·A−1 ·N =

1

2
(N ·NT ) : A−1 = φ : A−1 (12)

where : denotes the Frobenius inner product, meaning A : B = trace(A ·BT )
This approximation can be shown to be convex, in terms of A, the normalised stiffness matrix Â and the height

h. The approximation in equation (10) is also separable: the normalised general stiffness matrix and height do not

influence other elements. Conservativeness also still holds: the minimisation in terms of A is still done in a feasible

space for N. Homogeneity of order −1 still holds, since the form of the approximation has not changed. Hence,

the approximation still has the four desirable properties.

4.2 Stress approximations
Next, an approximation for stress is derived. This is often used since the (local) stress constraints are often a

driving factor. The same approach as that for compliance is used: first develop approximations for elastic trusses,

then general structures.

4.2.1 Elastic trusses

Stress is usually set as constraint, and is expressed as a failure index, which also normalises the stress:

re ≈ F(k)
e

σall ·Ae
(13)

where σall denotes the maximum allowable stress. However, a modification has to be added since Fe is not just

dependent on the area of element e, it is also dependent on the other areas. Since we are interested in creating a

homogeneous approximation, this modification should have two properties: one, for the current area, it should be

zero, two, if all areas are scaled with the same factor, it should remain zero. The total approximation becomes a

linear-reciprocal function:

re ≈ F(k)
e

σall ·Ae
+∑

e
ae ·Ae (14)

Hence, the approximation is separable in terms of the areas. The function is convex: the second derivative with

respect to the element area is positive. homogeneity also holds in a limited sense: scaling the area will scale the

stress approximation. The approximation is not necessarily conservative. How this lack of conservativeness is

handled is explained in section 7.

4.2.2 General structures

For a general structure, the failure index is a function of strain re = re(εe) and may be locally approximated by [8]:

r = NT A−1g+ si ·ΔN with g(k) =
∂ r
∂ε

∣∣∣∣
ε=ε(k)

(15)
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Hence, the stress has both a local term, depending on A−1, and a global term due to the load redistribution ΔN.

The local approximation of r is given by

r = φ : A−1 with φ =
1

2

(
NgT +gNT ) (16)

Upon inspection, it was found φ is not positive semi-definite (psd), which is necessary for convexity. To guarantee

convexity, the term φ is divided in a psd and a non-psd part. [8] The indefinite part is approximated using a linear

expansion. The details are explained in Khani et. al. [8]

The load redistribution part is approximated in a linear way, similar to the force approximation introduced by

Vanderplaats and Thomas [6]. The total approximation of the stress is linear-reciprocal:

r ≈ φ : A−1 +ψ : A (17)

which is the same form as was found for trusses. This function is convex and homogeneous by construction,

it is also separable even though the load redistribution is taken into account. The approximation, again, is not

necessarily conservative.

4.3 Buckling optimisation
The buckling factor λ is calculated using [2] (

Kb −λKg
)
·a = 0 (18)

where Kb is the global bending stiffness matrix and Kg is the global geometric stiffness matrix. a is the mode shape

normalised with respect to Kb. Deriving equation (18) with respect to a design variable A leads to

dλ
dA

= λaT ·
(

dKb

dA
+λ

dKg

dA

)
·a (19)

The first term of this equation is the derivative of the bending stiffness, which is local. The second term is the

derivative of the geometric stiffness, which is not local: it represents the load redistribution due to the stiff-

ness change of a single element. It can be seen the buckling factor is homogeneous of order zero with re-

spect to the in-plane stiffness matrices from the general FE equilibrium and material law. Hence, λ depends

on the load redistribution. Furthermore, λ is homogeneous of order one with respect to the bending stiffness.
The inverse buckling load r = 1/λ is approximated since it behaves similarily to the compliance and stress re-

sponses. This has the same homogeneity: order zero in terms of the in-plane stiffness and order one in terms of the

inverse bending stiffness. The approximation has the following form: [2]

r ≈ ∑
n

ψ : A+φ : D−1 (20)

where the sum over all nodes is taken and no constant is added since the first part is zero at the approximation point,

and the second part is exactly the inverse buckling load at the approximation point. It is shown in IJsselmuiden et

al. [2] that the approximation is convex. Looking at equation (20), separability is also satisfied, and homogeneity

is satisfied by construction. Just as for stress, conservativeness is not guaranteed.

5 Approximations in lamination parameter space
In step one of the three-step optimisation approach, the stiffness is optimised in terms of the lamination parameters.

This is not really a level two approximation since the lamination parameters describe the stiffness matrices exactly:

A = h · (Γ0 +Γ1 ·V1 +Γ2 ·V2 +Γ3 ·V3 +Γ4 ·V4) (21)

D =
h3

12
· (Γ0 +Γ1 ·W1 +Γ2 ·W2 +Γ3 ·W3 +Γ4 ·W4) (22)

where h is the thickness of the laminate and Γ are the laminate invariant matrices.

The feasible region of either the in- or out-of-plane lamination parameters separate is defined as

2 ·V 2
1 · (1−V3)+2 ·V 2

2 · (1+V3)+V 2
3 +V 2

4 −4 ·V1 ·V2 ·V4 ≤ 1

V 2
1 +V 2

2 ≤ 1

−1 ≤V3 ≤ 1

(23)
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If balanced laminates are desired, V2 and V4 are set to zero. Note that although V is used, this also holds for the

out-of-plane lamination parameters W . For the combination of in- and out-of-plane lamination parameters there

is no easy relationship. The feasible region has been defined in earlier work. [9, 10] The design space has been

shown to be convex in terms of the lamination parameters. [1]

6 Approximations in fibre angle space
In step two of the three-step optimisation approach, the lay-up at the different nodes is optimised. Based on the

approximation in stiffness space, a Taylor expansion in terms of the change in fibre angles is made:

f (2)(θ)≈ f (1)0 +g ·Δθ +Δθ T ·H ·Δθ = f (1)(A(θ)) (24)

where f (1)0 denotes the value, g the gradient and H is an approximation of the Hessian of the first approximation in

stiffness space at the approximation point; A contains the components of the stiffness matrices A and D. gi can be

found by deriving equation (24). Deriving a second time, the Hessian is found to be

Hi j =
∂ 2 f (1)

∂θi∂θ j
=

∂ 2 f (1)

∂ sα ∂ sβ
· ∂ sα

∂θi
· ∂ sβ

∂θ j
+

∂ f (1)

∂ sα
· ∂ 2sα

∂θi∂θ j
(25)

Convexity is guaranteed by omitting the underlined part of equation (25), which is not guaranteed to be psd, and

using only the Gauss-Newton part which is always psd. Since an approximation has to have equal function and

gradient at the approximation point as the approximated function, using only part of the Hessian gives a valid

approximation which is convex and separable. Note that homogeneity is not relevant in fibre-angle space and is

not discussed.

7 Using the approximations
The method of conservative convex separable approximations (CCSA) is used. [11] As shown in the previous

sections, the approximations, either in terms of the stiffness or the fibre angles, are always convex and separable.

To assure the approximation is conservative, a damping function d is added:

f ≈ f̂ (x)+ρ ·d(x) (26)

where f̂ is an approximation, and ρ is the damping factor. This was done for both levels of approximation:

both for stiffness and fibre angle approximation a damping function was added. To make the notation clear: a 1

denotes the approximation in stiffness space a 2 indicates fibre angles, if no superscript is added, it holds for both

approximations.

The functions need to satisfy the following conditions: [11]

• the functions are continuous and the gradient and Hessian with respect to x exist and are continuous

• at the approximation point f̂ (x) = f (x) and d(x) = 0

• at the approximation point ∇x f̂ (x) = ∇x f (x) and ∇xd(x) = 0

• ∇2
xx f̂ (x) is positive semi-definite

• ∇2
xxd(x) is positive definite

The solution procedure is explained in algorithm 1. This algorithm is used to optimise a curved plate for buckling,

while constraining the compliance in another paper by the authors. [12]

Algorithm 1 Solution Procedure

1: start from an initial fibre angle distribution.

2: perform an FEA and calculate the sensitivities for the first level approximation f (1).
3: add the damping function ρ(1) ·d(1) to the first level approximation.

4: calculate the gradient and Hessian for the second level approximation f (2).
5: add the damping function ρ(2) ·d(2) to the second level approximation.

6: apply the steering constraint, build the Lagrangian L and solve the system.

7: calculate first level approximation f (1) and update damping factor of level two d(2).

8: if the first level approximation f (1) is improved, continue, else go back to step 5.

9: if the first level approximation f (1) has converged, or the maximum number of iterations is reached, continue,

else return to step 4.

10: perform an FEA and update the damping factor of first level approximation d(1).

11: if the FE response has improved, continue, else go back to step 3.

12: if FEA has converged, the optimal fibre angle distribution is found, else return to step 2.

5 326

Leo
Rectangle



8 Conclusion
An approximation approach for the optimisation of, variable stiffness, composites is proposed. The three-step

optimisation approach for variable stiffness composites is used as guideline. In step one the optimal stiffness

distribution is found, in step two the optimal nodal fibre angle distribution is found, in step three the fibre paths are

found. The approximations in this paper focus on step one and two.

Analogous to the force approximation a two-level approximation approach is proposed. In level one, a gen-

eralised ConLin method is used: the structural responses are approximated in terms of the in- and out-of-plane

stiffness matrices and their inverse. In step one, lamination parameters are used to optimise the stiffness distri-

bution. Since the stiffness matrices are perfectly described by the lamination parameters, this is not a level two

approximation. In step two, a second-order Taylor approximation in terms of the change in fibre angles is made at

the approximation point as a level two approximation.

The conservative, convex separable approximation method is used during the optimisation. Convexity and

separability are guaranteed by construction of the approximations. Conservativeness is not guaranteed. A damping

function and damping factor are added to the stiffness and fibre angle approximations to guarantee conservativeness

and thus global convergence.

In this paper only compliance, stress and inverse buckling load have been approximated, but the method is

more generally applicable. Other responses may be approximated in a similar manner.
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Abstract: In a vehicle’s concept design stage, there are usually a lot of design parameters need to be defined and 
optimized. For such a complex and non-linear system of a vehicle, multi-parameter optimization not only has a 
great computation, but also face the difficulty to obtain optimum solutions. This paper aimed at an optimization 
problem of a vehicle’s crashworthiness with 20 design parameters, and presented a new method which uses 
global sensitivity analysis and dynamic meta-model. First, vehicle crash simulation model was constructed and 
design parameters were simplified by using global sensitivity analysis, then, the sensitive parameters were used 
to construct an initial meta-model. During the optimization solving process, the design domain and meta-model 
were updated continually until the accuracy of the solutions met the requirement of the convergence criteria. 
Final results showed that the presented method in this paper could not only successfully solve the 
multi-parameter optimization problem, but also significantly reduce the computation time and cost. 
Keywords: Multi-parameter Optimization, Vehicle Crashworthiness, Concept Design, Global Sensitivity 
Analysis, Dynamic Meta-model. 

1. Introduction 
    Generally, to develop a totally new car, it has to go through three stages: concept design, detailed design 
and engineering modifying, among which concept design mainly involves in the defining of overall performance, 
overall parameters and structure forms, etc., which then become the basis for later design. During the whole 
process of the car development, concept design is so important because in this stage, the design space is very big 
and the defined results have great effect on the development[1]. According to relative statistics, when concept 
design finishes, about 70% of the total cost for the car development can be estimated out[2]. Therefore, it can be 
concluded that the success of a new car’s development relies much on the concept design. 

Concept design of a car involves in many aspects. In this paper, it is only going to discuss about the 
concept design of crashworthiness, i.e., the optimum matching design of body structure and occupant restraint 
system. Traditional way was that of defining body structure first and then occupant restraint system was matched 
by using computer simulation and optimization method. For example, references [3,4,5,6] introduced the similar 
work of optimization matching design of occupant restraint system on the basis of defined body frame structure. 
This kind of design usually involves few design parameters and can be classified as local optimization problem. 
Although it is simple, it is hard to make it optimum of the overall cost and overall performance at the same time. 
If the performance of the body structure is not so good, then great challenge will be there for the matching design 
of occupant restraint system, accompanied by rising cost. An improved method is to design body structure and 
occupant restraint system concurrently, however, this will make the design become more complex because the 
parameter numbers increase a lot, thus the computation cost grows fast, and optimization work becomes very 
difficult[7]. Thus, it is necessary for researchers to find a way to solve the problem of optimization for high 
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nonlinear system with multi-parameters.  
In this paper, in order to conduct concept design for the match of a new car’s body structure and occupant 

restraint system, a simplified simulation model is established with 20 design parameters defined. Then, global 
sensitivity analysis method based on variance is used to find out and select important design parameters, which 
are used to establish meta-model. Finally, a new method is proposed to update meta-model and global optimum 
solution is obtained after 5 iterations. The method presented in this paper can be as a reference for solving the 
problem of the optimization design of high nonlinear system with multi-parameters. 

2. Methodology 

2.1 Establishment of simplified concept model for crash analysis 
In the stage of a car’s crashworthiness concept design, what is needed to consider is the match design of 

the performances of body structure and occupant restraint system. The body structure’s performance can be 
described by an Equivalent Dual-Trapezium Wave(EDTW) as the broken line shown in Figure 1. EDTW is a 
simple curve, which is not only capable of replacing the complex curve(as the full line shown in Figure 1), but 
also reflects the important information of the crashworthiness, such as the first step acceleration a1, the second 
step acceleration a2, and also the important impact moments tc, te, etc.  

For EDTW In Figure 1, only the wave shape is assumed, while the parameters a1, a2, tc, te, etc. are all 
unknown and need to be defined within a given design space. 

For the occupant restraint system, Madymo software which is specialized for dynamic analysis of 
multi-rigid body is used to establish a simulation model which includes window shield, steering system, seatbelt, 
airbag, seat, floor and Hybrid III 50% male dummy, as shown in Figure 2. All the parameters for occupant 
restraint system design are included in this model. 

Figure 1: EDTW used in the concept design               Figure 2: Simulation model for occupant 
of crashworthiness                                   restraint system 

By now, a complex system is established. EDTW in Figure 1 is an input for the simulation model in Figure 
2 when impact simulation begins. The goal of the concept design is to define all the parameters, which are a1, a2,
slope s1, s2, s3 and moment tc included in Figure 1 and the force limit of seatbelt force limiter Fx, seatbelt 
preload l, preload time of the seatbelt pre-loader Ty, belt stiffness , height of the seatbelt D ring, the ignition 
time of the airbag ti, vent hole area scale s, airbag volume v, air inflation portion p, coefficient of air 
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permeability c, steering wheel angle WA, seat position SP, seat back angle SA and knee bolster stiffness k, etc. 
which are included in Figure 2. The initial values and varying spaces for all the parameters are assumed as 
shown in Table 1. 

Table 1: All the design parameters, initial values and varying spaces 

Design

parameters/unit

Initial values Varying spaces Design 

parameters/unit

Initial values Varying spaces 

a1/ms-2 108 [90, 150]  16% [10%,20%] 

a2/ms-2 304 [240,350] v/L 30 [26,34] 

S1/ms-3 7900 [6300,9400] s 1.0 [0.8,1.2] 

S2/ms-3 12900 [10300,15500] ti/ms 25 [20,30] 

S3/ ms-3 -18 [-20,-16] p 1.0 [0.8,1.2] 

tc/ms 23 [20,26] c 0.7 [0.6,0.8] 

Fx/N 4000 [3000,5000] K 1.0 [0.8,1.2] 

l/mm 35 [30,80] SP/mm 258 [248,268] 

H/m 1 [0.9,1.1] SA/deg 17 [10,25] 

Ty/ms 15 [10,20] WA/deg 29 [27,31] 

2.2 Optimization Model for the System Design 
In order to conduct the concept design, an optimization model needs to be established. The objective of the 

optimization is to reduce the occupant injury by using computer simulation method. The occupant injury 
evaluation involves in head, chest and legs, and the corresponding index are Head Injury Criterion (HIC), chest 
acceleration within 3ms (C3ms), chest depression(D), and leg axial force(F) respectively, which should not 
exceed the respective limits. In this paper, a Weighted Injury Criterion[8](WIC)  which combines HIC, C3ms, D
and F is used as described by Eq.(1): 

3ms +0.6( ) 0.35( ) / 2 0.05( )
1000 60 75 20

FL FRC F FHIC DWIC = + + +                             (1) 

Where, FFL and FFR are the axial forces of left leg and right leg respectively. 
Thus, the mathematical optimization model is established as follows: 
Variables: a1, a2, S1, S2, S3, tc, Fx, l, H, Ty, , v, s, ti, p, c, k, SP, SA, WA

Min WIC

S.t. HIC 1000, 3msC 60g, D 75mm, FLF 10KN, FRF 10KN.

How to resolve the above optimization problem? Traditional mathematical optimization methods are 
obviously unable to do so because of large computation involving in iterations. With the development of 
numerical meta-model method in recent years, optimization efficiency has been improved a lot. The most 
representative meta-models are Response Surface Model (RSM), Kriging model and Radial Basis Function 
(RBF) model. However, researches showed that each kind of meta-model has its adaptability. For example, 
RSM is easy to construct and has high efficiency of response prediction, but is unsuitable for high nonlinear 
system; Kriging model is suitable for high nonlinear system as long as the parameters’ number is within 8; RBF 
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model has moderate accuracy and efficiency, and its local accuracy is hard to achieve when used for high 
nonlinear system with multi-parameters[9]. Therefore, if parameters’ number can be reduced for high nonlinear 
system, then it is more convenient to obtain the solution. Reference [10] presented a method named global 
sensitivity analysis based on variance which can be used to find out sensitive parameters, so those insensitive 
parameters can be removed and the total parameters number reduced. 

2.3 Theory of Global Sensitivity Analysis Based on Variance

It is assumed that there is a system expressed as Eq.(2)

Y=f (X)                                        (2) 

1, 2, ,( ... )kX X X X=

    Where Xi is independent with each other and uniformly distributed within [0,1]. 
By using Monte Carlo sampling method, two matrices A, B are generated as follows: 

11 1 1 11 1i 1k

21 1 2 21 2i 2k

1 1 n1 ni nk

... ... ... ...

... ... ... ...
,

.. ... ... ... ... ... ... ... ... ...
... ... ... ...

i k

i k

n i nk

x x x x x x
x x x x x x

x x x x x x

= =A B

Where k is the design parameters number and n is the sampling number. 
If the i column of matrix B is replaced by the i column of matrix A, and the i column of matrix A is 

replaced by the i column of matrix B, then another two matrices Ci and C-i are generated: 

11 1i 1 11 1 1k

21 2i 2 21 2 2k

1 ni n1 nk

... ... ... ...

... ... ... ...
,

.. ... ... ... ... ... ... ... ... ...
... ... ... ...

C C

k i

k i
i i

n nk ni

x x x x x x
x x x x x x

x x x x x x

= =

By substituting above matrices into Eq.(2), the corresponding outputs can be obtained. It is assumed that 
yA yB and yC are the output vectors corresponding to the input matrices A, B and C, then the estimated variance 
is calculated by Eq.(3): 

)(1)(ˆ
BA

T
A yyy

n
YV =                                  (3) 

    Where )(ˆ YV  is the total variance. 

At the same time, followings are defined as Eq.(4), Eq.(5) and Eq.(6): 

B
T
A yy

n
f 1ˆ 2

0 =                                         (4) 

iC
T
Ai yy

n
U 1ˆ =                                         (5) 

iC
T
Ai yy

n
U

-

1ˆ
- =                                         (6) 

Then for the input parameter ix , the main effect index is estimated by Eq.(7): 
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)(ˆ
ˆˆ 2
0

YV
fUS i

xi
=                                          (7) 

And the whole effect index  is estimated by Eq.(8): 

)(ˆ
)ˆˆ()(ˆ 2

0

YV
fUYVS iT

xi
=                                  (8) 

The main effect index reflects the influence of single parameter on the system response, while the whole 
effect index not only reflects the single parameter’s influence on the system response, but also reflects the 
parameters’ interaction influence.  

As to the system studied in this paper, by using the above method, the estimated main effect index and 
whole effect index of each parameter are calculated, and the results are shown in Table 2. 

Table 2: Parameters, main effect and whole effect index 

parameters a1 a2 S1 S2 S3 tc Fx l H Ty

Main effect -0.0018 0.4371 -0.0006 0.0034 0.0193 0.0171 0.0693 0.0276 0.0081 0.003 

Order  18 1 17 13 7 8 4 5 10 12 

Whole effect  0.0274 0.4630 0.0465 0.0434 0.0268 0.0372 0.1013 0.0395 0.0133 0.008 

Order  11 1 6 7 12 9 4 8 14 18 

Table 2: (Continues) 

parameters  v s ti p c K SP SA WA

Main effect -0.0200 0.0259 0.1606 -0.0018 0.1038 -0.4E-4 -0.0003 0.0056 0.0159 0.001 

Order  20 6 2 19 3 15 16 11 9 14 

Whole effect  0.0213 0.0707 0.2467 0.0274 0.1199 0.1E-4 0.0049 0.0090 0.0133 0.009 

Order  13 5 2 10 3 20 19 17 15 16 

According to the results in Table 2, 11 parameters with higher index values are selected. Although the 
parameters number is reduced from 20 to 11, it is still hard to construct a single meta-model which has expected 
local and overall accuracy. Thus, during the iteration process, meta-model needs to be updated again and again 
in order to be more and more accurate till the solution is obtained. 

2.4 Technique of Dynamic Meta-model 
Meta-model continuously changes, then dynamic meta-model emerges. i.e., during the process of each 

iteration, design space reduces continually, and a new meta-model is constructed to replace the old one. The 
theory and algorithm for constructing dynamic meta-model are introduced below. 

(1) First step, Hypercube Latin method is used to sample within the given initial design space, thus the 
whole design space can be described by a few samples, correspondingly, the system responses are calculated and 
thus initial meta-model can be established; 

(2) Second step, the initial meta-model is solved by using multi-island genetic algorithm, and the first 
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solution is obtained; 
(3) Third step, updating design space. For the kth times iteration, a design space is defined by Eq.(9) based 

on the solution -1kx  of the k-1th times iteration: 

1 1 1 1

1 1( , ) ( )
10 10

L U
k k k k k kS S x L x L= +， (9)

Where, 
L
kS and

U
kS  are the lower and upper limit of the design space respectively for the kth times 

iteration, and Lk-1 is the design space size for the k-1th times iteration; 

(4) Fourth step, by using global sensitivity analysis during the k-1th times iteration, another solution -1kx

is obtained , thus for the kth times iteration, another design space is defined by Eq.(10) based on -1kx :

1 1 1 1

1 1( , ) ( )
10 10

L U
k k k k k kS S x L x L= +， (10)

(5) Fifth step, the design space for the kth times iteration is updated by considering the above two defined 
spaces and also the initial design space, which can be expressed by Eq.(11): 

( , ) ( , ) ( , )L U L U L U
k k k k k kS S S S S S S=                        (11) 

(6) Sixth step, convergence criterion. New meta-model is constructed based on new samples sampled from 
the updated design space and iteration calculation is going on until solution is obtained. If the error between the 
two solutions of kth and k-1th time iteration is less than ( assigned value of 0.5%), also at the same time, the 

solutions between meta-model and simulation model is less than 5%, then the global optimization ends, 
otherwise, the iteration continues until the convergence criterion is satisfied. 

2.5 Optimization results 

By 5 times iteration, the results converged. All the parameter’s initial values and the corresponding 
optimized results are shown in Table 3. Compared with initial injury values, WIC is reduced by 36.5% after 
optimization. 

Table 3: Parameters, initial values and optimized results 

Parameters 

(input and output) 
Initial values Optimized 

results

Parameters 

(input and output) 
Initial values Optimized 

results

a1/ms-2 108 112 s 1.0 1.01 

a2/ms-2 304 243 p 1 1.08 

S1/ms-3 7900 9368 ti/ms 25 24.6 

S2/ms-3 12900 13771 HIC 754 400 

tc/ms 23 25 C3ms/g 56.3 43.6 

Fx/N 4000 4458 D/mm 37 33 

l/mm 35 66 WIC 0.717 0.455 

H/m 1 0.973    
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3. Conclusion 
 This paper studied the optimization design problem for a high nonlinear system with multi-parameters 

during a new car’s crashworthiness concept design stage. A simplified concept simulation model was established 
first and then the methods of Global Sensitivity Analysis and dynamic meta-model were used to do research and 
optimization. The productive work of the research was that the number of design parameters was reduced 
effectively and system model was simplified, which in a great degree made the optimization computation cost 
reduced and the global optimum solution obtained. The research work done in this paper can be a good 
reference for other similar optimization problems in modern engineering. 
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Abstract
The paper deals with the problem of the integrated layout design of macro and micro structure taking into 
consideration vibro-acoustic criteria. A multi-scale topology optimization model is presented for minimization of 
the sound power radiation from the vibrating composite structure with different designable periodic 
microstructures in different domains of the macrostructure. An extended multi-material interpolation model based 
on SIMP and PAMP is developed to implement the concurrent multi-scale topological design of the structure and 
material, and to achieve optimum distribution of the prescribed number of materials at both the micro and macro 
scale. The equivalent material properties of the macrostructure are calculated using homogenization method. The 
method of MMA is utilized to solve the multi-scale optimization model with respect to vibro-acoustic criteria. 
Numerical examples are given to validate the model and the method developed.  
Keywords: structure and material; vibro-acoustic criteria; multi-scale; integrated method; topology optimization 

1. Introduction 
Vibration and noise attenuation is one of the most concerned problems in vibro-acoustic field, where structural 
topology optimization can act as a strong tool. Most of the present work concerning vibro-acoustic design 
generally focuses on topological optimization of the macrostructure including the distribution of the materials and 
damping [1-3].  A few works concerned topology optimization of the macrostructure or the microstructure of 
materials to achieve the optimum vibro-acoustic properties [4-5], which normally only involves single scale 
design. In recent years, some methods of concurrent topology optimization at structure and material scale have 
been proposed including the Hieratical topology optimization [6-7] and the PAMP model [8-9]. However, the 
former method may give rise to a large challenge in manufacturability for the microstructural configuration varies 
from point to point in the macro design domain. As for the latter, only single base material is taken into 
consideration to produce composite composed of porous microstructure. Moreover, design objectives of the 
above-mentioned methods generally involves extreme structural properties such static compliance or thermal 
elasticity [6-9] without respect to vibration and noise attenuation. In order to exert the potential of the structure and 
material to the largest extent, it is necessary to establish a multi-material and multi-scale model and further develop 
an effective and efficient method to combine the vibro-acoustic topology design of the macro and micro structure 
simultaneously. In this paper, section 2 will discuss the two scale multi-material interpolation model and 
optimization model with respect to vibro-acoustic criteria will be analysed in section 3. Then some numerical 
examples will be given to validate the viability of the presented method in section 4 and a brief conclusion is made 
in section 5. 

2. Two-scale Multi-material Interpolation Model 
The extended multi-material interpolation model at the micro scale based on the present SIMP [10] and PAMP 
model is illustrated as follows: 

{ }MI
1 2 2 2 1 1[ ( ) (1 ) ] (1 ) (1 )p p p p p p

e n n n n n n n n n= + + +D D D D                      (1) 

{ }MI
1 2 2 2 1 1[ ( ) (1 ) ] (1 ) (1 )q q q q q q

e n n n n n n n n n= + + +                          (2) 

where 0D , 1D …, 1nD , nD  and 0 , 1 …, 1n , n represent respectively the elasticity matrices and mass 

density of the multiple designate solid isotropic base materials numbered as 0, 1,…, n-1 and n. The symbol p  and 
q are the penalty factors while p normally takes the value 3 or 4 and q usually takes the value 1 or 2 in order to 
achieve the clear zero-one design. 
Theoretically speaking, with the above-mentioned multi-material interpolation model, multiple microstructures 
can be formulated. For convenience of illustration, in this article two microstructures in macro scale with multiple 
designate base materials are involved to perform topology design and variables like 1 , 2 ,…, 1n , n to
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formulate the other microstructure in a similar way, based on which the material interpolation model at the macro 
scale can be expressed with the following equations if the macrostructure is meshed into eN finite elements:

( )MA H1 H21p p= +D D D           (3)

( )MA H1 H21q q= + ,
T

1 2, , ,
eN=      (4)

where H1D , H2D  and H1, H2  represent the equivalent stiffness matrices and mass density calculated via the 
homogenization method [11]. The symbol denotes the relative volume density vector of the first microstructure 
in each element of the macrostructure, which may differ from point to point at macro scale, ranging from 0 to 1.
Especially for the case where two designate solid base materials are taken into consideration, assuming the 
microstructure unit cell is discretized into en  finite elements, the interpolation model at the micro scale above will 
be expressed as follows: 

( )MI
1 1 01p p= +D D D , MI

1 1 0(1 )q q= + ,
T

1 2, , ,
en=    5

( )MI
2 1 01p p= +D D D , MI

1 1 0(1 )q q= + ,
T

1 2, , ,
en=    6

where 1D  and 0D  represent the constitutive matrices while 1  and 0 denote the mass density of the two 

designate solid isotropic base materials numbered as 1 and 0. In Eq. (5) and (6), the symbol  and , varying 
from zero to unit vector, denote the relative volume density vector of the stiffer isotropic material (material 1) 
in one discretized micro unit cell of the first and second microstructure, which may differ from element to 
element,. Clearly the elasticity matrix of the element becomes 1D and 0D when the material volume density 

i and j  ( , 1,2, , ei j n= ) take the values 1 and 0, respectively. Especially, if 0D equals zero matrix, the above 
interpolation model indicates topology optimization model based on single base material and porous composites 
may be acquired for holes will appear when i or j  takes the value 0 in the result, which may correspond to the 
topology optimization using PAMP model. When the dynamic properties such as sound radiation power, 
fundamental frequency and band gap between eigenfrequencies of the macrostructure are taken into consideration, 
similar interpolation formulation may be employed to deal with the inertia part of the dynamic equations. 

3. Optimization model with respect to vibro-acoustic criteria 
Given the example of bi-material model used at both macro and micro scale, the macrostructure is assumed to be 
composed by two different designable composite materials, each of which is constructed by periodically arranged 
identical micro unit cells. And the micro unit cell is filled up with two prescribed solid isotropic base materials. 
The topology optimization model aimed at the best mechanical performance of the macrostructure such as the 
static compliance and sound radiation power may be formulated as: 

( ){ }

( )

( )

( )

( )
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The symbol  represents the design objective which may be expressed as the function of the structural response 
(e.g. displacement) vector u . The first constraint in Eq. (7) is a general form of the governing equations of the 
macrostructure, from which the structural response such displacement vector may be solved. The symbol 

HD indicates the equivalent macro elasticity matrices of the metamaterial, which will be calculated using 
homogenization analysis at both micro and macro scales, relying on the topology design variable , and . The 
symbols 1 4, ,  denote the material volume fractions under different scales, and 1 is the upper limit of the total 
volume fraction of the strong material (i.e. material no. 1) in the whole structure. As further illustration for the 
volume constraint equations, MIV and MAV denote respectively volume of the micro unit cell and the admissible 
design domain of the macrostructure, while iV (or jV ) and sV  represent respectively the volume of one element in 
the micro unit cell and the macrostructure. It is necessary to note that not all the constraints above are essential so 
that we can reduce some of the inequations according to practical design requirement. Meanwhile even extra 
constraints such as the lower limits of the volume fractions can be added to the optimization model. Given the 
model established above, sensitivity analysis is performed and the MMA method [12] is employed in the optimum 
search in this paper. As a complementary step, the technology of density filtering [13] is used to help avoid the 
Checkboard problem [14]. 

4. Numerical Examples 

4.1. Benchmark Example 1 - Micro-scale design of microstructure 
To verify the validity of the presented integrated method applied to topology design of the vibro-acoustic 
metamaterial, microstructural topology optimization of the four-edge-clamped 1m 1m 0.01m× × wall structure 
with a harmonic unit concentrated force working at its centre as shown in Figure 1. And the design objective is 
minimization of the sound radiation power caused by the vibration of the plate. Specially speaking, structural 
damping in this example is neglected. The macrostructure is assumed to consist of single composite material 
uniformly. Discretize the macrostructure and micro unit cell into 16 16×  and 40 40×  four-node Kirchhoff plate 
elements respectively. The micro unit cells will be filled with two designate isotropic base materials, of which the 
strong material(in dark color) has Young’s modulus 11

1 2.1 10 PaE = ×  , mass density 3
1=7800kg/m  and Poisson 

ratio 1 0.3= , while values of Young’s modulus and mass density of the weak material (in light color) are tenth of 
those of the strong one except the identical Poisson ratio. Given volume constraint, volume fraction of the strong 
material is limited to not exceeding 50% of volume of the microstructure unit cell. The macro material volume 
density vector is assigned to one mandatorily in each iteration step, and the micro material volume density 
vector is initialized to zero to ensure the macrostructure is evenly composed by only identical microstructure. 
Comparison of the optimum topology (Table 1) of the bi-material microstructure ( 6 6× array of unit cells) under 
harmonic excitation with round frequency 300rad/sp =  between utilizing the proposed integrated method and 
using only micro-scale design elucidates validity of the present work in this paper.  

Figure 1: Four-edge-clamped plate loaded by harmonic concentrated force 

Table 1: Comparison of microstructural design of vibro-acoustic metamaterial between using micro-scale 
optimization and using the presented method 

1 2 0.5= = Sound power of the Optimum 
design/W Microstructural topology 

Results in the reference [6] 3.238×10-6

1m 1m

0.01m
P(t)
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Results using new integrated 
method 4.099×10-6

4.2. Benchmark Example 2 - Simultaneous multi-scale design for minimization of structural static compliance 
The presented concurrent method of topology optimization is here employed to minimize the static compliance of 
the MBB beam (shown in Figure 2) as a comparison to the result demonstrated in a previous paper where the 
PAMP interpolation model was proposed, to validate the correctness of our innovative concurrent approach. 
According to the publication, all the variables involved in this example are non-dimensional. The concentrated 
vertical force working at the mid-point of the upper edge of the beam is 1000P = and the length and the height of 
the beam are 4 and 1 respectively. Corresponding to original model, constitutive constants of the two base 
materials are as follows: Young’s modulus 5

1 2.1 10E = ×  (in dark color) and 5
2 2.1 10E = × (in light color), 

Poisson ratio 1 2 0.3= = . Given the axial symmetry condition, only the right half of the beam is taken as the 
macro design domain. Discretize the macrostructure and the micro unit cell respectively into 50 25×  and 
25 25× elements with two-dimensional four-node isoparametric element. Meanwhile the upper limit of total 
volume fraction of the base material is 0.25 for the macrostructure and 0.4 for the micro unit cell. The volume 
density vector is initialized to zero, which helps to assure only the first microstructure contributes to the 
optimum configuration of the beam, to keep consistent with optimization using PAMP model. Optimum 
topologies of the macro and micro structure are shown in Table 2, where with comparison between our results and 
those using PAMP model, obviously good consistency can be confirmed.  Hence the effectiveness and correctness 
of the proposed integrated method in this paper can be strongly validated.  

Figure 2: MBB beam 

Table 2: Comparison of macrostructural and microstructural design of MBB beam for minimum static compliance 
between using micro-scale optimization and using the presented method 

1 20.25, 0.4= = Optimum Compliance Macrostructural topology Microstructural topology 

Results in the 
reference [10] 2234

Results using new 
integrated method 703

4.3. Example 3 - Simultaneous multi-scale design for minimization of sound radiation power 
Simultaneous topology optimization with respect to vibro-acoustic criteria of the macro and micro structure, that is, 
structure and material, of the four-edge-clamped 1.2m 1.2m 0.01m× × plate loaded by harmonic uniform pressure 
on its top surface as shown in Figure 3, which amounts to 100N at each node, is considered in this example. And 
the design objective is to minimize of the sound radiation power produced by the vibration. Similar to Example 
4.1, structural damping is neglected. The macrostructure and the micro unit cell are discretized into 30 30×  and 

P=1000
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25 25×  four-node Kirchhoff plate elements, respectively. The micro unit cell will be filled with two designate 
base materials: Aluminium Alloy (in dark color) and Epoxy Resin (in light color) with Young’s 
modulus 10

1 7.76 10 PaE = × , 9
2 4.35 10 PaE = × , mass density 3 3

1=2.73 10 kg/m× , 3 3
2 =1.18 10 kg/m× , Poisson 

ratio 1 2 0.3= = , respectively. Regarding the constraints, upper limit of total volume fraction of the strong 
material in the whole macrostructure is 0.5, while upper limits of volume fraction of the strong material in the first 
and second microstructure are 0.5 and 0.25 respectively. No constraint of the volume fraction of the first 
microstructure in the macro design domain is imposed. Optimum topologies and sound power of the bi-material 
macrostructure and microstructure (4×4 array of unit cells) under harmonic excitation of different round 
frequencies including p =100, 500, 800 and 2500 rad/s are shown respectively in Table 3  and Table 4 . Note that 
for the optimum macrostructural topology, elements in dark color represent the first optimum microstructure. 
Figure 3 shows the iteration history curve of the objective function under excitation frequency p = 100rad/s. Our 
tests indicate ideal numerical stability of the presented method in certain range of low frequencies including 500 
and 800 rad/s. Numerical oscillation was observed in the iteration history curve of the objective function at high 
frequencies, e.g. 2500 rad/s, as a result of which it failed to acquire clear 0 or 1 macro and micro topology. Possible 
reason is that the presented material interpolation model is a stiffness-dominated one while stiffness may not be the 
most influential factor when high frequency excitation is considered. Hence some improvement to the material 
interpolation model should be further researched in the future. 

Figure 3: Four-edge-clamped plate with harmonic uniform pressure on top surface 

Table 3: Optimum macrostructural and microstructural of the four-edge-clamped Kirchhoff plate under harmonic 
uniform on the surface 

p(rad/s) Macrostructural 
topology

Microstructural topology 

First Microstructure Second Microstructure 

100

500

800

1.2m
1.2m

0.01m
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2500

Table 4: Comparison of the sound power between the initial 
and the optimum topology design of the plate 

p(rad/s)
Sound Power/W 

Initial design Optimum design
100 0.100 0.008 
500 3.316 0.226 
800 16.332 2.426 

2500 8.341 6.538 

Figure 3: Iteration history curve of the 
objective function ( p = 100rad/s) 

5. Conclusions 
This paper presents an integrated multi-scale topology optimization method of finding the optimum macro and 
micro topology configuration of the structure and material simultaneously based on a multi-material interpolation 
model, with respect to the vibro-acoustic criteria. Numerical examples validate the reliability of the new method 
through comparison with research results of some benchmark examples. Our study shows effectiveness of the 
presented method in designing optimum vibro-acoustic structure and metamaterial aiming at minimization of 
sound radiation power of the vibrating structure. The presented work may offer new ideas and relevant theoretical 
basis for conceptual design of the structural and material for vibration and noise attenuation. 
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Abstract
In many aerospace engineering design problems, objective function evaluations can be extremely computationally 
expensive, such as the optimal design of the aerodynamic shape of an airfoil using high-fidelity computational 
fluid dynamics (CFD) simulation. A widely used approach for dealing with expensive optimization is to use cheap 
global surrogate (approximation) models to substitute expensive simulation. The effective global optimization 
(EGO) based on Kriging model is a widely used approach for dealing with the expensive optimization problems. In 
the standard EGO and most Kriging based aerodynamic optimization application, one sampling point is 
determined for expensive simulation. To make best use of parallel computing resources, multi-point infill 
sampling criteria is need to improve the efficiency of aerodynamic shape optimization. In this paper, a recently 
developed multiobjective optimization based framework balance the global exploration and local exploitation in 
EGO, called EGO-MO, is introduced. It can generate multiple test solutions simultaneously to take the advantage 
of parallel computing. The EGO-MO is applied for the aerodynamic shape design of a transonic airfoil to minimize 
drag maintaining the reference lift. The class/shape transformation (CST) method is employed for the 
parameterization of airfoil. The open source code SU2 is adopted to perform the high-fidelity aerodynamic analysis 
of initial and infill sampling points. The comparison of EGO-MO and standard EGO for the transonic airfoil 
problem is presented. The investigation shows that the EGO-MO feature less iteration numbers and can give better 
optimal results.  

Keywords: aerodynamic shape optimization; efficient global optimization; multi-point infill sampling criteria; 
multiobjective optimization; MOEA/D 

Introduction
In the optimization design of aerodynamic shape of a flight vehicle [1, 2] or airfoil [3, 4], the objective function 
evaluation is done via high-fidelity and expensive computational fluid dynamics (CFD) simulation. In spite of 
great development of computing technology, such as the more accurate and faster simulation code and parallel 
computing, the efficient optimization method is still an open research area. Modern heuristics are not suitable since 
these methods often require an unbearable number of function evaluations. 
Due to the importance of expensive optimization, much effort has been made for developing methods to produce a 
reasonably good solution within a given budget on computational cost or time [5, 6]. A widely used approach for 
dealing with expensive optimization utilizing high-fidelity analysis is to use cheap global surrogate 
(approximation) models to substitute expensive simulation. Kriging is have been widely applied to many 
expensive optimization problems [7-10], since it can approximate nonlinear and multi-modal functions, and produce 
unbiased prediction at untested points. Actually, Kriging has been. Efficient Global Optimization (EGO) is the 
most popular Kriging based expensive optimization method [5].
The infill sample selection criterion is an important issue for Kriging based optimization, such as EGO. In the 
original EGO or several aerodynamic optimization problems, one test points for evaluation is determined at each 
iteration. To make good use of parallel computing resources, a multiobjective optimization based framework has 
been proposed to balance the exploration and exploitation for expensive optimization problem, called EGO-MO 
[11]. It treats balancing the local exploitation and global exploration as a multiobjective optimization problem 
(MOP). Then, a multiobjective optimization algorithm can be used for obtaining the Pareto set, i.e., a set of best 
trade-off solutions for balancing exploitation and exploration. Several points can be selected from the Pareto set 
for evaluation in a parallel manner. In such a way, parallel computing techniques can be used for reducing the 
clock time for optimization. Additionally, the Multiobjective Evolutionary Algorithm based on Decomposition 
(MOEA/D) [12] is employed to solve the aforementioned MOP. Due to the population nature of MOEA/D, it is able 
to escape from local optimal solutions and give a set of high quality trade-off candidates for local exploitation and 
global exploration.
In this paper, the EGO-MO is applied to the aerodynamic shape optimization problem, more exactly the airfoil 
shape optimization. The remainder of this paper is organized as follows. Section 2 introduces the Kriging and the 
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EI criterion. Section 3 presents the basic idea and framework of EGO-MO. Section 4 presents the airfoil shape 
optimization result. The comparison between of original EGO and EGO-MO for airfoil shape optimization 
problem is also presented in this section. Finally, Section 5 concludes the paper.  

1. Kriging and Expected Improvement 

1.1 Gaussian Stochastic Process Modeling 
Let 

 , ny g x x R  (1) 
be the objective to minimize. We assume that the function value evaluation of g(x) is expensive. To construct a 
Gaussian stochastic process (Kriging) model for g(x), K sample points 1,..., K nx x R  and their function values 
(responses) 1,..., Ky y  are required. Suppose 

( )y x= +  (2) 

where  is a constant and  x  is a Gaussian stochastic process with following properties: 

         2 20, Var , Cov , ,i j i j
ijE x x x x c x x    (3) 

where the correlation function  ,i jc x x  is assumed to depend only on ix and jx .
There are some different forms of correlation function such as the Gaussian function, exponential function, 
spherical function and spline function. The Gaussian function is used in this paper, which has the following form 

   , exp ,i j i jc x x d x x  (4) 

where 

 
1

, k
n pi j i j

k k k
k

d x x x x


  (5) 

0i  , and 1 2ip .

The unknown hyperparameters in the above Gaussian stochastic process modeling are , ,  1,...,i i n , and 

 1,...,ip i n . Given K points 1,..., K nx x R and their responses 1,..., Ky y , these hyperparameters can be 

estimated by maximizing the likelihood that g(x)=yi at sampled points  1,...ix x i K  . The details can be found 
in [5].
If the hyperparameter estimations ˆ , 2ˆ , î , and  ˆ 1,...,ip i n  are given, one can predict g(x) at any untested 
point x based on the response values yi at xi for i = 1 , … , K.
The best linear unbiased predictor of g(x) is as follows 

( ) ( )1ˆ ˆ ˆTy x r C y= + 1  (6) 
and its mean squared error is

 
 21

2 2 1
1

1
ˆ 1

T
T

T

C r
s x r C r

C r
 

1

1
 (7) 

where    1, ,..., ,
TKr c x x c x x .     2ˆ ,N y x s x  can be regarded as a predictive distribution for  g x  given 

the response value iy  at ix  for 1,...,i K .

1.2 Expected Improvement 
After building a predictive distribution model for the objective function, we then define a metric for measuring the 
merit of evaluating a new untested point for minimizing g(x).The expected improvement [5] is introduced in the 
following.  
Let     2ˆ ,N y x s x  is a predictive distribution model for g(x), and the minimal value of g(x) over all the 
evaluated points is gmin, then the improvement of g(x) at a untested point x is

    minmax ,0I x g g x  (8) 
Thus, the expected improvement (EI) can be calculated as  
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min min

min

ˆ ˆ
ˆ ˆ ˆ 0

ˆ ˆ

ˆ0 0

g y g yg y x s x s
E I x s x s x

s

 




 (9) 

The above formula has two terms. The first term prefers points whose prediction values are small and have low 
uncertainty. It reflects the local exploitation. The second term is the product of the error s multiplying the 
probability density function. It reflects the global exploration. Therefore, the EI can be considered as a balance 
between exploiting promising areas of the design space and exploring uncertain areas [13].

2. Algorithm Framework for EGO-MO 

2.1 The Basic Idea 
The basic idea of EGO-MO is to use a multiobjective optimization algorithm for finding a set of test points, which 
can balance exploitation and exploration in different ways. We set the first and second items of the EI as two 
objective functions. More specially, the MOP is: 

      1 2max ,

subject to

T
F x f x f x

x

  (10) 

where       
min

1 min

ˆ
ˆ

ˆ
g y

f x g y x
s x

 ,      
min

2

ˆ
ˆ

ˆ
g y

f x s x
s x

 .

It should be pointed out that any other two metrics reflect global exploration and local exploitation can also be used 
as two objectives in our approach. The Pareto optimal solutions of the above problem should be good candidate 
points for evaluation. Due to its simplicity and efficient, the MOEA/D [12] is used to solve the above MOP.  
Let the objective to minimize is g(x), our proposed EGO-MO works as follows. 

Algorithm Parameters: 
KI: the number of initial points in Initialization;
KE: the number of function evaluations at each generation. 
Step 1 Initialization: Generate KI points 1,..., IKx x  from the search space by using an experiment 

design method and evaluate the function values of these KI point. Set  1
eval ,..., IKP x x .

Step 2 Stopping Condition: If a predetermined stopping condition is met, output the minimum 
function value in evalP  as an approximation to the optimum and stop. 

Step 3 Model Building: By using the function values of the points in evalP , build a predictive 
distribution model for objective function g(x).

Step 4 Locating Candidate Points: Using MOEA/D, solve Problem (10) and obtain the Pareto optimal 
solutions 1,..., Nx x .

Step 5 Selecting Points for Function Evaluation: Select KE points from 1,..., Nx x  using a selection 
scheme.  

Step 6 Function Evaluation: Evaluate the function values of all the KE selected points in Step 5, then 
add all these points to evalP  and go to Step 2.

In Step 2, the stopping condition is: 
   1 max min,...,

max /N rx x x
E I x Y Y  (11) 

where maxY  and minY  are the maximum and minimum of evaluated function values,  1 ,...,
max Nx x x

E I x  is the 

maximum of expected improvement of the Pareto optimal points 1,..., Nx x , r  is a predefined convergence 
threshold.  

2.2 MOEA/D for Locating Candidate Points 
To solve Problem (10), MOEA/D first decomposes it into N single objective optimization subproblems. The 
objective in each subproblem is a weighted linear or nonlinear aggregation function of . 1f . and 2f . Thus, each 

subproblem is associated with a weight and its optimal solution is a Pareto optimal solution to Problem (10). If the 
decomposition is done properly, then the optimal solutions to these subproblems will provide a good 
approximation to the Pareto front of (10). MOEA/D makes use of the neighbourhood relationship among these 
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subproblems and optimizes all the subproblems simultaneously. 

2.3 Selecting Points for Function Evaluation 
In order to select KE points from N candidate solutions obtained by MOEA/D, we have the following 
considerations.
1) The point to be evaluated should be different from the points already evaluated.  
2) The selected points should be evenly distributed on the PF. Therefore, if two solutions ix  and jx  whose weight 
vectors are close, they cannot both be selected.  
3) The selected points should be uniformly filling the design space with the evaluated points. The points 
maximizing the minimum distance to the evaluated points are preferred.  

3. Airfoil Shape Optimization

3.1 Optimization Problem 
In the airfoil shape optimization problem, the drag is minimized while the lift is maintain the same level of the base 
airfoil (RAE2822[14]).

Base

minimize
subject to

d

l l

C
C C

  (1.12) 

The flight condition used for design optimization is set as follows: (1) The Mach number is 0.729; (2) The angle of 
attack of 2.31 degree; (3) The freestream temperature is 288.15K; (4) The Reynolds number is 6.5 million.  

3.2 Design variable 
The airfoil shape is deformed using the class/shape transformation (CST) method [15]. In the CST method, the 
airfoil shape is represented by the combination of the class function and the shape function, as follows 

     2

1

N
N teC S    (1.13) 

where z
c

 , x
c

 ,     22 1

1
1 NN N

NC   is the class function, and  
0

N
i

i
i

S A


  is the shape function, 

te  is the trailing-edge thickness ratio. For general airfoils, the class parameters 1N  and 2N  are set to 0.5 and 
1.0, respectively. The Bernstein polynomial is employed as the shape function to describe the detailed shape. The 
airfoil shape can be represented using the Bernstein polynomial with different weight coefficients. These weight 
coefficients are then employed as design variables in optimization.
Fourteen weights are used in this paper, i.e., seven weights are placed on each lower and upper surface. The 
weights are allowed to vary in range of not distorting or disturbing the grid deformation as described in Table 1. 
The slopes of airfoil described by the upper and lower bounds of variables are presented in Figure 1.

Table 1: The bound of design variable 

No. 1 2 3 4 5 6 7 
Lower
surface

Upper -0.10 -0.10 -0.10 -0.15 -0.01 -0.10 0.10 
Lower -0.16 -0.16 -0.17 -0.30 -0.05 -0.20 -0.02 

Upper
surface

Upper 0.16 0.16 0.20 0.20 0.30 0.20 0.30 
Lower 0.10 0.10 0.10 0.15 0.16 0.12 0.18 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.2

-0.1

0

0.1

0.2

x/c

z/
c

Figure 1: The bounds of the airfoil shape  
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3.3 Aerodynamic analysis 
Although the expensive simulation is replaced with the Kriging model, the numerical experiments on sampling 
data are still required. The design condition is considered to be compressible flow. In the airfoil shape optimization 
problem, the Stanford University Unstructured (SU2) software suite [16] is employed as the high-fidelity 
computational fluid dynamics (CFD) simulation tools. The governing equation of viscous compressible flow is 
adopted for aerodynamic analysis. Spatial numerical flux is discretized using JST scheme. Viscous flux is 
discretized using the 1st upwind differencing method with SA turbulence modeling. The mesh used is an 
unstructured, O-grid that wraps around the RAE 2822 airfoil. It has 22,842 elements in total with 192 edges 
making up the airfoil boundary and 40 edges along the far-field boundary. The first grid point of the airfoil surface 
is at a distance of 1E-5 chords, and the far-field boundary is located approximately one hundred chord lengths 
away from the airfoil. The grid deformation module in SU2 is used to deform the grid system, which employs the 
linear elasticity equations. The computational capacity of SU2 for the viscous analysis of RAE2822 has been 
demonstrated in[14]. It is appropriate for being used in design procedure.  

3.4 Settings for optimization 
The first Kriging model is built on 105 initial sampling test points, which are generated using the optimized Latin 
hypercube sampling method [17]. The parameter for stopping condition is set as 61 10r  × . The multiobjective 
evolutionary algorithm based on decomposition (MOEA/D) is employed to solve the multiobjective problem that 
balance exploitation and exploration and locate the candidate points. The number of function evaluation at each 
generation is 3. Parameters used in MOEA/D are set as follows: a) the number of subproblems N is 300; b) the 
number of generation is 300; c) the number of neighborhood is 20; d) Aggregation method: Tchebycheff approach. 

3.5 Design Result 
The initial Kriging model is built by using 105 initial points, the optimization stopped by 11 iterations for 
EGO-MO, and 23 iterations for standard EGO. Although the iteration number of EGO-MO is less than the 
standard EGO, its function evaluation number, 33, is larger than standard EGO. 
The optimum geometry found by EGO-MO and standard EGO is depicted in Figure 2. The wall pressure 
distribution and pressure field contour is illustrated in Figure 3 and 4. As can be seen in Figure 3 and 4, airfoil 
obtained by standard EGO is optimized such that shape from the stagnation point to the maximum thickness point 
is changed gradually on the upper surface; and the maximum thickness point is moved toward the trailing edge. 
However, the EGO-MO found a more slender shape than the base.  

The aerodynamic performance of optimum airfoil is presented in Table 2.  

0 0.2 0.4 0.6 0.8 1
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

x/c

z/
c

Figure 2: Optimum airfoil shape Figure 3: Wall pressure distribution 

Table 2: The aerodynamic performance of optimum airfoil 

 Lift Coefficient Drag Coefficient L/D 
Base 0.72377 0.013453 53.8 

EGO-MO Optimum 0.784424 0.0114207 68.6843 
Improvement +8.38% -15.11% +27.67% 

Standard
EGO

Optimum 0.735569 0.0118942 61.8425 
Improvement +1.63% -11.59% +14.95% 
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Figure 4: Pressure field comparison (left: baseline, middle: optimum of EGO-MO, right: optimum of 
standard EGO) 

4. Conclusions 
In the optimal design of the aerodynamic shape of an airfoil using high-fidelity computational fluid dynamics 
(CFD) simulation, objective function evaluations can be extremely computationally expensive. In this paper, a 
recently developed multi-point infill sampling criteria for EGO, called EGO-MO, is applied for the optimization of 
the transonic airfoil shape. In the EGO-MO, the multiobjective optimization based framework is employed for 
multi-point infill sampling criteria to enhance the efficiency of the standard EGO. The Kriging and EI infill 
sampling criteria is introduced firstly. Afterwards, the basic idea and the algorithm framework of EGO-MO are 
briefly presented. In the airfoil shape optimization problem, the objective is to minimize drag maintaining the 
reference lift for the transonic airfoil rae2822. The class/shape transformation (CST) function is employed for the 
parameterization of the airfoil. The open source code SU2 is adopted to perform the high-fidelity aerodynamic 
analysis of initial and infill sampling points. The EGO-MO and standard EGO is applied to solve the 
aforementioned airfoil optimization problem. The two methods are compared for the function evaluation number 
and the iteration number. The optimum results are also analyzed for the mechanism of the drag reduction.  
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1. Abstract
Titanium alloy with high strength, corrosion resistance, heat resistance and many other advantages,has widely 
applications in aviation industry and the military-industrial complex.Three-roll rolling is one of mature methods in 
current production of titanium alloy bars.In this paper, we take the titanium alloy bars TC 4 as the model and adapt 
DEFORM-3D finite element software to simulate the three-roll skew rolling process. By this means the feasibility 
of titanium alloy bar used in three-roll skew rolling and the deformation mechanisms are analyzed. Additionally, 
experiment design method is applied to determine the critical process parameters impacting the forming quality of 
three-roll skew rolling. Range analysis and variance analysis methods show that the influencing parameters of 
average distance of swirl marks in decreasing sequence are as follows: deflection angle, initial temperature of 
rolled piece, angular velocity of rolled piece, and the optimal parameter combination are as follows: deflection 
angle = 8, initial temperature = 900 , angular velocity = 10 rad/s. 
2. Keywords: Titanium alloy bar, three-roll cross rolling, numerical simulation, orthogonal experiment

3. Introduction 
Titanium alloy material has low density, high melting point, high specific strength, heat resistance, corrosion 
resistance, small linear expansion coefficient, as well as good bio-compatibility, and because of its meet the strict 
requirements for the materials, such as the aviation industry can work normally under high temperature, corrosive 
environment, so in the aerospace, Marine transportation, automobile manufacturing, chemical industry, metallurgy 
and other industries plays an important role[1-2]. In recent years, China's aviation, aerospace, power and the rapid 
development of ocean engineering, all kinds of titanium products demand is growing, especially in the aircraft 
industry proportion is the largest, the application of titanium alloy in large passenger aircraft airbus A380 dosage 
of titanium alloy to 45 tons/frame, total weight of 10%; The same amount of titanium alloy material Boeing 
reached 15%. In the development of fighter jets, the requirement to have higher mobility, the fuselage as light as 
possible, the titanium alloy can better satisfy the use requirement.American F22 fighter, accounted for 39% of 
body weight, titanium alloy with titanium structure with 36 tons, two engines titanium 5 tons[3-4]. Titanium alloy in 
aviation air also measures the development level of high and low dosage, the applications of titanium alloy to 
aviation industry in China started late, aviation parts on the proportion of titanium alloy dosage still exists a certain 
gap compared with abroad.For example,in the batch production of titanium in the aircraft engine usage is not high, 
and Europe and the United States in some developed countries have the titanium dosage proportion on the engine 
has reached more than 30% [5-7]. Because of the expensive titanium alloy, in order to make full use of the titanium 
alloy bars, the application of three-roll skew rolling mill rolling into small diameter rod, effectively improve the 
material utilization rate. In addition, the three of three roll mill roll on bar uniform compressive stress, is more 
advantageous to the plastic deformation of metals. 

4. The finite element model three-roll skew rolling 

4.1.
Through a lot of three-roll skew rolling finite element simulation, combining with the actual production to 
determine a set of process parameters affecting the quality of skew rolling forming as shown in table 1. 

Tab.1 Parameters of rolling process 

Rolling temperature 
/

Roll angular velocity 
/rad/s

Deflection Angle 
/°

Tilt Angle 
/°

1000 10 8 5 

4.2. Material model 
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Rolled piece material chosen as of TC4 titanium alloy, the plastic body. Material properties including material 
yield limit, ultimate strength, and the flow stress - strain relationship and so on, its deformation temperature at 800 
~ 800 , strain rate in 0.01 ~ 20 s-1 .TC4 material properties are shown in table 2. 

Tab.2 Material property

Material 
parameters 

Density 
(kg/m3)

Elasticity 
modulus(Gpa) 

Poisson’s ratio yield stress 
(Mpa) 

shear modulus 
(Gpa) 

rolling meta 4400 100 0.34 919 44 

4.3. Three-roll skew rolling finite element modeling 
According to three in the three-roll skew rolling mill roll space position relations, roll the geometry size of 
three-roll skew rolling titanium alloy rod finite element model is established, in order to coordinate the z axis as the 
direction of the rolling line, three roll around the z axis direction of 120 ° evenly distributed, roll line and the 
rolling line intersection, each roll around the axis of rotation, contact each other, rolled piece from the bite into the 
roll end, under the effect of rolling friction was into three roll pass, as the bar shaft forward, its diameter decreases 
continuously. Three-roll skew rolling in the process of the finite element model is established, Due to the 
complexity of three roll location in space coordinates, to accurately set the deflection Angle and tilt Angle, two 
important parameters to ensure the smooth progress of rolling. 
In actual production, the three-roll skew rolling mill space geometric relation of deformation zone, and the metal 
flow conditions are relatively complex.The following assumptions: (1) bar as a plastic body, only plastic 
deformation; (2) roll as a rigid body, the rigid-plastic finite element model. Because of the hot rolling is a large 
deformation process therefore the friction between the roller and the rolled piece can be set to the shear friction. 
Bar front circular conical design, convenient its bite.As shown in Figure 1. 

Fig.1 The finite element model of three-roll skew rolling

5.Titanium alloy rod three-roll skew rolling forming law 

           (a) Transverse stress x (b) Longitudinal stress y  (c) Axial stress z    (d) Equivalent stress 

Fig.2 Stress field on cross section of stable rolling stage 

Fig. 2(a) shows the distribution of transverse stress x in the cross section of the part. At the stable initial rolling 
stage, the circular cross section starts to transit to a polygon due to that the bar has been completely into the three 
roll pass. It is observed that the distribution of compressive stresses occur at the three contact zone. Maximum 

Roll A  
Roll C 

Roll B 
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value about - 425 MPa appears at the contact point. The compressive stress will become smaller if it is farther away 
from the contact area. However, the contact adjacent region will be affected by the tensile stress, which is quite 
common characteristics in three-roll skew rolling deformation. 
Fig.2(b) shows the distribution of  the stress y in the cross-section of the part. As the process proceeds, the 
compressive stress in contact area is getting larger , which is ranged from - 500 MPa to - 700 MPa. It is also 
observed that tensile stress zone shrinks due to the spreading of compressive stress in the radial direction. 
Fig.2(c) shows the distribution of axial stress z in the cross-section of the part. Similar to Fig. 3(a) and (b), 
compressive stress occurs at the contact area, the most of the rest area is the distribution of tensile stress. The metal 
at the outer layer squeezed by roller will flow along  axial direction ,which has the small resistance to flow.  This 
will result in tensile stress of the metal at the outer layer of the part and cause the axial flow of metal,. 
The distribution of equivalent stress in the cross-section of the part is shown in Fig. 2(d) . The equivalent stress 
intensity of part gradually decreases from outer surface to the center, and the maximum equivalent stress is 250 
MPa, the minimum equivalent stress is at the center of rolled pieces for three-roll skew rolling. The forces 
generated by three-roll skew rolling act uniformly  on the part, which  is helpful to reduce the radial size and extend 
along axial direction. . 

               (a) Transverse stress x   (b)  Longitudinal stress y   (c) Axial stress z   (d) Equivalent stress 

Fig.3  Stress field on longitudinal-section of stable rolling stage 

Fig.3 a shows the distribution of transverse stress x  at the longitudinal cross section of the part. It is observed 
that the compressive stresses are distributed in the most portion of the longitudinal cross-section. The compressive 
stress has penetrated into the rolled piece, its value is ranged from -60 MPa to -100 MPa. In practical, the metal has 
fully filled into three roll passage during stable rolling stage. The rolled metal is acted by force in all directions. As 
the rolling proceeds, the compressive stress will permeate gradually into bar from outer to inner.
Fig. 3(b) shows the distribution of the radial stress y at the longitudinal cross-section of the part. It is observed 
that the compressive stress at the roller entrance and roller shoulder is greater than that of other area.  The 
maximum value of compressive stress -200MPa. The stress value gradually decreases inward to the smaller value 
of -100 MPa. This is because the effect of roller on bar is obvious at the roller shoulders and thus will result in the 
maximum compressive stress value. 
Fig. 3(c) shows the distribution of the axial stress z at the longitudinal section of the part. It is observed that the 
distributed compressive stress is obvious and gradually decreases inward . Its value in between -300 MPa and -100 
MPa. This will result in metal deformation to extend along  the axial direction.  
Fig. 3(d) shows the distribution of the equivalent stress at the longitudinal section of the part. It is observed that 
the local contact stress value is the largest, up to 250 MPa, which is named as the largest stress intensity . It is , 
gradually weakened and finally reduced to zero. The distribution of the stress suggest that metal flow along axial 
direction will benefit to the axial extension of the part. 

6.Three-roll skew rolling bar orthogonal experiment design 
Orthogonal experimental design using orthogonal table to select the representative strong test conditions, use to 
analysis the comprehensive comparison on the test results. 

6.1 Experimental determination of parameters 
Bar spiral tracks in the three-roll skew rolling is a very common phenomenon. The finite element simulation of 
rolling screw rod surface marks as shown in figure 4, this is due to the action of three-roll skew rolling roll Angle, 
roll friction of bar bar axis at the same time also will be around its own axis forward movement, the metal 
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deformation area will generate additional axial shear deformation and torsion deformation, three roll is bound to be 
left in the surface of the bar under the pressure of the spiral tracks, this kind of thread trace can not disappear 
completely, but through the optimization of rolling technology and can effectively reduce the spiral tracks. Study 
on the average distance between rolling bar spiral mark as test index, spiral mark small average spacing 
optimization goal for this test. Applying bar placed, DEFORM-3D ruler in post-processing function measuring the 
distance between the two spiral mark, measuring average after multiple spiral mark spacing. 
During three-roll skew rolling, the initial temperature, deflection Angle, roll angular velocity is the important 
process parameters affecting the quality of three roll skew rolling.In this paper, the author studies on titanium alloy 
bars the rolling forming process, the selected process parameters: the initial temperature (A) , deflection Angle (B), 
roll angular velocity (C).In the range of factors should be in the actual production experience within the scope of 
each factor in three levels, the level of the three factors values shown in table 3. 

Tab.3 Experimental factors and factor levels 

Factor Level 1 Level 2 Level 3 
initial temperature A / 900 950 1000 
deflection Angle B /° 8 9 10 
roll angular velocity C /rad/s 5 10 15 

 6.2 Range analysis results 
By range analysis can directly influence on process parameters of three roll cross rolling spiral mark on average 
spacing.The test data and range analysis are shown in Table 4. 

Tab.4 Range analysis in orthogonal test 

Number Factor level settings  
 average distance 

A / B / C /rad/s
1 1(900) 1(8) 1(5) 30.4254 
2 1 2(9) 2(10) 30.2457 
3 1 3(10) 3(15) 31.5452 
4 2 950 1 2 30.6178 
5 2 2 3 31.7856 
6 2 3 1 32.5547 
7 3 1000 1 3 30.4572 
8 3 2 1 32.3524 
9 3 3 2 32.5247 

T1 92.2163 91.5004 95.3325 
282.5078T2 94.9581 94.3837 93.3882 

T3 95.3343 96.6246 93.788 
t1 30.73 30.50 31.77 
t2 31.65 31.46 31.13 
t3 31.77 32.21 32.26 

Optimum 
level

1 1 2 

R 3.118 5.1242 1.9443 
Order B A C (B>A>C) 

In this experiment, the average distance between spiral mark as a single index by the range analysis.Ti is a column 
corresponding to section i of the target value of factors and levels.The Range R value is greater, the greater the 
influence that the process parameters on the average pitch spiral mark,Influence of forming on the surface of the 
metal bar is also larger.Can be based on the test results of the poor to determine the size of the effect of technical 
parameters on the spiral mark average spacing progression,As can be seen from table 4 various technological 
parameters of extreme value R2 > R1 > R3, so the effect of technical parameters on the screw marks the average 
distance between primary and secondary order to B, A, C.Explain the deflection angle change for adjusting spiral 
mark average spacing is the key The best level combination resulting process parameters for three roll skew 
rolling:The initial temperature is 900 , the deflection angle is 8 , the roll angular velocity is 10 rad/s. 
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By the process parameters and test index and T value change trend can be seen that the initial temperature of rolled 
pieces in spiral mark minimum average spacing, with the temperature increases, the spiral mark average spacing 
increases gradually, so the initial temperature of rolled pieces is unfavorable and exorbitant.With the increase of 
deflection angle, the more obvious the spiral traces This is due to the deflection angle increases with the 
deformation zone is shortened, rolling force increases, roll in the horizontal direction velocity increase.Increase the 
amount of billet at every turn under pressure,this will make the bar in the rolling deformation in-homogeneity, 
cross section triangle effect, bar section roundness error increase.Effect of test indexes and change trend can be 
seen from the roll angular velocity as the roll angular velocity changes test index and T value first decreases then 
increases.When the roll angular velocity in 10 rad/s, spiral mark T value minimum average spacing, roll speed 
should be controlled within a certain range, should not be too big or too small. 

7.Conclusion
(1)Finite element numerical simulation analysis of the titanium alloy rod three-roll skew rolling deformation zone 
distribution regularity of stress field, strain field and demonstrate the feasibility of titanium alloy rod three-roll 
skew rolling, by optimizing the rolling process parameters can improve the quality of three-roll skew rolling bar 
finished product; 
(2)Through the analysis of range to determine the primary and secondary order effects of three parameters on the 
average spacing bar spiral mark for:Work-piece deflection angle, initial temperature, roll angular velocity.The best 
combination of the process parameters as the initial temperature of work-piece is 900 , the deflection angle is 8 ,
the roll angular velocity is 10 rad/s.
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1. Abstract  
A reduced super beam based finite element model updating technique for beam-type structures is proposed in this 

paper. The model reduction method is adopted to condense the entire beam-type structural model into a reduced 
super beam model with much less degree of freedom. And the eigensolutions and eigensensitivities are 
re-analyzed from the reduced eigenequation of the reduced super beam in the updating process, thus reducing the 
computational load of the traditional model updating methods which perform on the original structure. The modal 
dynamic property difference approach is adopted for updating the reduced super beam model and standard 
optimization techniques are used to find the optimal values of the structural parameters that minimize the 
difference. The effectiveness and efficiency of the proposed method are illustrated through a complicated stiffened 
cylindrical shell structure. 
2. Keywords: Reduced super beam, model updating, beam-type structures, optimization 

3. Introduction 
Great progresses have been achieved in finite element method (FEM) modeling during the past decades. 

However, due to the uncertainties in the geometry, material properties and boundary conditions of the FEM model, 
the dynamic responses of a structure predicted by a highly idealized numerical model usually differ from the 
experimental results. For example, He et al. [1] reported that the differences between the experimental and 
numerical modal frequencies of an aircraft wing exceeded 10% for most modes and even reached 70% in some 
cases. Similarly, more than 60% difference was found between the analytical and measured frequencies of an 
aero-engine casing by Ma et al. [2]. Therefore, an effective model updating method is necessary to obtain a more 
accurate FEM model that are required in a large number of applications, such as optimization design, damage 
identification, structural control and so on[3].  
In the past years, various FEM model updating methods have been developed and practically applied, which can 

be classified into two categories: one-step methods and iterative methods [4]. The former directly reconstruct the 
stiffness and mass matrices of the analytical model, and the symmetry, positive-definiteness and sparseness in the 
updated matrices cannot be preserved. The latter modify the physical parameters of the FEM model repeatedly to 
minimize the modal properties discrepancy between the analytical model and the measurement counterparts, 
which are becoming more popular. Optimization techniques are employed in most iterative model updating 
methods, the eigensolutions and sensitivity matrices of the analytical model must be calculated in each iteration [5]. 
As the analytical model of a practical structure in engineering usually comprises a large number of degrees of 
freedom (DOFs), it is very time-consuming to extract the eigensolutions and eigensensitivities from the large-size 
system matrices, especially for many uncertain parameters that need to be updated. 
To address the computational difficulty, reduced model-based FEM model updating methods have been 

investigated. The substructure based model updating method has been studied [6-8], which is advantageous mainly 
in two aspects. Firstly, it is much easier and quicker to analyze the small system matrices for eigensolutions and 
eigensensitivities, as the original structure is replaced by smaller substructures. Secondly, the separated 
substructures are analyzed independently when applied to model updating. When the updating parameters are 
localized within parts of a structure, only one or more substructures containing the parameters are re-analyzed 
during model updating, and the other substructures are untouched.  However, the construction of the reduced base 
needs a lot of intricate matrices calculation and the accuracy of the substructure based model updating method 
relies on the optimum selection of master modes in the substructures. 
In this work, a reduced super beam based updating method for beam-type structure is presented. The reduced 

super beam method [9-10] based on the plane cross section assumption and displacement interpolation function 
of beam is a new model reduction method for beam-type structure. This paper intends to develop the reduced 
super beam method and apply it to calculate the eigensolutions and eigensensitivities for the sensitivity based 
model updating process. The modal dynamic property (frequencies and mode shapes) difference approach is 
adopted for updating the reduced super beam model. In particular, Eigensensitivities with respect to an updating 
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parameter of the global structure is calculated from the derivative matrices of the reduced super beam, which can 
save a large amount of computational effort in the model updating process. A complicated stiffened cylindrical 
shell structure is employed to demonstrate the effectiveness and efficiency of the proposed method. 

4. Reduced super beam method 
The reduced super beam method is briefly introduced in this section for model updating purpose. Considering a 

complicated free-free beam-type structure shown schematically in Figure 1(left figure), Oxyz is the global 
coordinate system, in which the Ox axis is along the structural axis and Oy and Oz are in the cross section 
perpendicular to the structural axis.  
As the first step of the new model reduction method, the structure is divided into several parts by a number of 

cross section which is perpendicular to the structural axis. The intersections of the cross sections with the structural 
axis are defined as the master nodes. The original FEM model, which may have hundreds of thousands DOFs, will 
be reduced to a super beam model with the master nodes. Each master node has six degrees of freedom, i.e., three 
translational and three rotational degrees of freedom.  
To construct such a super beam, each structural part is modeled as a super beam element. That is, the nodal 

displacement field in each part is approximated by the generalized displacement of the two master nodes at its end 
through twice transformation (i.e., the first transformation is performed between the structural node and the 
projective node, while the second transformation is performed between the projective node and the master node as 
shown in Figure 1). The detail of the reduction method is as follows.  

Figure 1: Principle of the model reduction method 

In each part i , considering the deformation characteristics of beam-type structure, the well known plane 
cross-section assumption is applied to project the nodal displacements ju  of each structural node j to the rigid 

body motion vector jiq of its corresponding projective nodes on the Ox axis. The relationship can be expressed as 

j j jiu R q  (1)
The expand form of Eq. (1) is 
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The six column of 
j

R  is denoted by
1 2 3 4 5 6
, , , , ,

j j j j j j
R R R R R R .The displacement vector 

ji
q  of the projective node 

between the two master nodes of each part i  can be obtained through displacement interpolation function of beam. 
Suppose the displacement of the master nodes is 

1 1 1 1 1 1
( , , , , , )T

L x y z
u v wu (left) and 

2 2 2 2 2 2
( , , , , , )T

R x y z
u v wu

(right) respectively, as shown in figure 1(right figure). According to the finite element theory of frame structure, 
displacement transformation between the projective node and the two master nodes can be approximated by the 
interpolation function of beam element as 

,ji L R

Tq N u u  (3)
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The expand form of interpolation functions N  can be found in paper [10]. By Eq. (1) and (3), the transformation 
relationship matrices between the displacement of each structural node j  and the two master nodes in each part i
can be written as 

j jR R N  (4)

The displacement of mm  nodes in each part i  are all projected to the two assumed master nodes of the part i .
Using the transformation (4), the transformation equation of the part i  can be defined as:  

,i i L R

TU T u u  (5)

where 
1

( , ..., , ..., )T

i j m
)

m
U u u u  is the nodal displacement vector of the mm  FEM nodes in part i , and the 

transformation matrices between the mm  FEM nodes and the two master nodes of the part i  is 

1
( , ..., , ..., )T

i j m
)

m
T R R R , with size of 6 12m 12 . Each column in the transformation matrices 

i
T , actually a reduced 

base vector with explicit and localized form, can be obtained with very low computational cost. With this 
transformation(5), the mass and stiffness matrices of the super beam element are defined as 

,T T

s i i s i i
m T mT k T kT  (6)

where
s

m and
s

k has dimension 12 12 .Once the super beam element is constructed by Eq.(6), it could be 
assembled to obtain a free-free reduced super beam model. For a uniform beam type structure, it is only necessary 
to construct the super element once, otherwise, it is needed to construct several super beam elements for 
non-uniform general beam type structure. In this reduction process, the retained DOFs in the reduced model 
preserve its physical characteristics and provide the possibility for further necessary manipulation. The accuracy of 
the reduced super beam model is further improved by modifying the stiffness matrices of super beam element and 
considering the effect of shear deformation in a rational way, and the interested reader can refer to paper [10].  
Suppose the whole beam-type structure with s  nodes ( 6s DOFs) was divided into ( )p p s)  parts, in other 

words, there are 1p  master nodes in all. A final reduced super beam model has DOFs ( 6( 1)p ), which is much 
less than 6s . The mass and stiffness matrices of the reduced super beam are defined as 

1 1
s s

p p

R Rk M mK   (7)

5. Model updating using modal property 
Sensitivity-based FEM model updating method is the most frequently used updating method, and the general 

objective function combining the modal properties (frequencies and mode shapes) is usually represented as [6] 
2 2

2 2( ) A AE E

i i i i ji ji
i i j

J r w r w r  (8)

where E

i
represents the eigenvalue corresponding to the ith experimental frequency, and E

ji is the ith 

experimental mode shape at the jth experimental point. A

i and A

ji denote the corresponding eigenvalue and mode 

shape from the FE model, expressing as the function of the updating parameters r . iw and iw are the weight 
coefficients due to the different measurement accuracy of the frequencies and mode shapes. The objective function 
is minimized by continuously adjusting the parameters r  of the initial FE model through optimization process.  

5.1 Sensitivity analysis 
To find the optimal searching direction, sensitivity analysis is usually conducted to compute the rate of the 

change of a particular response quantity with respect to the change in a physical parameter. For the objective 
function, a truncated Taylor series of ( )J r is defined as  

21
( ) ( ) [ ( )] ( ) ( ) [ ( )] ( )

2
T T TZ r J r J r r r J r r  (9)

where r denotes a step vector from the current r . ( )J r  and 2 ( )J r are the gradient and the Hessian of ( )J r ,

respectively. After an iterative process, the optimized *r is reached with ( ) 0J r . The gradient and Hessian of 
( )J r can be expressed by the sensitivity matrices as  

2( ) [ ( )] 2 ( )         ( ) ( ) ( ) T TJ r S r f r J r S r S r  (10)

where ( )f r encloses the weighted residuals ( ( ) )A Ew r and ( ( ) )A Ew r . The sensitivity matrices of the 
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eigenvalues and mode shapes with respect to a parameter r  can be expressed as 
( ) ( )

( )            ( )
r r

S r S r
r r

 (11)

The sensitivity matrices ( )S r  may be determined analytically or by using the finite difference method [11].  

5.2 Eigensolutions with reduced super beam method 
The eigensolutions and eigensensitivity matrices can be calculated based on the classical eigenequation  

i i i
K M  (12)

where K and M are the stiffness and mass matrices, 
i
and

i
are the ith eigenvalue and eigenvector, respectively. 

In traditional model updating methods, the eigensolutions and eigensensitivities analysis based on the large-size 
system matrices is expensive, updating the FEM model of a large-scale structure usually involves a heavy 
workload and many runs are usually required to achieve the convergence of the optimization.  
In the present paper, a beam-type structure is condensed to a reduced super beam based on the aforementioned 

reduced method, aiming at reducing the sizes of the stiffness and mass matrices and eliminating the expensive 
reanalyses of eigenproblems due to the variations of the updating parameters. The reduced solutions are then 
transformed to obtain eigensolutions and eigensensitivity of the global structure by using transformation matrix, 
which is an assemblage of 

i
T .

We also suppose that the stiffness and mass matrices depend linearly on the model parameterr , which is often 
encountered in practical applications of model updating. Specifically, it is assumed that the mass and stiffness 
matrices of the original model take the form as 

0 0
( )    ( )

N N

i i i i

i i

r r

r rK r K K M r M M  (13)

where
0

K ,
0

M ,
i

K  and 
i

M  are constant matrices, independent of r , and rN is the number of structural model 
parameters to be updated. Then the construction of the super beam element is guided by the linear dependence so 
that the stiffness and mass matrix for each beam element depend linearly on only one of the parameters to be 
updated. The mass and stiffness matrices at the reduced level admit a similar representation as (14), 

0 0
( )    ( )

N N

R Ri i R Ri i

i i

r r

R Rr rK r K K M r M M  (14)

In order to save computational time, the constant matrices are computed and assembled once and, therefore, there 
is no need for this computation to be repeated during the iterations in optimization for model updating. 

6. Numerical example: a stiffened cylindrical shell structure 
To illustrate the feasibility and computational efficiency of the proposed method, a uniform typical stiffened 

cylindrical shell structure in free-free boundary condition is employed here as shown in figure 2.  Figure 3 gives its 
FEM model with 4530elements, 3060 nodes and 18360 DOFs in total. The material of the structure is isotropic 
with Young's modulus 47.0 10E MPa  , Poisson's ratio 0.3 , and mass density 3 32.7 10 /g mm .

Figure 2: Typical stiffened cylindrical shell structure         Figure 3: FEM model of the cylinder structure 

The original full FEM model was reduce to a super beam model of 50 uniform super beam elements in this paper, 
and the reduced super beam model has 306 DOFs in total, which is much less than the original model. The first six 
overall natural frequencies and corresponding mode shapes are calculated using the reduced super beam model, 
and compared with the original model in Table 1. Some minor differences are found in Table 1, and the relative 
differences in frequencies are less than 3% for almost all modes. Modal assurance criterion (MAC) [9] values of all 
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mode shapes are above 0.88, which indicate the similarity between the reduced and original mode shapes. 

Table 1: The frequencies and mode shapes of the cylinder structure using the proposed method 

Frequency order Original model (hz) Reduced model(hz) Difference (%) MAC
1st bending 89.53 84.32

133.72
183.16
227.45
267.59 
291.90

5.82 0.88
1st torsional 130.46 2.50 0.95
2nd bending 186.59 1.84 0.90
1st axial 220.86 2.98 0.91
2nd torsional 261.07 2.50 0.94
3rd bending 284.84 2.48 0.89

In model updating, the simulated ‘experimental’ modal data are usually obtained by intentionally introducing 
damages on some elements, and then the analytical model is updated to identify these damages. In this present 
paper, the simulated frequencies and mode shapes, which are treated as the ‘experimental’ data, are calculated 
from the FE model by intentionally reducing the bending rigidity, torsional rigidity and axial rigidity in some parts. 
The simulated reduction is listed in Table 2 and denoted in figure 3. 

Table 2: Assumed rigidity reduction in some parts 

Case1   Case2   

Assumed  
discrepancy 

Part2/Part3   (-30%) 
Part6            (-20%)
Part8            (-30%) 

Part1               (-30%) 
Part4/Part5     (-20%) 
Part9               (-30%) 

The eigensolutions and eigensensitivities of the analytical model are calculated using the proposed reduction 
method, and match the ‘experimental’ counterparts through an optimization process. The rigidity of all reduced 
super beam elements is assumed as unknown and chosen as the updating parameter. Accordingly, there are 50 
updating parameters in total. The weight coefficients are set to 1.0 for the frequencies and 0.1 for the mode shapes. 
The Lanczos method is employed to calculate the eigensolutions and the analytical method is used for the 
eigensensitivities. To calculate the eigensensitivity of the global structure with respect to an updating parameter, 
the derivative matrices of only one super beam element that contains the parameter is required while those in other 
substructures are set to zero. The optimization is processed by using Method of Moving Asymptotes (MMA) [12], 
which stops until the objective change between two successive iterations is less than a specified tolerance 0.05%.  
In the case1, the rigidity of randomly selected parts is assumed to be reduced by 30% and 20%, that is, the rigidity 

of part2, part3 and part8 are reduced by 30% and part6 is reduced by 20%, while the other parts remain unchanged. 
Then the damaged structure is used to obtain the ‘experimental’ frequencies and mode shapes. The model updating 
process is conducted to make the analytical model reproduce the ‘experimental’ frequencies and mode shapes. The 
frequencies and mode shapes before and after the updating are compared in Table 3. It demonstrates that the 
analytical modal datas closely match the simulated ‘experimental’ counterparts after the updating. 

Table 3: The frequencies and mode shapes of the cylinder structure before and after updating (case1) 

Frequency 
order

Experimental 
frequencies 

(hz) 

Before updating After updating 
Analytical 

frequencies(hz) 
Difference

(%) MAC Analytical 
frequencies(hz) 

Difference
(%) MAC

1st bending 80.82 84.32
133.72
183.16
227.45
267.59
291.90

4.33 0.85 77.81 3.72 0.89
1st torsional 124.56 7.35 0.79 119.87 3.76 0.88
2nd bending 167.70 9.22 0.82 170.88 1.89 0.92
1st axial 211.77 7.41 0.83 203.39 3.95 0.90
2nd torsional 241.07 11.01 0.73 233.71 3.05 0.87
3rd bending 264.46 10.38 0.75 275.46 4.15 0.85

Without losing generality, the rigidity of different parts is assumed to have some known discrepancy as well. In 
case2, the rigidity of part1, part9 are reduced by 30% and part4, part5 are reduced by 20% (see Table 2). The 
frequencies and mode shapes before and after the updating are compared in Table 4. In Table 4, the frequencies 
and mode shapes of the updated model better match the ‘experimental’ counterparts. 
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It should be noted that using the proposed reduced super beam method, the eigensolutions and eigensensitivities 
are calculated based on the reduced equation with size of 306 306 , rather than on the original global 
eigenequation with size of18360 18360 . The eigensolutions based on the reduced super beam model takes only 
0.25 second, while it takes about 5000 seconds based on the original model.  As comparison, the proposed reduced 
super beam-based model updating method achieves higher efficiency. 

Table 4: The frequencies and mode shapes of the cylinder structure before and after updating (case2) 

Frequency 
order

Experimental 
frequencies 

(hz) 

Before updating After updating 
Analytical 

frequencies(hz) 
Difference

(%) MAC Analytical 
frequencies(hz) 

Difference
(%) MAC

1st bending 82.13 84.32
133.72
183.16
227.45
267.59
291.90

2.67 0.80 80.07 2.51 0.90 
1st torsional 127.01 5.28 0.78 121.99 3.95 0.89
2nd bending 173.74 5.42 0.85 176.99 1.87 0.93
1st axial 215.93 5.34 0.82 207.06 4.11 0.89
2nd torsional 254.11 5.31 0.83 245.07 3.56 0.91
3rd bending 263.05 10.97 0.73 274.75 4.45 0.87

7. Conclusions 
This paper has proposed a reduced super beam based model updating method for beam-type structure. The 

eigensolutions and eigensensitivities of the original structure are calculated from a greatly reduced super beam 
model, and calculation of the eigensensitivities with respect to an updating parameter only requires analysis of the 
super beam element that contains the parameter. The proposed model updating method is advantageous in 
improving the computational efficiency. The Application to a typical stiffened cylindrical shell structure 
demonstrates that the proposed model updating method is efficient to be applied to update large-scale structures 
with a large number of design parameters.  
It is only an introduction of the proposed method in this paper. Although the examples given are simple, which 

have shown the effectiveness and efficiency. Great efforts will be made to apply the method to more complex 
practical problems in further research. 
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1. Abstract  
A lot of stiffeners are attached large structures. The optimization of the structure with design valuable of number 

and position of stiffeners is difficult. Because there are problems with creating FEM model and optimization 
method. When the number of stiffener is changed, FEM model is recreated. As a result, the time for optimization 
is increase. Therefore, a calculation method for evaluation of the structure’s strength without recreating FEM 
models by the change of the design is proposed. The optimization time is curtailed using this calculation method. 

Also, this optimization is combinational optimization problem. Therefore, the genetic algorithm is used. However, 
when all design variable is expressed as strings, strings length becomes long. As a result, the convergence 
deteriorate and the calculation amount is increased. In order to solve this problem, the Hybrid GA which combined 
the genetic algorithm with the other optimization method is proposed. The structural optimization is performed 
using two proposed method. 
2. Keywords: FEM, structural optimization, hybrid GA 

3. Introduction 
The optimization of large structures is important for the design. The optimization of the structure with design 

variable of the plate thickness and the shape of stiffener is popular study filed and many reported. A ship is one of 
large structures. A ship has a lot of number of stiffeners. As a result, in order to obtain the better optimal solution, 
the optimization of the structure with design valuable of number and position of stiffeners is required. However, 
there is a problem as creation time of FEM models.[1][2] The FEM model has to be defined nodes at the position 
of stiffeners as a characteristic of FEM. When new nodes are added, the adjustability of mesh is lost. It is necessary 
to recreate the FEM model, in order to maintain the adjustability of mesh. However, the optimization of the 
structure has to examine much number of propositions for design. Creating FEM models is required a long time. 
As a result, it is too difficult to create FEM models of all propositions for design. Therefore, a calculation method 
for evaluation of the structure’s strength without recreating FEM models by the change of the design is proposed.
 This optimization is combinational optimization problem. Therefore, the genetic algorithm is used. However, 
when all design variable is expressed as strings, strings length becomes long. When the optimization is performed 
using this strings, the convergence becomes aggravation. As a result, it is difficult to get the optimal solution. In 
order to solve this problem, a study about the hybrid GA is advanced. In this study, Hybrid GA which combined 
the genetic algorithm with the other optimization method is applied. 
The structural optimization for large structures is performed using these two method in this study. 

4. Research target  
The research target is shown in Fig 1. The stiffeners are allocated in the plate. In this study, the model is optimized. 

The design valuables are plate thickness and the number of stiffeners, the position of stiffeners, the shape of 
stiffeners. 

Figure 1: research target 
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4. Calculation method for FEM 
The method of changing stiffness and degree of freedom is explained by this section. 

The rigid matrix of target FEM model is divided into  and .  is region of unchanged structure.  is region 
of changed structure. Next, the region of adding nodes are added. This region is . When stiffness equation is 
divided into three of region, the stiffness equation is expressed by Eq.(1). [3] 

(1) 

 and ,  are expressd by the displacement of after changed sructure.  and ,  are expressd by the 
load vector of after changed sructure.Also,  because adding nodes are nothing.When Eq.(1) is solved about 

 and , ,it gets Eq.(2). 

(2) 

The G matrix of Eq.(2) is the inverse matrix of whole stiffness matrix shown in Eq.(3). 

(3) 

When Eq.(2) is simplified,  and  are expressed by Eq.(4). 

(4) 

 is expressed by . Then, substituted =  for Eq.(4) and solved  and 
.As a resut, Eq.(5) is got. 

(5) 

In order to solve displacement after adding nodes,  and ,  are requared. Also, when Eq.(2) is solved 
about , Eq.(6) is got. 

(6) 

It becomes possible to calculate the displacement after changed structures using Eq.(5) and Eq.(6). As a result, the 
number of stiffeners can be changed without recreating FEM model using this calculation method. 
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4. Hybrid GA 
The hybrid GA is optimization method which combined GA with other optimization method. In this section, the 

design variables treated by GA and the other optimization method are explained. The flow of hybrid GA is sown 
in Fig. 2. 

Figure 2: flow of hybrid GA 

4.1 genetic algorithm  
The design valuables are plate thickness and the number of stiffeners, the position of stiffeners, the shape of 

stiffeners. The shape of stiffeners is chosen from select list. Then, discrete variable are the shape and number of 
stiffeners. The optimization with discrete variable can be performed using GA. Therefore, these two design 
variables are treated by GA. In order to perform optimization by GA, the design variables was expressed by strings 
is shown in Fig 3.       

Figure 3: strings 
 4.2 other optimization method 

The plate thickness and the number of stiffeners are near the continuous variable. Then, the optimization with 
these two design variables is difficult to perform by GA. Therefore, the other optimization method is proposed. 
First, updating method for design variables is explained. In plate bending theory, the bending stress of plate is 
expressed by Eq.(7).    

(7) 

 : bending stress 
 : uniformly varying load 
  : plate length 
  : palte thickness 
 : correction coefficient with aspect ratio  

 When step  is the present design variable,  is expressed by Eq.(8) 

(8) 

If  agrees with the constraint condition in step a+1,  is expressed by Eq.(9) 

(9) 

 : constraint condition 

Eq.(10) is got from Eq.(8) and Eq.(9).  
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(10) 

 When span is changed, plate thickness is decided satisfactory to the constraint condition by Eq.(10).Also, when 
= , Eq.(11) is got. 

(11) 

In this method, span and plate thickness are updated by Eq.(10) and Eq.(11). 
This optimization method of process is shown in Fig. 4. 
(1) The plate thickness is changed by Eq.(11). 
(2) Each span is extended unit length. The weight is calculated and the efficient vector of span is calculated. 
(3) When span is changed using calculated vector, plate thickness is changed by Eq.(10). 
(4) The weight after changed span and thickness is calculated. So, the weight is judged whether minimum 

weight or not. 
(5) The stress is analyzed using FEM.  

Figure 4: flow of optimization method 

 4.3 example problem 
 In this section, the hybrid GA is examined. The optimization target is shown in Fig.5. When optimization is 
performed using FEM, the optimization time becomes long. Therefore, the testing is performed without FEM. 
Eq.(12) is used instead of FEM. When span is extended, the rigid of stiffener is down and thickness is thinned, 
stress is upped. 

Figure 5: optimization target for example problem 

(12) 

 : ith stress
 : ith span
 : ith thickness
 : ith inertia of stiffener

 The object function is expressed by Eq(13).The constraint condition is expressed by Eq(14).In this example problem,
is 35. The augmented object functions using Eq.(13) and Eq(14) is expressed by Eq.(15).The design variables is 
the span and plate thickness.

(13) 
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(14) 

 : stress of constraint condition

(15) 

The result of optimization is shown in Fig.6. The stress of constraint condition to be satisfied. Stiffeners are 
allocated at regular intervals. As a result, attached stiffeners properly by this method are confirmed.  

Figure 6: result of optimization 

5. Structural optimization 
In this section, The optimization is peformed by eq (10).The FEM model for optimization is shown in Fig.7. The 

stiffner is allocated in the x-direction. The region of optimization is top plate.The object fanction is weight. The 
weight is minimized. The constraint condition is Eq(14). is 5.  is the max stress of between stiffeners. The 
design variables is the span and plate thickness. The load condition is shown in Fig.8. 

Figure 7: FEM model for optimization 

Figure 8: load condition 

The result of optimization is shown in Fig.9. The stress of theses plates are excepted from constraint condition. 
Stiffeners are allocated at bilateral symmetry. As a result, attached stiffeners properly by this method are confirmed.

Figure 9: result of optimization
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6. Conclusion 
In this study, optimization of the ship structures with design valuable of the number and position of stiffeners is 

performed. The following two methods are proposed for optimization of the ship structures. 

1. The calculation method for evaluation of the strength structures without recreating FEM models is proposed. 

2. The hybrid GA which combined GA with proposed optimization method is proposed. 

When optimization is performed using the three above mentioned method, stiffeners are allocated at proper 
positions and optimal solution can be got. As a result, the efficacy of proposed methods is confirmed. 
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1. Abstract
In multidisciplinary design, the approaches based on decomposition formally describe the design tasks by means of

interconnected optimization (sub)problems, each presenting objective and constraint functions specific to different

disciplines or subsystems. The presence of multiple objectives implies that tradeoffs must be taken into account

during the design process, which, in engineering design, has been addressed through the concept of Pareto opti-

mality. Although a number of numerical methods have been developed for computing Pareto solutions in applied

fields, such a concept has not been extensively investigated when applied to decomposition schemes for large-scale

problems.

This paper responds to the need of understanding the impact of multicriteria decision making techniques on dis-

tributed multidisciplinary optimization. To rely on Lagrangian duality, that proved to be effective for subproblem

coordination in the single objective case, scalarization techniques such as the weighted-sum method, ε-constraint

method, and Chebyshev-norm method, are considered in this paper. Scalarized optimization subproblems are

properly formulated and a solution algorithm for computing Pareto designs, whose convergence is proven based

on pre-existing results, is demonstrated on a numerical example, showing that subproblem negotiation is the mech-

anism that allows tradeoff exploration and the computation of Pareto designs for the overall system.

2. Keywords: Multidisciplinary optimization, multiobjective optimization, Lagrangian relaxation, Pareto design.

3. Introduction
Decomposition of optimization problems into subproblems, that has been widely used to reduce the size of the

problem and exploit parallel computing, reflects from the design perspective the distribution of the tasks over

different design groups according to their expertise in specific fields, that nowadays are more and more integrated

in engineered systems. The integration of different disciplines underlies the presence of multiple criteria asking

for negotiation mechanisms that drive the decision making process. Through negotiation it is in fact possible to

reach a compromise solution that in the optimal design context is related to Pareto optimality.

Multiobjective extensions of algorithms developed for the single objective case include the Multiobjective Collab-

orative Optimization [1] and the Multiobjective Concurrent SubSpace Optimization [2]. The capability of genetic

algorithms to converge towards Pareto (or, more appropriately, nondominated) solutions is exploited in [3, 4, 5].

A different school of thought, to which this paper belongs, relies on the previously-established results originated

in the single objective scenario, in which subproblem coordination is achieved through Lagrangian relaxation.

The subproblems that are identified in the MDO problem share engineering quantities that prevent separability.

In order to decompose the problem, copies of the shared variables are introduced along with equality constraints

between the original variables and their copies to guarantee the consistency with the original problem formulation.

Decomposition becomes possible after relaxing such equality constraints into the objective function, which is

unique in the single objective case. Examples of this type of approach in engineering optimization can be found in

[6, 7, 8, 9]. To extend this decomposition and solving scheme based on Lagrangian relaxation to the multiobjective

case, the scalarization of the multiobjective problem is necessary. While weighted-sum aggregations are proposed

in [10, 11], this paper complements the previous works by discussing popular scalarization techniques other than

the weighted-sum, namely the ε-constraint method and the Chebyshev-norm method.

The objective is to implement a coordination algorithm that is able to compute Pareto design making use of the

negotiation mechanism that originates in the scalarization and in the subproblem communication enabled by La-

grangian relaxation. After introducing the multidisciplinary, multiobjective problem in Section 4, three scalarized,

relaxed formulations are presented in Section 5. Some details about the coordination algorithm and the numerical

results are reported in Section 6. A short discussion concludes the paper in Section 7.

4. Formulation of the design problem

1
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A multidisciplinary multiobjective optimization problem is formulated as

min
xi,xi

i=1,...,N

⎡⎢⎢⎣
...

fi(xi,pi(xi),qi(xi))
...

⎤⎥⎥⎦
s.t. xi ∈ Xi,xi ∈ Xi

gi(xi,pi(xi),qi(xi))≤ 0
i = 1, . . . ,N

(1)

where fi and gi are the design criteria and constraints assigned to a specific team i that has control over the decision

variable xi, and pi(xi) and qi(xi) are the linking variables that model the relationships between team i and the

remaining teams that have control on variables xi = [x j]∀ j �=i (i.e., all design variables except for those of team i),
with Xi = ∏N

j=1, j �=i Xj. The linking variables collect all of the possible interactions between the teams, pi(xi) =

[pi j(xi)]∀ j �=i and qi(xi) = [qi j(x j)]∀ j �=i.

Problem (1) requires dedicated, distributed algorithms because of the dynamics involved among the design teams,

which makes the problem unsuitable for centralized algorithms. The introduction of copies Qi j and Pi j gives the

teams the freedom to improve their respective objectives whereas the equality constraints, defined through the

aggregations Pi = [Pi j]∀ j �=i and Qi = [Qi j]∀ j �=i,

Pi −pi(xi) = 0

Qi −qi(xi) = 0
(2)

limit their freedom in the light of the decisions made by the others and, in the mathematical sense, guarantee the

consistency with the original problem (1). The integration of the new variables Pi and Qi and constraints (2) into

(1) yields the following formulation

min
xi,xi,Pi,Qi
i=1,...,N

⎡⎢⎢⎣
...

fi(xi,pi(xi),Qi)
...

⎤⎥⎥⎦
s.t. xi ∈ Xi,xi ∈ Xi,Pi ∈ Yi,Qi ∈ Zi

gi(xi,pi(xi),Qi)≤ 0
Pi −pi(xi) = 0

Qi −qi(xi) = 0
i = 1, . . . ,N

(3)

where Yi = {pi(xi) : xi ∈ Xi} and Zi = {qi(xi) : xi ∈ Xi}, i = 1, . . . ,N. Problem (3) is the starting point of the

distribution procedure which includes three steps, scalarization, relaxation, and the actual decomposition into sub-

problems. Note that this order cannot be changed since scalarization yields a single objective problem suitable for

Lagrangian relaxation that makes the problem additively separable.

5. Decomposition of scalarized problems

5.1. Weighted-sum scalarization

The application of weighted-sum transforms problem (3) into a single-objective problem due to the introduction

of positive weights, which in the spirit of MDO can be conveniently categorized into intra-subproblem weights wi
that quantify the tradeoffs within each subproblem and the inter-subproblem weights bi that balance the importance

among the subproblems. The relaxation of the consistency constraints (2) in the single-objective problem yields

min
xi,xi,Pi,Qi
i=1,...,N

N

∑
i=1

biwT
i fi(xi,pi(xi),Qi)+

N

∑
i=1

uT
i (Pi −pi(xi))+

N

∑
i=1

vT
i (Qi −qi(xi))

s.t. xi ∈ Xi,xi ∈ Xi,Pi ∈ Yi,Qi ∈ Zi

gi(xi,pi(xi),Qi)≤ 0
i = 1, . . . ,N

(4)

2
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which can be decomposed into N subproblems of the type

min
xi,Qi

biwT
i fi(xi,pi(xi),Qi)−uT

i pi(xi)+vT
i Qi

s.t. xi ∈ Xi,Qi ∈ Zi

gi(xi,pi(xi),Qi)≤ 0

(5)

where ui,vi, i = 1, . . . ,N, are the Lagrange multipilers associated with the relaxed constraints.

5.2. ε-constraint scalarization

When the ε-constraint method is applied, only one objective is optimized, arbitrarily, the s-th objective of the

l-th subproblem. Tradeoffs are taken care of by bounding the remaining objectives that are placed in inequality

constraints. The consistency constraints (2) are then relaxed to the optimized objective function giving the problem

min
xl ,xl ,Pl ,Ql
xi,xi,Pi,Qi

i=1,...,N,i�=l

f s
l (xl ,pl(xl),Ql)+uT

l (Pl −pl(xl))+vT
l (Ql −ql(xl))+

+
N

∑
i=1,i�=l

uT
i (Pi −pi(xi))+

N

∑
i=1,i�=l

vT
i (Qi −qi(xi))

s.t. xl ∈ Xl ,xl ∈ Xl ,Pl ∈ Yl ,Ql ∈ Zl

xi ∈ Xi,xi ∈ Xi,Pi ∈ Yi,Qi ∈ Zi

f r
l (xl ,pl(xl),Ql)≤ εr

l , r �= s

fi(xi,pi(xi),Qi)≤ ε i

gl(xl ,pl(xl),Ql)≤ 0
gi(xi,pi(xi),Qi)≤ 0
i = 1, . . . ,N, i �= l

(6)

which is decomposable into a subproblem related to team l

min
xl ,Ql

f s
l (xl ,pl(xl),Ql)−uT

l pl(xl)+vT
l Ql

s.t. xl ∈ Xl ,Ql ∈ Zl

f r
l (xl ,pl(xl),Ql)≤ εr

l , r �= s

gl(xl ,pl(xl),Ql)≤ 0

(7a)

and a collection of N −1 subproblems associated with the other teams i = 1, . . . ,N, i �= l

min
xi,Qi

−uT
i pi(xi)+vT

i Qi

s.t. xi ∈ Xi,Qi ∈ Zi

fi(xi,pi(xi),Qi)≤ ε i

gi(xi,pi(xi),Qi)≤ 0

(7b)

5.3. Chebyshev-norm scalarization

To avoid nondifferentiability issues, the min-max formulation of the Chebyshev-norm method can be re-written

by minimizing the upper bound α on the objective functions. To preserve the team independence, the auxiliary

variable α must be copied and the consistency constraints of the type α −αi = 0, i = 1, . . . ,N, are introduced and

relaxed along with consistency constraints (2), producing the following formulation

min
α,αi

xi,xi,Pi,Qi
i=1,...,N

α +
N

∑
i=1

mi(α −αi)+
N

∑
i=1

uT
i (Pi −pi(xi))+

N

∑
i=1

vT
i (Qi −qi(xi))

s.t. xi ∈ Xi,xi ∈ Xi,Pi ∈ Yi,Qi ∈ Zi

biwr
i f r

i (xi,pi(xi),Qi)≤ αi

gi(xi,pi(xi),Qi)≤ 0
i = 1, . . . ,N

(8)

3
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that decomposes into N subproblems for each design task, i = 1, . . . ,N,

min
αi,xi,Qi

−miαi −uT
i pi(xi)+vT

i Qi

s.t. xi ∈ Xi,Qi ∈ Zi

biwr
i f r

i (xi,pi(xi),Qi)≤ αi

gi(xi,pi(xi),Qi)≤ 0

(9a)

and one additional subproblem for updating the value of the auxiliary variable α

min
α

α +α
N

∑
i=1

mi (9b)

where mi, i = 1, . . . ,N are the Lagrange multipliers associated with the relaxed consistency constraint for α .

6. Numerical implementation of the coordination algorithm
The solution of the scalarized problems is obtained by an iterative procedure that is based on the duality theory.

Under some mathematical conditions that are not discussed in this paper for sake of brevity (refer to [7, 9]), relaxed

problems such as the ones presented in Section 5 can be solved with the following two-step iterative procedure:

1. In iteration t, solve the subproblems with respect to the so-called primal variables xt
i , Qt

i , xit , and Pt
i (and α t

i )

for the fixed values of the Lagrange multipliers ut
i , vt

i (and mt
i). In this step decomposition is exploited be-

cause the relaxed scalarized problems can be tackled by referring to subproblems, that can be independently

undertaken by different teams.

2. Using the newly-computed values xt
i , Qt

i , xit , and Pt
i , tune the multipliers (dual variables) for the dual function

maximization using a subgradient update rule of the type ut+1
i = ut

i +at(Pt
i −pi(xt

i)) (analogously for vi and

mi), where at is an appropriate scalar. This step represents the communication between the design teams.

These steps are iterated until convergence is reached, that is, the consistency is achieved within the desired toler-

ance, no objective function improvement is possible, or the maximum number of iterations is reached. Convergence

issues may arise due to subproblem unboundedness specifically when subproblems do not have any objective but

only constraints (only Lagrangian linear terms are then minimized). For this reason quadratic penalty terms of the

type μ ‖Qi −qi‖2
2 and μ

∥∥Pi −pi(xi)
∥∥2

2
are added. Unbounded subproblem (9b) certainly requires the quadratic

augmentation μ ∑N
i=1(α −α i)

2, which leads to the finite solution α∗ = ∑i α i
N − (1+∑i mi)

2μN .

This coordination algorithm has been implemented and demonstrated on an engineering problem in which the

design of a suspension system for passenger vehicles is performed to optimize the ride comfort and the road

holding while the team responsible for the spring design has to minimize its mass. The design team dedicated

to the damper design does not have any specific objective to optimize but only design constraints to be satisfied.

A representation of the problem is depicted in Fig. 1, in which the shared variables and the links between the

subproblems are identified (refer to [9] for the detailed equations).

Figure 1: Model of the suspension system design problem

To verify the results of the numerical tests, the scalarized problems were solved using a centralized algorithm with

different values of the scalarization parameters (weights and thresholds). The comparison showed good agreement

4
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between the results obtained with the distributed and centralized algorithms, as depicted in Fig. 2, in which the

results are shown for the weighted-sum scalarization (similar plots were obtained for the other two methods and

are not reported here for sake of brevity).

Figure 2: Pareto solutions computed with the weighted-sum method using the centralized (a.k.a., All in One, AiO)

and the distributed formulations

7. Discussion
In multicriteria optimization, scalarization methods imply some sort of negotiation for setting the scalarization

parameters, which allows for the computation of Pareto points as well as tradeoff exploration at those points. When

these methods are applied to distributed multicriteria optimization, another layer of negotiation is added. In this

paper, the distributed algorithm based on the relaxation models the communication among the design teams through

the Lagrangian terms that balance the objective functions and the consistency constraints, and are intrinsically

influenced by the scalarization parameters. The updating of the multipliers (and the penalty parameter in the case

of quadratic augmentation), which requires the computation of new designs for each subproblem until convergence

towards a (Pareto!) design that works for the whole system has been achieved, represents the inherent mechanism

of negotiation in the distributed algorithm.

Relying on more advanced theory of vector-valued Lagrangian relaxation and multiobjective duality, the first layer

of negotiation would be avoided, since the distributed algorithm would work on a sequence of solution sets that

would be expected to converge to the Pareto set. Different formulations [12, 13] are available based on the way of

relaxing the constraints over the vector of the objectives using matrices of Lagrangian multipliers Ui and Vi

min
xi,xi,Pi,Qi
i=1,...,N

⎡⎢⎢⎣
...

fi(xi,pi(xi),Qi)
...

⎤⎥⎥⎦+ N

∑
i=1

Ui(Pi −pi(xi))+
N

∑
i=1

Vi(Qi −qi(xi))

s.t. xi ∈ Xi,xi ∈ Xi,Pi ∈ Yi,Qi ∈ Zi

gi(xi,pi(xi),Qi)≤ 0
i = 1, . . . ,N

(10)

which may suggest additive separability of the type

min
xi,Qi

i=1,...,N

N

∑
i=1

⎡⎣ 0
fi(xi,pi(xi),Qi)
0

⎤⎦−Uipi(xi)+ViQi

s.t. xi ∈ Xi,Qi ∈ Zi

gi(xi,pi(xi),Qi)≤ 0
i = 1, . . . ,N

(11)

Although multiobjective duality theory has been investigated from a theoretical standpoint, it is not ready yet for

practical applications and presents two research challenges in MDO. First, since Lagrangian matrix multipliers bal-

ance the objectives and the consistency constraints, they necessarily assume different values at each Pareto point

5
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and hence result in a set of matrix multipliers Ui and Vi associated with the Pareto set; thus, a subgradient algorithm

for dual vector problems is needed for tuning these matrices. Second, unlike the single-objective scenario in which

min(∑i fi) = ∑i min fi, the vector extension min(∑i fi) = ∑i min fi is not immediate because the optimal solutions

are sets computed according to Pareto optimality; thus, a way to decompose (11) is required to build the Pareto set

starting from the Pareto sets of subproblems (see [14] on the algebra of efficient sets) considering the associated

sets of matrix multipliers.
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Abstract: Generally, when a vehicle is equipped with an airbag, crash tests are conducted to check the 
performance of the airbag on certain defined conditions. Even if the performance of the airbag is perfect during 
the test, it may hurt vehicle occupant in reality traffic due to changed boundary conditions, such as the 
out-of-position occupant. This paper has built a simulation model for occupant and restraint system including an 
airbag by using MADYMO software, and conducted the crash simulation for a combination of different 
boundary conditions: different size dummies, different sitting positions, and different crash speed. According to 
the results of the MADYMO simulations, a metamodel was constructed and validated, through which all the 
dangerous conditions for vehicle occupant could be predicted by using NSGA-II genetic optimization algorithm. 
The results of this research will be useful in further intelligent airbag system development. 
Keywords: Simulation Study, Prediction of Dangerous Conditions, Vehicle Occupant, Airbag, Metamodel 

1. Introduction 
Airbag is an important safety system for vehicle occupants when crash accident happens, and its protection 

effects have been widely approved[1,2]. However, airbag can also be a potential dangerous object for occupants. 
Recently, occupant injury caused by airbag has happened frequently. For example, in a rear end collision 
accident which was not serious, a 10 years old child who sat in the front side seat was injured by the expanding 
airbag[3]. That is to say, airbag is not absolutely safe. Then, it is necessary to know when the airbag is safe and 
when it is not[4-6].

From laboratory tests and computer simulation[7], it has been found that airbag’s protection effect is affected 
by boundary conditions, such as vehicle crash speed, occupant size and sitting position, etc, that is to say, for a 
vehicle with very good crash test results, when it runs on road, it may not be safe for out-of-position occupant[5].
Thus for a vehicle equipped with airbag, it is necessary to investigate the safe and unsafe conditions. 

This paper established a vehicle’s crash simulation model by using MADYMO software. In order to 
investigate the safe condition and unsafe condition, a series of simulations were conducted, based on which the 
metamodel was constructed and validated. By using NSGA-II genetic optimization algorithm[8], Pareto solutions 
were obtained, which means that safe conditions and unsafe conditions were successfully predicted, which is 
useful for further intelligent restraint system development. 

2. Methods 

2.1 Establishing and Validating of Simulation Model 
A car is taken as an investigation model. A MADYMO simulation model has established including the 

occupant compartment, restraint system and dummy. The restraint system includes seatbelt and airbag, and the 
dummy has three kinds of Hybrid III 50 percent male, 95 percent male, and 5 percent female[9]. The established 
model is shown as Figure 1. 
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After the simulation model is established, it is necessary to validate the model. Full vehicle crash test data 
are used for the simulation model. B pillar acceleration curve, in the following Figure 2, is used for model input 
and the simulation results, such as the dummy’s head impact acceleration curve, chest acceleration curve and 
chest compression are utilized to compare with the test results. 

Figure 1: Computer simulation model       Figure 2: B pillar acceleration curve 

The comparisons of simulation and test results are indicated in Figure 3, from which it can be seen that the 
curve shapes, peak values and the corresponding time are coincident, errors are within the range of 15%. 
Therefore, the established simulation model can be used to replace the real car for further study. 

2.2 Boundary Conditions for Simulation 
In this study, the seat fore-and-aft position, dip angle of seatback and vehicle running speed are chosen as 

the boundary elements, the values of the boundary conditions are listed in Table 1. 

Table 1: Values of boundary conditions 

condition Lower limit Upper limit 

Seat position / mm -180 +20

Dip angle of seatback/deg -12 +12

Running speed/(km/h) 40 100

Figure 3: Comparison of model simulation and crash test 

In Table 1, the values of seat position and seatback dip angle can be directly used as input data in the 
simulation model, while the values of running speed need to be transformed to a series of crash pulses in order to 
simulate collision in MADYMO[10]. A small part of sample crash pulses are shown in Figure 4. 

Comparison of dummy’s
chest compression 

Comparison of dummy’s
head acceleration 

Comparison of dummy’s
chest acceleration 

373

Leo
Rectangle



11th World Congress on Structural and Multidisciplinary Optimisation 
07th -12th, June 2015, Sydney Australia 

3 

Figure 4: Simulated crash pulses 

3. Metamodel 
Since simulation model is incapable to predict all safe and unsafe conditions, metamodel is used to replace 

simulation model[11-13]. In this paper, Kriging model and RBF model[14] are constructed and the corresponding 
accuracies are compared, and RBF is proved to be the better one which used here to search for Pareto solutions.  

However, static metamodel is difficult to get enough local accurate solution, thus, dynamic metamodel is 
proposed and constructed based on RBF model. The dynamic metamodel is used for the grey area which needs 
high accuracy[15].

The method of constructing metamodel is as follows: 
(1) After boundary conditions are defined, optimized Latin experimental design method is used to take 

samples, so that the studied parameters are divided uniformly, then the divided parameters are randomly 
combined, thus the whole design space can be described by using lesser samples. The least samples which are 
needed to construct metamodel is shown as Eq.(1):  

1 2 1N n                                           (1) 

Where, N1 is the least sample number, and n is the design parameter’s number. 
(2) After static metamodel is established, NSGA-II optimization algorithm is used to search for Pareto 

solutions and the boundary region. By updating the boundary region and grey area samples, metamodel is 
updated. The updated samples are defined as follows: 

It is assumed that for the q times, sample space is shown as Eq.(2), Eq.(3), Eq.(4): 

( , )i i L iU
q q qS S S                                         (2) 

1 1
1

1i L i
q q q

q

S x L
N

                                    (3) 

1 1
1

1iU i
q q q

q

S x L
N

                                     (4) 

Where, i L
qS  is the lower limit of parameter i for the q times iteration, while iU

qS is the upper limit; 

1
i
qx is the solution of parameter i for q-1 times iteration, and 1

i
qL is the design space of parameter i for q-1 

times iteration. 
(3) For each updated metamodel, validation is necessary. If the error is within 15%, then searching stops; if 

it is not, then searching continues until the model accuracy meets the requirement. The flow chart is shown as 
Figure 5.  
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Figure 5: Flow chart of metamodel construction and solution 

4. Prediction of Dangerous Conditions 
Based on the constructed metamodel, dangerous conditions for the occupant in the running vehicle can be 

predicted. Head injury index (HIC 1000), Chest 3ms acceleration value (C3ms 60g) and Chest compression 
(D 45mm) are chosen for the evaluating indicator of risk of danger. If the injury values are within follows, then 
it is considered that the occupant is in safe condition, otherwise, it is dangerous.  

As described above, first step, two static metamodels of Kriging and RBF are constructed. Then, 
metamodel updated. The accuracies of both static metamodel and dynamic metamodel are compared as shown in 
Table 2 and Table 3 respectively. 

Table 2: Comparisons of static metamodel accuracies 

Static 

Model

Kriging model RBF model 

HIC C3ms D HIC C3ms D

Sample 1 10.59% 12.21% 0.71% 11.54% 5.72% 10.27%

Sample 2 14.13% 4.53% 0.43% 2.90% 2.21% 0.43%

Sample 3 12.37% 2.64% 14.51% 15.78% 9.11% 4.37%

Sample 4 21.91% 20.46% 4.43% 8.34% 8.13% 1.72%

Sample 5 9.33% 20.59% 3.50% 2.77% 3.26% 0.05%
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Table 3: Comparisons of static metamodel and dynamic metamodel accuracies 

Static 

Model

RBF model  Dynamic

Model 

RBF model 

HIC C3ms D HIC C3ms D

Sample 1 11.54% 5.72% 10.3% Sample6 0.91% 1.2% 1.05% 

Sample 2 2.90% 2.21% 0.43% Sample7 3.24% 0.66% 0.68%

Sample 3 15.78% 9.11% 4.37% Sample8 6.5% 2.42% 4.46%

Sample 4 8.34% 8.13% 1.72% Sample9 4.66% 2.16% 2.28%

Sample 5 2.77% 3.26% 0.05% Sample 10 5.91% 6.91% 0.86%

From Table 2 and Table 3, it can be seen that the local accuracy of dynamic metamodel is higher than that 
of static metamodel, RBF model is more accurate than Kriging model, and the dynamic metamodel gets high 
accuracy in grey area, therefore, RBF model is used for searching the Pareto solution. 

Figure 6: Pareto solution - Safe conditions 

Figure 6 shows the Pareto solution, which means the shadow areas are the safe conditions. That is to say, 
for those areas that is out of the shadows, the occupant faces a high risk of danger if frontal crash happens. 

From Figure 6, it can be seen that in most cases for the running vehicle, occupant will face a high risk of 
danger if frontal collision happens. Thus this study is important and meaningful for protecting occupant by 
warning based on the simulation data, and it can be sure that future intelligent restraint system is bound to have 
this function. 

5. Conclusion 
This paper conducted a study to predict dangerous conditions for occupant in a running vehicle by using 

computer simulation and metamodel techniques, the results can be a good reference for future further intelligent 
restraint system development.  
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1. Abstract
Using the distributed actuation mechanism recently developed, this paper proposes the dual-mode operation of a 
finger-type manipulator that can switch between the force and velocity modes in order to achieve either the 
maximum force or the maximum velocity with the limited actuation power. The mathematical equations are 
derived for the fingertip force and velocity. Then, optimization scheme determines the maximum force and 
velocity that a finger-type manipulator can achieve at the given fingertip position along the given task direction. 
The numerical examples clearly demonstrate the effectiveness of the proposed dual-mode operation, which can 
enhance the operational efficiency of a manipulator in terms of velocity and/or force. 
2. Keywords: dual-mode operation, distributed actuation mechanism, finger-type manipulator, design 
optimization, structural redundancy. 

3. Introduction 
For several decades, versatile manipulation systems have been applied to various fields such as military, service, 
and clinics. However, the performances of the state-of-the-art systems are not satisfactory because the 
performance of an actuator itself appears to be saturated (or slowly improve). A variety of researches have been 
investigated in order to provide an alternative solution for the current actuators, including the development of a 
new actuator such as artificial muscle [1]-[2], the enhancement of motor efficiency [3]-[4], and a new mechanism 
design [5]-[6]. They partially contribute to performance enhancement, but much remains to be improved.  
In particular, the severe limitations in installation space and supplying power are an immense challenge to 
overcome in wearable robots. Considering that the actuating mechanism of a manipulator affects its system 
performance, the authors recently proposed the distributed actuation mechanism [7] that can provide additional 
degrees of freedom in actuation. The experiments validated the improvement of fingertip force through changing 
the posture angle and slider positions of the distributed actuation mechanism. Due to the increased complexity, 
however, more systematic approach is necessary to thoroughly analyse the distributed actuation mechanism. 
This paper proposes the dual-mode operation of the distributed actuation mechanism in order to enhance the 
usability and efficiency during operation. The force and velocity of a finger-type manipulator were first derived in 
terms of control parameters (i.e. one posture angle, three slider positions, and three thrusting parameters). Then, 
design optimization for maximizing fingertip force and velocity determined the force and velocity modes, 
respectively, of the finger-type manipulator. Furthermore, the force and velocity octagons were obtained in order 
to effectively represent the allowable force and velocity, respectively, along the eight task directions at the given 
fingertip position. Based on these quantitative information, the appropriate trajectory and corresponding actuation 
control can be determined for the given tasks. Thus, the dual-mode distributed actuation mechanism can provide 
more efficient operation. 

4. Mathematical Derivation of Dual-mode Distributed Actuation Mechanism 
In [7], the distributed actuation mechanism, which is a multi-linked mechanism with sliding actuation, was 
proposed in order to implement the spatially distributed actuation of muscles, as illustrated in Figure 1. It was 
proven that this mechanism can provide a range of fingertip forces through relocating the slider positions at the 
given fingertip position. The goal of this paper is to propose the dual-mode operation of the distributed actuation 
mechanism for more efficient operation through maximizing either fingertip force or velocity.
In this section, mathematical equations for fingertip force and velocity were derived with the notations as follows: 

lj: length of the link j
cj: length of the connecting rod at the joint j

j: joint angle at the joint j
h: slider hinge offset 
xj and xbj: positions of the front and back sliders at the joint j, respectively 
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Connecting rod
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Joint 3

Joint 2
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c3

h
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1
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Figure 1: Concept of a distributed actuation mechanism for a robot finger using a sliding actuation [7]

4.1. Derivation of Fingertip Velocity 
As illustrated in Figure 1, a robot finger with distributed actuation mechanism can be considered as a three-link 
planar manipulator, in which the fingertip at (xe, ye) has the generalized planar velocity, 

T

e e e ex y=v . At 

the fingertip position, 2 and 3 can be expressed in terms of 1 using the inverse kinematics. Figure 2 presents the 
trigonometric relationship of each joint as follows:  

2 '2 '2 ' '2 cosj j bj j bj jc x x x x= + +   (1) 

where ' tan ( 2)j j jx x h=  and ' tan ( 2)bj bj jx x h= . Through differentiating Eq. (1) with respect to 
time, the joint angular velocity was derived as follows: 

( ) ( )

( )2

tan cos tan cos
2 2

1sin tan tan sec 1 cos tan tan
2 2 2 2 2 2

j j
bj j j bj j j bj j

j
j j j j j

j j bj j j bj

x h x x x h x x

x h x h h x h x h

+ + +

=

+ + +

  (2) 

where 2

2 tan sin tan cos tan
2 2 2

j j j
bj j j j j jx c x h x h h= +

. Then, the fingertip velocity was determined through the 

differential kinematics as follows: 

( )e =v J   (3) 

where J( ) is a 3 3 Jacobian matrix. 

Front 
slider

Back 
slider

xj j

xbj

bj

j

orj Fthj

or jj

cj

x'j

x'bj

h

Figure 2: Schematic diagram of the joint j

4.2. Derivation of Fingertip Force 
In order to derive the fingertip force of a kinematically redundant manipulator, the additional rotational degrees of 
freedom at the fingertip were provided as follows: 
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[ ]
TT

e e e e e x y zx y and F F M= =x F .  (4) 

Through the procedure explained in [7], the joint torque was derived as follows: 

tan
1 tanj

j j
j th

j j

x h
F

+
=

+
  (5) 

where 2 2
1 2cos tan tan 2 tan

2 2 2
j j j

j j j bj j jc x h x h c x h= +
; Fthj and j are the thrusting force and the Coulomb 

friction coefficient at the joint j. Based on the static force equilibrium, the fingertip force was derived as follows: 

( )T
e =F J   (6) 

where J-T( ) means a transposed matrix of the inverse Jacobian. 

6. Numerical Simulation for Dual-mode Distributed Actuation Mechanism 
6.1. Optimization for the maximum fingertip force and velocity 
To determine the maximum fingertip force and velocity, optimization formulations were expressed as follows: 

1) Force mode 

1

( ) ( )
1 1 1
( ) ( )

( ) (u)

( , , ) 1,2,3; 1, ,8

1,2,3

1,2,3

0
0

j i

i i i

d i th e j

l u

l u
i i i

u
th th th

z e

x e y e

Maximize F x F i j

subject to

x x x i

F F F i

M
F x F y

= = =

=

=

+

F d

  (7) 

2) Velocity mode 

1

( ) ( )
1 1 1
( ) ( )

( ) ( )

( , , ) 1,2,3; 1, ,8

1,2,3

1,2,3

0
0

jd i i e j

l u

l u
i i i

u u
i i i

z e

x e y e

Maximize v x x i j

subject to

x x x i

x x x i

M
F x F y

= = =

=

=

+

v d

  (8) 

where dj denotes a unit vector which forms a vertex of a regular octagon centered at the origin; Fthi and i represent 
the thrusting force and velocity of a slider at the joint i, respectively. Design variables are one posture angle ( 1),
three slider positions (xj), and three thrusting parameters (Fthi for the force mode or i for the velocity mode). The 
lower and upper bounds for 1 were set to avoid the singular postures between 20  and 90 . The lower and upper 
bounds for xi, i, Fthi, and xbi were also set considering the geometrical and physical limitations. Note that the lower 
bounds of thrusting force and velocity were set to be negative values of their upper bounds in order to represent 
movements in the opposite direction. Constraints for positive rotational and translational power at the fingertip 
were implemented to obtain physically meaningful results. Through the optimization formulated in Eqs. (7) and 
(8), the maximum fingertip force and velocity along the eight task directions (dj, j=1,…,8) were determined. 
Design parameters used in optimization were listed in Table 1.

Table 1: Design parameters for the distributed actuation mechanism 
 Joint 1 Joint 2 Joint 3 

Link length [mm] l1=114 l2=114 l3=109.6
Connecting rod [mm] c1=80 c2=80 c3=80
Friction coefficient 1=0 2=0 3=0
Hinge offset [mm] 15.5

Max. motor torque [gf cm] 780
Max. motor speed [rpm] 39
Max. motor power [mW] 30.7

380

Leo
Rectangle



4

Specifications for actuation were based on the electric motor, PGM12-1230E(3V), whose gear ratio is 1/256. 
Figure 3 depicts the workspace of a robot finger (grey area enclosed by black lines) and eight fingertip positions 
(red circles with their own numbers) to be analysed. The origin of the graph represents the base of a robot finger. In 
order to solve Eqs. (7) and (8), sequential quadratic programming method in MATLAB fmincon was used.

Figure 3: Target fingertip positions in workspace 

6.2. Optimization results and discussion 
To demonstrate the effectiveness of the proposed dual-mode operation, the maximum velocity and force were 
obtained. For Position 8 along the negative x direction, for example, the optimized posture angles and slider 
positions were illustrated as blue lines and green squares, respectively, for the force mode; red lines and orange 
squares for the velocity mode (Figure 4). Table 2 demonstrates that the difference of the control parameters 
between the force and velocity modes affects the performance at the same fingertip position. 

Figure 4: Optimized posture angle and slider positions for Position 8 (blue lines for the force mode and red lines for 
the velocity mode) 

Table 2: Optimization results for Position 8 along the negative x direction 

1 [°] x1 [mm] x2 [mm] x3 [mm] Force Velocity 
Force mode 73.03 42.07 49.68 43.76 16.18 [N] 1.26 [mm/s] 
Velocity mode 60.90 71.75 37.00 66.86 0.26 [N] 4.52 [mm/s] 

As depicted in Figure 5, the velocity and force octagons (red-dotted lines and blue-dotted lines, respectively) 
represent the approximate, allowable values at the given fingertip position. Information on force and velocity 
octagons can be utilized in order to plan the optimal trajectory of a manipulator in the workspace. All the 
corresponding control parameters for operation can be obtained from the optimization. For example, suppose that 
a certain task starts at Position 1 and ends at Position 5. The task is also required to provide a fast motion in Region 
R1 and to generate a large force in Region R2. Then, the system performance during operation significantly 
depends on the trajectory as follows: 

1) Path 1-6-7-8-5 
Fast motion and large force are available in R1 and R2, respectively. 

2) Path 1-2-3-4-5 
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Slower motion in R1 and smaller force in R2 are achieved although the maximum thrusting force and 
velocity of sliders are identical.

Table 3 indicates that the maximum value even at the same fingertip position significantly varies depending on the 
task direction (specifically, ranging from 2.61 to 8.22 for force or from 2.04 to 11.54 for velocity). Thus, more 
efficient operation will be possible for the given task if the trajectory and corresponding control parameters are
appropriately determined. 

(a) Velocity octagon 

(b) Force octagon 

Figure 5: Allowable velocity and force at various fingertip positions in workspace 

Table 3: Summary of optimization results for dual-mode operation 

Point 1 Point 2 Point 3 Point 4 
Fmax/Fmin  Fd6/Fd8=8.22 Fd6/Fd8=7.56 Fd6/Fd8=3.28 Fd6/Fd8=2.61
Vmax/Vmin  Vd5/Vd7=4.11 Vd5/Vd6=11.54 Vd5/Vd2=9.51 Vd6/Vd8=2.04

Point 5 Point 6 Point 7 Point 8 
Fmax/Fmin  Fd7/Fd1=3.80 Fd6/Fd8=2.77 Fd7/Fd8=4.90 Fd7/Fd1=6.85
Vmax/Vmin  Vd6/Vd3=6.86 Vd1/Vd3=5.66 Vd1/Vd7=9.26 Vd6/Vd8=3.66

7. Conclusion 
In this paper, the dual-mode distributed actuation mechanism was proposed for the efficient operation of a 
finger-type manipulator. Through mathematically deriving fingertip force and velocity, and maximizing them, it 
was proven that the proposed dual-mode operation provides a mechanical duality which maximizes either a 
fingertip force or velocity of the manipulator, depending on the task. Numerical results discovered the force and 
velocity octagons that represent allowable force and velocity along the eight task directions at the given fingertip 
position in workspace. These information would be vital to optimally design a task-oriented trajectory, thus 
expending the proposed concept to the real-world robotic manipulators for delicate tasks. Future work will focus 
on the experimental validation of the proposed dual-mode mechanism.  
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Abstract
Adequate modelling of material behaviour is required for the optimal operation and structural-environmental 
system safety and reliability of complex structural-mechanical systems. Herein floating production storage and 
offloading (FPSO) vessels are considered. These are used for offshore oil and gas exploration and exploitation 
activities. Critical components are the mooring lines, usually 8-12 per vessel. Typically they consist of a wire (or 
non-metallic) rope (some 100mm diam.) with steel chains at the upper (FPSO) end and on the seafloor. They are 
meant to keep an FPSO ‘on-station’ within close limits. Failure may result in rupture of oil production pipelines 
(risers) with possibly extreme environmental effects and high costs to operators and to industry. Recently the 
industry has funded ground-breaking research to improve understanding of the fatigue, wear and corrosion 
particularly of the upper chains. The present paper outlines the new mathematical-probabilistic models 
developed for prediction of chain corrosion and pitting, using data collected by the industry world-wide and in a 
set of major field research projects in Australia. Both forms of corrosion are functions of seawater temperature 
and local seawater pollution. The unique full-scale experimental work for the wear of full-scale chain links is 
outlined together with the on-going development of numerical models that will ultimately include associated 
finite element modelling. The outcomes provide much improved basic knowledge, and numerical and 
probabilistic modelling to permit improved optimisation of FPSO operations and overall risk management.  

Keywords: Materials, safety, reliability, modelling, optimization.  

1. Introduction 
Floating Production Storage and Offloading (FPSO) vessels increasingly are being used for oil and gas related 
operations offshore and in particular in deeper waters, currently up to 3 km deep.  The FPSOs are moored 
on-station using a set of mooring lines consisting, for various operational conditions, at the upper end of chain, 
then wire or non-metallic rope and, at the base more chain (Fig. 1). The reliability of this system is crucial as 
failure can incur rupture of risers and subsequent environmental and other damage [1]. Field inspection of the 
system is difficult, costly and generally unreliable owing to the harsh operational conditions prevalent in most 
operational areas. Early design and operational protocols were based on cold-water North Sea experience. This is 
reflected in most current requirements defined by Classification Societies [1]. These offer design guidance 
usually in terms of expected life in years, mainly for uniform corrosion loss, with a nominal allowance for wear, 
but offer little guidance about the separate effects of corrosion and wear and of the influences of climatic, 
environmental and operational conditions. As oil and gas exploration and exploitation increasingly has moved to 
warmer waters in tropical climates, such as in West Africa and the Timor Sea it has become evident, including 
from field observations, that improved material characterization is required for robust prediction of likely safe 
life and thus of optimal operational protocols including timely mooring replacement. This paper gives an 
overview of recent efforts in that direction, using field full-scale laboratory observations over extended time 
periods and built on analytical tools for corrosion and wear.  

2. Optimal structural reliability  
The lifetime reliability of any system can be represented by the development with time of the stochastic loading 
Q(t) acting on the system and the (deteriorating, monotonically decreasing) random variable capacity R(t) of the 
system (Fig. 2). For known time dependency of R(t) and with Q(t) also known from local climatic information,
the probability of failure at any time t as given by [2]:

pf t = fQ (x). fR (x)dx
Df

  (1)   

where fQ(x)|t is the (conditional) probability density function for the load Q and similarly for R at t. As 
conventional, Df represents the failure domain defined by the performance function (or Limit State function) 
G(X) = G(R,Q) = R-Q < 0. Each mooring line composed of a chain of many links and also of wire rope is a 
classic 'series' system – one for which failure of any one (or more) components means failure of the overall 
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system. It is therefore sufficient to consider only the simplest problem given by Eq. 1, without entering into 
‘systems’ reliability considerations [2]. For the collection of mooring lines industry practice will not tolerate 
failure of more than one and thus the corresponding probability of a second mooring line failure given that one 
has occurred need not, to a first approximation, be considered.  

Figure 1: Schematic view of FPSO mooring 
system [3].   

Figure 2: Development of structural deterioration with time, and 
the probability density functions for capacity and loading [3]. 

For an individual mooring line subject to corrosion the limit state function G( ) is a function of time:  

G(X, t) = R(t) Q(t)< 0 = [A ap(t)] Q(t)< 0 = [A K(c(t))] Q(t)< 0  (2) 

where A is the cross-sectional area of the chain link or rope and ap the area loss of the cross-section caused by 
corrosion c(t) and K( ) is the functional relationship between ap(t) and c(t). It is clear that c(t) is crucial to 
estimating the probability of failure at any time t.
Although it is common in the engineering literature to assume a constant ‘corrosion rate’ there is now much 
evidence that this is a misleading concept. The functional form for c(t) is highly nonlinear, particularly in the 
earlier years of exposure, as shown in Fig. 3 for general corrosion loss as a function of exposure time [4]. The 
parameters that describe this form have been determined for clean coastal seawaters as a function mainly of 
water temperature but also other parameters and, more recently, also for the influence of water pollution. The 
main effect of water pollution is on microbiologically influenced corrosion (MIC) resulting from the 
involvement of bacteria on the corrosion processes [5]. For long-term corrosion the effect is shown 
schematically in Fig. 3. It is clear that the assumption of a corrosion rate, that is a linear function passing through 
the origin, is a very poor approximation for the actual development of corrosion with time and hence for 
optimization decisions based on it. The determination of the actual corrosion behavior at a particular operational 
offshore site is therefore critical to making optimal reliability-based decisions.   

Figure 3: Typical bi-modal loss function for immersion corrosion in 
temperate waters, showing (some) model parameters and also idealized 
long-term trend and the effect of MIC [4, 5].  

Figure 4: Field recovered chain 
links (76mm diam.) after 
surface cleaning showing highly 
varied local corrosion.

3. Field observations of mooring chain corrosion
Field experience in some geographical operational areas had shown that in some cases the mooring chains were 
found, during routine inspection, to show corrosion more severe than expected based on early, mainly North Sea, 
experience. In particular, in some cases of severe pitting corrosion were observed on mooring chain, with deep, 
elliptical pits of very considerable size on some chain links in the near-submerged splash zone (Fig. 4). It was 
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thought this could be caused by higher water temperatures. As a result, a joint industry project (SCORCH: 
seawater corrosion of rope and chain) was established to investigate the corrosion rates of mooring chains (and 
wire rope) in tropical waters. This was an unprecedented cooperative effort between most of the leading oil and 
gas producers (the so-called ‘majors’), contractors and materials suppliers.
The SCORCH JIP developed a data-base of worldwide corrosion measurements from in-service and retired 
mooring chain and wire rope from 18 FPSOs for chain and 13 FPSOs for wire rope from warm waters off 
South-East Asia, West Africa, the Gulf of Mexico, Brazil and the North West Shelf of Australia (Fig. 5) [6, 7]. 
Sample chain links taken from many of the chains recovered from industry operations were subjected to 
photogrammetric measurement, from which computer 3D images of chain links were constructed (Fig. 6). This 
allowed computer meshing, statistical analysis of the corroded surface and relatively simple estimation of 
maximum pit depth and also of pit size [7].  

Figure 5: Locations of controlled tests or literature/in-kind data 
sites ( ) and operational field data sites ( )  [7]. 

Figure 6: Computer model of chain link 
constructed from photogrammetric data [7]. 

As shown in Figs. 4 and 6, the most severe corrosion was found, repeatedly, to be pitting corrosion, for example 
some 10-15 mm in depth and often 100-200mm or more in size after 7-8 years seawater exposure. In most cases 
the most severe corrosion occurred in the region around and just below the still water level. Such severe pitting 
was not observed in all cases. Where severe pitting corrosion was observed there was also evidence of black 
corrosion deposits within the pitted areas and strong hydrogen sulphide and other odours. Taken together, this 
suggests, but does not prove, the involvement of microbiologically influenced corrosion [8]. To investigate this 
possibility, water quality analyses were undertaken in the immediate vicinity of the chains showing severe 
pitting. This showed a high degree of correlation with the concentration of dissolved inorganic nitrogen (DIN) in 
the seawater and that has been strongly linked with MIC of steel in seawater [5]. This allowed estimation of the 
increase in long-term corrosion (cf. Fig. 3). It is noted that normal, natural, unpolluted ocean seawater has 
negligible DIN. Usually elevated DIN can be attributed to anthropological or industrial pollution, including that 
from oil drilling and recovery operations [9].   
The observation that the most critical corrosion for chain links is that of pitting, permits simplification of the 
limit state function (Eq. 2) to represent the probability of the deepest pit y(t) penetrating a given distance (d) into 
the chain link (or a wire rope):   

pf = P[G(X) < 0] = P[d y(t) < 0]  (3) 

As visually evident from Fig. 6 and as also noted below, there is much variability in the maximum pit depth 
observed relative to all the other parameters involved, and this suggests that in addition to conventional 
reliability analysis the results also can be represented through application of Extreme Value theory. This is 
described in the next section.
For optimization, the key issue is the determination of the maximum acceptable probability of failure within an 
overall expected cost or expected cost-benefit analysis. Eqs. (1-3) provide the tools to determine the relationship 
between acceptable depth of pit penetration d and the corresponding probability of mooring line (and hence 
system) failure. This also will involve the probability of failure in axial tension for a given depth of pitting.  

4. Site and laboratory corrosion tests 
In addition to the examination of actual chains recovered from operations, a large series of controlled field tests 
was conducted over 3.5 years at selected sites around Australia. This program comprised some 388 chain coupon 
and chain link tests (and also 373 wire and wire rope tests), designed specifically to investigate the impact of sea 
temperature, depth, water velocity, oxygenation and steel grade. Also, laboratory tests were conducted to assess 
the effect of MIC, and the combined effect of corrosion and wear, of full-sized mooring chains. The details have 
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been described elsewhere [6, 7]. The results showed mainly uniform or general corrosion rather than pitting. The 
average corrosion rates for uniform corrosion were much lower than those for pitting, consistent with what has 
been found elsewhere.
These results added rigor to the field test results and confirmed that steel composition, location on a link and at 
the weld zone did not cause significant variations. The results also confirmed that corrosion of chains showed the 
bi-modal model characteristic (Fig. 3) and were consistent with the effect of seawater temperature, seawater 
oxygen content, water particle velocity, splash zone action and tidal zone wetting, all as expected from earlier 
work [4]. This is important as it indicates that other research results, for various steels, can be applied also for 
steel chains.

5. Extreme value analysis of corrosion pitting
For estimating the reliability of systems in which one random variable predominates, an extreme value analysis 
can be both useful and illustrative. There is a long history of applying it to pit depth data [10]. Usually, for pit 
depth, the so-called Gumbel extreme value distribution for the maximum pit depth measured on multiple areas or 
samples is used. The usual approach is to plot the pit depth data on a Gumbel plot [11]. It consists of one axis 
showing the reduced variate w that represents the cumulative probability, more formally given by the function 

(y1), defining the probability that pit depth y < y1 where yi is a given value. If the data is truly Gumbel, a straight 
best-fit line can be constructed through the data. Typical pit depth data (85 pit depths across 25 chain links) are 
shown on the Gumbel plot in Fig. 7. It is evident immediately that the collected data does not all fit a straight 
line - only some of it does, as shown. In fact the deepest pits, those of most practical interest, are shown at the 
upper right and clearly do not fit the linear trend (or indeed any linear trend). This suggests strongly that they are 
part of a statistical population, with, most likely, a different probability distribution [2]. In turn this implies that 
the mechanism causing pitting is different in some way, a point noted earlier in a more general context [12].  In 
the present case it can be shown that this subset is more consistent with the Frechet extreme value distribution, as 
also found for other cases reported for a variety of exposure conditions [12]. The implication of this observation 
is that the random variable representation for pit depth y in Eq. (3) must be more complex than a simple random 
variable and must distinguish between deeper pits and shallower pits. This distinction has only recently been 
recognized [12] and the necessity to do so in reliability analysis has not been proposed previously.  

Figure 7: Gumbel extreme value plot showing typical data for pit depth. Data from [6].    

6. Wear of mooring chains   
Wear of mooring chains can, under certain circumstances, be the primary mechanism of degradation and 
potentially failure. The current level of codification regarding the analysis of wear on anchor chains is 
rudimentary [6, 7]. It uses an average annual loss of metal due to both corrosion and wear, without 
discrimination, and is based on empirical data and engineering experience. There is an extensive body of 
research for wear as caused by dry sliding and rolling contact [13], confined mainly to 'pin-on-disk' tests, but 
there is almost no information about the wear of chains in sea water.  
It is known that wear can be the result of a number of different processes that can take place by themselves or in 
combination. Material is removed from the surfaces in contact through a complex combination of local shearing, 
ploughing, gouging, welding, tearing, and others [14]. Other major subcategories of wear include adhesive, 
abrasive, corrosive, surface fatigue, and deformation wear, as well as fretting, impact, erosion and cavitation. 
However, the modes of wear usually recognized for chain links are [6, 7, 15]:   
• Adhesive (sliding) wear, in which interlink rotational motion cause wear at the crown of the chain (Fig. 8). 
• Abrasive wear, where chain abrasion against objects including the seabed, ship hulls and other mooring 

components causes wear on the outer body of the chain link.
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Figure 8: Adhesive (sliding) wear in 
the interlink zone.

Figure 9: Wear rig at The University of Newcastle, Australia, showing 
5-link chain set under cantilever-applied static axial load and 
hydraulic oscillatory lateral loading system.  

Of the various analytical models for wear, the Archard equation [14] is the best known and widely applied:  

V=k/H·N·D (4) 

where V is the volume of material lost, N is the normal force between sliding contacts, D is the sliding distance, 
H is the hardness of the contacting materials and k is a dimensionless ‘wear coefficient.’ Laboratory test results 
show that typically k varies by several orders of magnitude [16] even with high metal compatibility and good 
lubrication conditions. This was found also in the results for wear tests on machined 0.5 inch diam. steel rods 
sometimes considered relevant to offshore chain wear [15] although these are known to substantially 
over-estimate wear compared with field observations. The changing topography of the contact surfaces in chains 
wear is a contributing factor (Fig. 8). In a desire to obtain data more relevant to actual mooring chains several 
wear tests were conducted as part of the SCORCH-JIP on full-scale stud-less chain links (76 mm nominal diam.) 
using the wear test rig shown in Fig. 9. It uses a static load for axial tension through a 1:10 ratio lever arm. The 
central link in the 5-link test specimen is displaced laterally by a hydraulic jack. The upper and lower links are 
held in place and are restrained from rotation. The angular changes are fixed by the lateral displacement.  

Figure 10: Progression of wear on full-scale links as number of 
wear cycles increases (from left to right).   

Figure 11: Wear as a function of number of 
cycles, steel grade and water lubrication [7].

Three grades of chain were tested under two lubrication conditions: dry and intermittent wet (simulating a 
‘splash zone’ effect). Measurements of the interlink diameter at the crown of the chain link were taken at various 
times during the tests to monitor the progression of wear over time (Fig. 10). The bright metal is the worn 
contact surface of a chain link. A summary of wear test results is shown in Fig. 11. It is clear that wear is not a 
linear function of the number of cycles of loading as implied by Eq. 4, but it is consistent with earlier findings 
for small diameter bars [15]. The changing trend has been attributed to the effects of work hardening, the 
formation of patches of hard martensite, gradual accumulation of worn particles and the formation of protective 
films (mostly oxides) on the sliding surfaces [17]. Again, this departure from the usual assumption of linearity 
could have a major influence on prediction of likely service life and hence on the optimization of the strategies 
for safety management of FPSOs, particularly those operating in Tropical waters [18]. Similar differences are 
expected to arise in the wear of chains under other, relevant, conditions, including in the touch-down zone were 
abrasion from sands and rock could be significant, and in areas such as at the fairleads and in the splash-zone.  
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7. Optimization 
Once improved understanding is reached of the mechanisms of corrosion and wear under the different conditions 
that may be involved, numerical modeling efforts based on much better theoretical and empirical foundations 
can commence in earnest, thereby opening up the possibility for robust optimization.  For example, for structural 
optimization, say of chain possibly subject to long-term corrosion, one obvious choice for the objective function 
is minimization of Eqn. (1) subject to the constraints set by the requirement to meet the limit state function Eqn. 
(2) or, for the simplified problem, Eqn. (3). The design variables in this case would be terms such as the 
cross-sectional area A, with given random variables/processes for loading Q. Fundamentally this is an extremely 
simple optimization problem, however the accuracy with which it is solved depends much on the accurate 
representation of the applied mechanics 'within' it - in this case the evolution of corrosion with time and the 
associated uncertainties.

8. Conclusion
For the robust reliability optimisation of the design and the operation of infrastructure facilities it is necessary to 
have a sound understanding of the factors involved and their inter-relationship to form a sound basis for the 
development of analytical models. Such models are the essential backbone for robust optimization. It was shown 
that the processes and hence the models for time dependent corrosion and maximum pit depth are much more 
complex than conventionally assumed by a simple corrosion rate. Similarly, it was shown that for wear of chains 
the behaviour is not as simple as predicted by conventional wear models. The results obtained are considered 
ground-breaking for industry and expected to lead to revisions of design codes and optimal operational practices.
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Abstract
Non-destructive testing detects damage according to a difference in a physical phenomenon between a normal
structure and damaged structure. However, the accuracy of such damage detection typically depends on the skill of
the engineer. As a solution, a numerical method of detecting damage to a structure based on a dynamical numerical
model such as a finite element model was proposed . This method automatically derives a structure with a response
that is equal to that of a damaged structure employing an optimization algorithm. The procedure can be applied
to not only non-destructive testing but also automatic structural health monitoring. Among structural optimization
methods, topology optimization can optimize the structure fundamentally by changing the topology and not just
the shape of a structure. We thus employ topology optimization for structural optimization . Damage detection
using topology optimization based on frequency response analysis has been suggested. However, the eigenvalue-
based technique that is traditionally used in damage detection has not been integrated with topology optimization.
The present study thus examines a damage detection method using topology optimization based on eigenvalue
analysis. Our method derives a structure that has the same eigenvalues as a damaged structure employing topology
optimization and can identify a damaged structure.
Keywords: topology optimization, eigenvalue analysis, non-destructive testing, sensitivity analysis

1 Introduction
Non-destructive testing is important for improving the life span of structures. Different non-destructive testing
methods employ ultrasonic waves, eddy current, piezoelectric sensors, lightwave fibers and other phenomena and
devices [1]. In non-destructive testing, damage is detected according to the difference between responses for a
normal structure and damaged structure. Because the process of specifying damage is usually performed by an en-
gineer, the accuracy of damage detection depends on the skill of the engineer. To establish an identification method
that does not depend on the skill of the testing engineer, methods based on a database of damaged structures have
been proposed. However, such methods cannot be applied to structures with an innovative shape or in cases of
unexpected damage.
In contrast, analytical methods of damage specification have been proposed [2, 3]. Such methods specify a dam-
aged structure by non-destructive testing employing a numerical calculation based on a dynamical model and
optimization algorithm.
However, there has been a recent focus on topology optimization as a novel structural optimization method [4],
which fundamentally optimizes the structural shape[5, 6, 7]. Moreover, two studies on topology optimization in
terms of damage detection methods of non-destructive testing have been published. Lee et al. [8] developed a
damage identification method based on the difference in the frequency response between damaged and undamaged
structures. Niemann et al. [9] verified this approach experimentally in the damage detection of a composite. These
methods derive the damaged structure by matching the frequency response of the optimized structure to that of the
damaged structure corresponding to the detected response in actual non-destructive testing. However, only these
two studies have reported an analytical damage detection method employing topology optimization. Other vibra-
tion characteristics such as the structural eigenfrequency, which is the most fundamental vibration characteristic,
have not been used in such a way.
The present study establishes a damage detection method using eigenfrequency analysis and topology optimization.
Specifically, this study derives an approximated shape of the damaged structure by matching the eigenfrequencies
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of the optimized structure with those of the damaged structure corresponding to the detected eigenfrequency in
actual non-destructive testing through a structural topology optimization procedure. In chapter 2, we formulate
a topology optimization problem to minimize the difference in eigenvalues between a damaged structure and the
current structure. In chapter 3, an optimization algorithm based on sensitivity analysis and a method of moving
asymptotes (MMA)[10] is constructed. In chapter 4, we clarify the validity and utility of the proposed methodol-
ogy using numerical examples.

2 Formulation

2.1 Eigenvalue Analysis Employing the Finite Element Method
This study employs the finite element method for the eigenvalue analysis of structures. A free vibration problem of
a structure is first discretized by finite element analysis. A discretized vibration equation is obtained by assuming
that the solution is a periodic displacement ΦΦΦeiωt :

(K−ω2
n M)ΦΦΦ = 0, (1)

where K is the stiffness matrix, M is the mass matrix, ωn denotes the natural angular frequencies and ΦΦΦ is the
amplitude vector. ΦΦΦ is obtained as eigenvectors by solving the above equation as an eigenvalue problem.

2.2 Topology Optimization
A fundamental idea of topology optimization is the introduction of the design domain D and characteristic function
χΩ. That is, the optimization problem is replaced with a material distribution problem of the characteristic function
χΩ on the design domain D:

χΩ(x) =
{

1 if x ∈ Ωd
0 if x ∈ D\Ωd

(2)

Through this process, the set of χΩ in the fixed design domain D is regarded as an optimal structure.
However, optimization based on the above equation evaluates the discontinuous function χΩ in the fixed design
domain D. This means that a discontinuous value is evaluated about an infinite design variable. Unfortunately, an
optimum solution does not exist in this case. This issue is resolved by replacing the optimization problem with
respect to a characteristic function with an optimization problem with respect to a continuous density function.
As this relaxation method, a homogenization method and the solid isotropic material with penalization (SIMP)
method have been proposed [11]. These methods regard the approximated optimization problem to be a problem
of the volume fraction of a composite material comprising the host material and a very weak material that imitates
a hole. A gray domain in which it is difficult to identify a structure or hole is often observed in this optimization
problem. Because the SIMP method can adjust the nonlinearity of the relationship between the density function
and physical property by penalization parameters, it is used for topology optimization in the present study. Young’s
modulus and material density are correlated with the density function d = [d1,d2, ...dl ], where l is the number of
optimized elements:

E∗
i = d3

i E for i = 1, ..., l, (3)
ρ∗

i = diρ for i = 1, ..., l, (4)

where E and ρ are Young’s modulus and the mass density respectively. The superscript suffix ∗ indicates a physical
property that is expressed by the density function d in optimization. The exponent of the design variable is freely
set in the SIMP method. We use a Young’s modulus of 3 and material density of 1, because these values have been
effective in past work [5][6].
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2.3 Objective Function and Optimization Problem
We premise that the eigenvalue and eigenmode of the damage structure are obtained, and we detect damage by
deriving a structure that has the same eigenvalue employing optimization. This study supposes a simple structure
that has non-repeating lower eigenvalues and eigenmodes. To avoid repeating eigenvalues during optimization, we
set an objective function that is the square of the rate of change between the designated eigenvalue and current
eigenvalue [5]:

J(d) =
m

∑
i=1

wi
(λtargeti −λi)

2

λ 2
targeti

, (5)

where λ = ω2
n is the eigenvalue, λtargeti is the target of the i-th eigenvalue, λi is the i-th eigenvalue, m is the

number of eigenvalues used in optimization and wi denotes the weighting factor of each eigenvalue. The topology
optimization problem in this study is then expressed as

minimize
d

J(d) (6)

Subject to

0 < di ≤ 1 for i = 1, ..., l. (7)

3 Optimization Procedure

3.1 Optimization Algorithm
Figure 1 is a flowchart of the optimization procedure used in the present study. This study first sets a damaged
structure as the target structure and calculates the eigenvalue using the vibration equation. The obtained eigenval-
ues are then set as the target eigenvalues in the objective function of Eq.(5). These values imitate the eigenvalues
of the damaged structure obtained in actual non-destructive testing. The optimization calculation is then repeated
until the objective function converges. We calculate the eigenvalues and eigenvectors by solving the vibration
equation of the optimized structure. This method needs to check whether the order and shapes of eigenmodes of
the optimized structure correspond to those of the damaged structure. When the order of eigenvalues and eigen-
modes of the optimized structure does not correspond to that of the damaged structure, eigenvalues of appropriate
order are selected in the objective function. After calculating the objective function, the optimization finishes when
the objective function converges. When the objective function does not converge, the method calculates the sensi-
tivities of the objective function and updates the design variable using the MMA.

4 Numerical Examples
We demonstrate the utility and validity of the proposed method in numerical example. Example model is of
structures that support a heavy load because their eigenvalues are readily affected by damage. The heavy load is
modeled as a non-structural mass. Physical properties and size are handled as dimensionless quantities and all
example models are of virtual material with Young’s modulus E = 1 and mass density ρ = 1. The mechanical
models of the example is two-dimensional plane stress model. We use the commercially available finite element
analysis software Comsol Multiphysics for FEM. Each element is formulated using a first-order isoparametric el-
ement. Design variables are defined on each finite element.
This example is the optimization of a 2-by-1 rectangular plate supporting a distributed mass on the right side with
in-plane stiffness. The left side is fixed and the distributed non-structural mass having total mass of 1 is set on
the right side. The domain is discretized by square elements in an 80-by-40 configuration. The target damaged
structure is set to have a semicircular hole at the center of the left side as shown in fig. 3.
After preliminary analysis and optimization of the target structure, we decided to include the first to fifth eigen-
values in the objective function because they are at least required for the smooth convergence of the optimization.
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(1) Calculate eigenvalues and eigenvectors
of the optimization model

(2) Identify the corresponding order
of the eigenvalue of the optimization model

(3) Calculate the objective function

Converge? End

(4) Calculate sensitivities of objective function

(5) Update the design variable using MMA

Yes

No

Set target model

Calculate eigenvalues and eigenvectors
of the target model, which corresponds to
measurement data of non-destructive test

Figure 1: Flowchart of the optimization procedure.

Figure 4 shows the first to fifth eigenmode shapes. The damage at the center of the left side might affect tensile
vibration more strongly than bending vibration. All weighting coefficients of eigenvalues in Eq.(5) are 1.
Figure 5 shows the convergence history of optimization. We regard that the objective function has converged after
500 cycles . Figure 6 shows the resulting structure of optimization. The eigenvalues are given in Table 1. During
optimization, there was no eigenmode switching and correspondence of the mode shape between the optimized and
target structures were maintained. The optimal structure has a slit-like void at the center of the left side. Although
the identification of the damage shape is not perfect, it can be said that the damage position was detected from Fig.
6. We confirm that the optimized and damaged structures have almost identical eigenvalues in Table 1 and can say
the damage identification was achieved through eigenvalue matching.

Distributed non-structural mass

2

1

Figure 2: Analysis model of the cantilever example.
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Figure 3: Damaged model of the cantilever example.

(a) (b) (c)

(d) (e)

Figure 4: Eigenmode shapes of the damaged structure of the cantilever example. (a) First mode, (b) second mode,
(c) third mode, (d) fourth mode, (e) fifth mode.

Table 1: Eigenfrequencies of optimal and damaged structures of the cantilever example (Hz).
Order 1st 2nd 3rd 4th 5th

Damaged structure 2.01×10−2 4.20×10−2 4.98×10−2 5.39×10−2 6.00×10−2

Optimal structure 2.01×10−2 4.20×10−2 4.98×10−2 5.39×10−2 6.00×10−2

Error(%) 0.08 0.01 0.01 0.01 0.01
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Figure 5: Convergence history of the cantilever example.

5 Conclusions
We developed a damage detection method that designates the eigenvalue of a damaged structure by non-destructive
testing and derives a structure having eigenvalues identical to those of the damaged structure automatically through
topology optimization. For this method, we set a minimization problem of the difference in eigenvalues between
the damaged structure and optimized structure, and construct an optimization algorithm employing sensitivity anal-
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Figure 6: Optimal configuration of the cantilever example.

ysis and the MMA. Although identification of the damage shape was not perfect, it was demonstrated that detection
of the damage position using the proposed method is possible in several numerical example.
We believe that the application of the proposed method requires only the measuring of the eigenvalue by ham-
mering when eigenmodes are the same for the damaged structure and undamaged structure as in the first example.
However, when eigenmodes of the undamaged structure are different from those of the damaged structure, it is
necessary to solve not only the eigenvalue but also the eigenmode. In that case, eigenmode optimization should be
introduced in damage identification. This approach can contribute also to specification of the damage shape. Of
course, effective methods of measuring the eigenmode shape must be studied for practical use in that case.
Because the proposed method is based on eigenvalue analysis, target structures are limited to simple examples.
However, various techniques of non-destructive damage detection such as detection using ultrasonic waves or
eddy current could be integrated with the topology optimization framework. We will investigate such an extension
in future work.
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1. Abstract  
A new method to efficiently perform multi-objective optimization (MOO), referred to as Adaptive Explicit 
Multi-objective Optimization (AEMOO), is presented. Unlike existing methods, it uses binary classification to 
explicitly define the decision boundary between dominated and non-dominated (ND) regions in the design space. 
An adaptively refined support vector machine (SVM) is used to define the boundary. AEMOO has several 
advantages that stem from the availability of the estimated explicit boundary bounding the ND design space, which 
represents Pareto-optimal (PO) designs at convergence. It allows for an effective adaptive sampling strategy that 
samples "important" regions in the design space. Additionally, explicit knowledge of the PO design space  
facilitates efficient real time Pareto-optimality decisions. AEMOO uses a hybrid approach that considers the 
distribution of samples in both design and objective spaces. Two variants of AEMOO are presented - one based 
purely on classification and the other based on both classification and metamodel approximation. The results are 
compared to the widely used NSGAII method and Pareto Domain Reduction (PDR) using test problems up to 30 
variables. AEMOO shows significantly better efficiency and robustness compared to these existing methods.      
2. Keywords: support vector machine, hybrid adaptive sampling, real time optimality decision, binary response. 

3. Introduction 
Multi-objective optimization (MOO) often involves locating a set of Pareto optimal points that are ND over the 
entire design space (x-space). The multiple objectives typically represent quantities with different units that are not 
comparable. Additionally, finding a solution set that can represent the complete Pareto front is more challenging 
than finding a single solution. Therefore, efficient and accurate solution of MOO problems is overall much more 
challenging compared to single-objective optimization (SOO), and is still an evolving research area. 
Classical MOO approaches involve scalarization of the objectives to convert MOO into several SOO problems [1], 
but these approaches are not well suited to find a set of points that can represent the complete PO front. 
Evolutionary algorithms, e.g. SPEA and NSGAII, are extensively used to solve MOO problems in a true 
multi-objective sense [2,3]. These methods are applied in a direct optimization framework or in conjunction with 
metamodel approximations to alleviate the cost of potentially expensive evaluations (e.g. crashworthiness) [4]. 
The metamodel-based method is further classified based on sampling schemes. In some of these, sampling is based 
on direct optimization (e.g. genetic operators) [5]. The metamodel's accuracy estimate is used to determine which 
samples need to be evaluated using the expensive evaluator, and rest of the samples are evaluated using a 
metamodel.  In other methods, sampling is directed to obtain accurate metamodels and a method like NSGAII is 
then applied on the metamodels to find PO points. A basic approach is to use sequential space-filling samples for 
metamodeling [4]. While this approach is global, filling the space is prohibitively expensive in higher dimensions. 
Another metamodel-based MOO algorithm is ParEGO [6], which is an extension of its SOO counterpart. ParEGO 
involves scalarization of objectives. Additionally, it was tested only up to eight variables in [6].  
One major limitation of commonly used MOO methods is the lack of explicit definition of PO regions of design 
space. To determine whether a given sample is ND, one needs to evaluate the objective functions and constraints at 
not only that point but over the entire design space. ND points are determined using pairwise comparison in 
objective (f) space before mapping them back to the design space. For large sample sizes, these calculations can 
add significant overhead. Additionally, in the absence of an explicit definition of ND regions of the design space, it 
is difficult to adaptively add samples in those regions of particular interest. A sequential metamodel-based method 
known as Pareto Domain Reduction (PDR) was recently developed that focuses on sampling based  on design 
space sparsity in the vicinity of predicted front [7]. Hyperboxes constructed around previous ND points were 
sampled. However, performance of PDR depended on the number and size of such hyperboxes.  
This paper presents a novel classification-based adaptive explicit MOO approach (AEMOO) that mitigates 
aforementioned limitations of existing methods by providing an efficient sampling scheme. This is made possible 
by constructing an explicit definition of the boundary separating dominated and ND samples in the design space 
using a support vector machine (SVM) [8] and using a hybrid sampling scheme that accounts for sparsity in both 
spaces (x and f space). Treatment of MOO as a binary classification problem involves a paradigm shift in its 
solution approach. The goal in MOO is to determine whether a design is PO or not, and to find a set of such 
designs. Therefore, it is naturally suited for treatment as binary classification. Using the proposed approach, a 
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single evaluation of the trained classifier can determine if a design is ND. This makes it especially attractive for 
real time Pareto-optimality decisions. Explicit definition of ND regions also facilitates implementation of a 
proposed adaptive sampling scheme that selects samples in these regions. Restricting the sampling region using 
the decision boundary improves the PO front search efficiency. AEMOO can be implemented either as a classifier 
assisted direct method or in conjunction with metamodel approximations. It should be noted that in the latter 
approach, constraints can be handled using metamodel approximations or by approximating the zero level using a 
classifier. Classifier-based handling allows the handling of discontinuous and binary constraint functions [9]. 

4. Adaptive Explicit Multi-objective Optimization (AEMOO) 
Two variants of the proposed AEMOO method are presented in this section. In Section 4.1 the basic idea of 
classification-based MOO is presented. In Section 4.2 a classifier-assisted direct optimization method is presented. 
A second method that utilizes classification as well metamodel approximation is presented in Section 4.3. 

4.1. Classification Approach for MOO - Dynamic Classifier  
Typically, solution of MOO is a set of PO points. Part of the design space is PO while other regions are dominated. 
Such a problem is ideal for applying classification methods, the two classes being dominated (-1 class) and ND (+1 
class) (Fig. 1). Once a classifier separating dominated and ND samples is trained, Pareto-optimality of any design 
is determined using a single classifier evaluation, in contrast with existing methods. 
SVM is used to construct the decision boundary in this work (Eq.(1)). It constructs the optimal boundary that 
maximizes the margin between two sample classes (+1) in a feature space. A kernel K maps the design and feature 
spaces. In this work, a Gaussian kernel is used to construct SVM boundaries (s(x) = 0). Spread of  the kernel is 
assigned the largest value without any training misclassification. The SVM is defined as: 

N

i
iii Kybs

1
),()( xxx   (1) 

Here, yi = 1 is class label, i is the Lagrange multiplier for ith sample and b is bias. Each sample's class needs to be 
assigned prior to the construction of SVM boundary. An issue in using classification for MOO is that although it is 
known that dominated samples (class -1) cannot be PO, the opposite is not true; being ND among current samples 
isn't sufficient to be PO. However, +1 samples represent PO designs if the data is sufficient. A decision boundary 
obtained by assigning +1 class to the current ND samples represents an estimate of the PO front, and is refined 
adaptively. As points are added, samples may switch from +1 to -1 as ND samples may be dominated by newer 
samples until convergence. As class definition of existing samples can change during the course of AEMOO, the 
classifier is referred to as dynamic. The classification based AEMOO method has several advantages. 

Explicit definition of  the ND region facilitates implementation of an efficient sampling scheme 
It facilitates efficient real time Pareto optimality decisions 
It uses information in both design and objective spaces to enhance its efficiency and robustness 
The classification approach allows the handling of binary and discontinuous constraint functions 
As ND region is explicitly defined in the design space, AEMOO is unaffected by number of objectives.  

Figure 1: Boundary defining ND regions in design space (left). Design-Objective space Mapping (right). 

4.2. Direct AEMOO Method  
Direct AEMOO is based on SVM classification only and does not approximate  function values. It evaluates more  
samples in the explicitly defined SVM-based ND regions to avoid waste of samples and increase efficiency. The 
sign of SVM value s(x) determines whether a sample is ND or not, and is straightforward to determine.  
A fraction of samples per iteration are selected within the s(x) > 0 ND region of design space. Details are shown in 
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Fig. 2. Sampling important regions of the design space allows a faster increase in the SVM accuracy, as sampling 
based only on the objective space can lead to clustering of samples in design space, where the SVM is constructed. 
Maximizing the value of SVM, one of the sampling criteria, is equivalent to maximizing the probability of locating 
a ND sample [8,10]. Additionally, one generation of NSGAII is also used to select samples, first within the s(x) > 
0 regions and then using an unconstrained formulation. Using NSGAII-based samples, the algorithm ensures that  
the effects of sparsity in the objective function space and genetic operator-based evolution are also accounted for.  
In order to ensure a global search, a small fraction of samples is added based on maximum minimum distance in 
the entire unconstrained design space. Such samples are not expected to provide an efficient sampling scheme, and 
are therefore optional, but guarantee the location of the complete Pareto front when run for a sufficient time. 

           
Figure 2: Summary of direct AEMOO method (left) and sampling scheme (right) 

4.3. Metamodel-assisted AEMOO Method 
In this approach, metamodel approximation and SVM are used together. Basic idea is same as direct AEMOO - to 
consider ND ranking along with sample sparsity in both x and f spaces. However, the single generation of direct 
NSGA-II samples is replaced with converged predicted PO samples obtained using metamodel-based NSGAII. 
Metamodel approximation and the SVM-based classification serve as complementary approaches that help in 
enhancing accuracy by accounting for distribution of samples in both spaces. The methodology is shown in Fig. 3. 

          
Figure 3: Summary of metamodel-assisted AEMOO method (left) and sampling scheme (right) 

5. Results 
Several examples are presented to validate the efficacy and efficiency of AEMOO. A 10 variable analytical 
example using direct AEMOO is presented, followed by three 30 variable examples using metamodel-assisted 
AEMOO. Efficiency is compared to existing methods PDR and NSGAII. Finally, AEMOO is used for tolerance 
based MOO of a Chevrolet truck [11]. The sample type fractions are 1= 2=0.2 and 3=0.1 (Fig. 2 and 3). Unless 
mentioned, floor(1.5*(m+1))+1 samples are used per iteration, m being the number of variables. AEMOO showed 
comparatively higher efficiency also when larger sample sizes were used, but those results haven't been shown. 
Radial basis function metamodels have been used for function approximations, but others can also be used. For 
examples 1-4, one of the objectives is f1 = x1. The second objective f2 is provided with the individual examples.

5.1. Example 1. Analytical example with ten variables and two objectives - ZDT3 (Direct AEMOO) 
This example has 10 variables (m = 10) and 2 objectives. The second objective f2 is:
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The Pareto fronts at successive iterations are plotted in Fig. 4. The front at iteration 125 (2250 points) is quite close 
to the actual one, and shows that AEMOO can locate disjoint PO fronts even when only classification is used. 
NSGAII found four of the disjoint regions on the front accurately, but completely missed one region. This can be 
attributed to sampling based on the f-space only without considering design space sparsity, unlike in AEMOO. 

Figure 4: Results for Example 1. Direct AEMOO (left) and direct NSGAII (right). 

5.2. Example 2. Analytical example with 30 variables and 2 objectives - ZDT1 (Metamodel-assisted AEMOO) 
This problem consists of two objectives f1 and f2. The second objective is: 
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Optimization results are shown in Fig. 5 using trade off plots at different iterations at intervals of 10. The results 
shown are the evaluated Pareto optimal points. The proposed AEMOO method is  able to locate the entire spread of 
Pareto front at the 10th iteration itself (470 samples), after which it adds diversity. The samples on the front are very 
well diversified by the 20th iteration. In comparison, performance of direct NSGAII is much slower and it takes 
40-50 generations (1920-2400 samples) to obtain a diversified front. Even at 50th generation, the Pareto front using 
NSGAII is not as accurate as the 10th iteration of AEMOO. PDR performs more efficiently than direct NSGAII, 
but still takes 20-30 iterations (940-1410 samples) to obtain a well diversified accurate front.  

Figure 5: Example 2. Metamodel-assisted AEMOO (left), PDR (center) and direct NSGAII (right). 

5.3. Example 3. Analytical example with 30 variables and 2 objectives - ZDT2 (Metamodel-assisted AEMOO) 
This problem consists of 30 variables (m = 30) and two objective functions. The second objective is: 
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Optimization results are shown using computed trade off plots in Fig. 6. AEMOO is able to find a very well 
diversified and accurate front before the 10th iteration itself (470 samples). On the contrary, with a comparable 
population size of 48, direct NSGAII failed to obtain the Pareto front even after 50 generations. The population 
size for NSGAII had to be increased to find the actual front. PDR was able to locate the Pareto front with a sample 
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size of 47 per iteration, but was slower than AEMOO, as it took 30 iterations (1410 samples) to obtain a front of 
comparable (but not quite as good) accuracy and diversity.  

Figure 6: Example 3. Metamodel-assisted AEMOO (left), PDR (center) and direct NSGAII (right). 

5.4. Example 4. Analytical example with 30 variables and 2 objectives - ZDT3  (Metamodel-assisted AEMOO) 
This optimization problem is similar to Example 1 (Eq.(2)), except that it has 30 variables instead of 10. PO fronts 
using the three methods are shown in Fig. 7, along with the actual front. AEMOO located all five disjoint regions 
on the front within first 10 iterations, following which it further added samples on the front to increase diversity. 
Both NSGAII and PDR were significantly slower and had lower accuracy. Using population size of 48, direct 
NSGAII completely missed 2 out of 5 regions. PDR was able to sample 4 of the regions satisfactorily at 40-50 
iterations (1880-2350 samples). It found one ND sample close to the fifth region, but not on it. 

Figure 7: Example 4. Metamodel-assisted AEMOO (left), PDR (center) and direct NSGAII (right). 

5.5. Example 5. 7 variable tolerance optimization of Chevrolet C2500 truck  (Metamodel-assisted AEMOO) 
AEMOO is used for multi-objective tolerance optimization of a Chevrolet truck. LS-OPT is used to build global 
metamodels, based on the truck's responses at 1500 samples (using LS-DYNA). MOO is run on the metamodels.. 
Mass is minimized while tolerance is maximized (Eq. (5)). Relative tolerance and 6 thicknesses x are the variables. 
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In figure 3, the vehicle parts to be optimized are shown along with the optimization results. The Pareto front 
obtained using AEMOO and NSGAII are shown. 100 samples per iteration are used to solve this example to ensure 
at least one sample of each class in the initial sampling. Other approaches to avoid this restriction are possible, but 
are outside the scope of this paper. AEMOO results are provided for 30 iterations that were completed at the time 
of writing this paper and compared to NSGAII is run up to 50 generations. The PO front using AEMOO has a 
better spread, and diversity compared to the NSGAII front even at the 50th generation, which shows its superior 
performance.  At the same stage (30th iteration), the PO front using AEMOO is clearly better. The PO front consists 
of a knee at 6% tolerance suggesting it to be a good design, as there is rapid mass increase beyond it. 
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Figure 8: Truck to be optimized (top), AEMOO (left), PDR (center), NSGAII (center) and overlaid fronts (right). 

5. Concluding Remarks 
A new classification-based adaptive sampling approach to solve MOO problems is presented. The proposed 
AEMOO method has several advantages compared to existing methods due to this radically different approach. 
Two variations of the method are presented - direct and metamodel assisted. The method's efficacy is validated 
using standard examples of up to 30 variables. It has been shown to clearly outperform existing methods like 
NSGAII and PDR in terms of efficiency. Additionally, ability to locate disjoint Pareto fronts has been shown. 
Ability to solve constrained MOO has also been shown using a tolerance-based crashworthiness  optimization 
example. As AEMOO explicitly defines the ND region boundaries in the design space, it also naturally facilitates  
real-time Pareto optimality decisions. This work is expected to open new avenues for research in the field of MOO. 
As the sampling scheme is partly based on design space classification, which discards significant regions of the 
space as dominated, it is expected to be affected by objective space dimensionality to a lesser extent. Future work 
is needed to validate this hypothesis. Additionally there is scope for further improvement in constraint handling.  
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1. Abstract 
The suspension system is one of the key parts in vehicles, which can directly influence such performances as the 
steering stability and the ride comfort. The multi-body dynamics model of multi-purpose vehicles (MPV) front 
suspension is built with ADAMS/VIEW, and the location parameters of the front wheel are simulated. In order to 
improve the kinematics performance and steering stability, the sensitivity analysis and optimization design for the 
front suspension are carried out. The results can provide some guide and reference for the R&D of the MPV. 
2. Keywords: Macpherson Suspension, Multi-body Dynamics, ADAMS/VIEW, Optimization Design 

3. Introduction 
The most important assembly designs of the automobile are suspension, engine and transmission. The design of 
suspension system influences a variety of performances. Vehicle suspension is the important structure linked to the 
frame and tires. In the paper, the front McPherson independent suspension of a MPV was analysed for improving 
its performance. And the virtual prototype model for this suspension, the dynamic simulation models, parametric 
processing and the optimization of front independent suspension are established. The suspension set up and perfect 
virtual prototyping model, will upgrade this MPV’s independent suspension design level, and also provide 
foundations for a new suspension design of similar models. 

4. Multi-body dynamics model of MPV suspension 
Utility of vehicle suspension system is to pass all forces and moments between the wheel and the frame (or body), 
and to ease the impact load coming from rough road, which can reduce the vibration of bearing system caused by 
the impact load. And also the suspension system can reduce the interior nose of vehicle and increase occupant 
comfortable, which can ensure the vehicle’s ride comfort. As an important force transmission member connected 
the frame (or body) and the axle (or wheel), the vehicle suspension system is a key component to ensure the vehicle 
safety.

4.1 Composition and characteristic of McPherson independent suspension 
The front suspension of this MPV uses McPherson independent suspension. Figure1 shows a typical 
configuration.

1-body;2-coil spring;3-shock absorber upper body;4-knuckle assembly;5-tie rod;6-steering rack;7-under the 
arm8-wheel assembly 

Figure1: McPherson suspension structure diagram 

4.2 Coordinates of the key points of the model 
The spatial coordinates and parameters of the key points are important for establishing suspension model, which is 
the most important task before executing the kinematic simulation in ADAMS. This article uses the coordinate 
mapping instrument to get the space parameters of the left suspension under no-load conditions. The table1 shows 
the front suspension positional parameters. 
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Table1: The positional parameters of front McPherson independent suspension 

Parameter 
name 

The kingpin 
inclination angle 

The caster 
angle

The toe 
angle

The camber of 
front wheel 

The volume of 
wheel spin(mm) 

Value of 
design

9°—11.5° 2.5°—3.5° 0°—4° 0°—0.95° 9

4.3 The simulation model 
A drive was added on the test platform after building the model of the guiding mechanism. The figure2 shows the 
model and the test platform. 

1-shock absorber; 2-coil spring; 3-wheel; 4-lower control arm; 5-tie rod; 6-knuckle assembly; 7-body 

Figure2: The simulation model of the front McPherson suspension 

5 The performance simulation and analysis of MPV suspension 
The common analysis method of the kinematic characteristics of the suspension is that wheels beat with a wheel on 
one side or both sides up and down along the vertical directional, variation of wheel position parameters is 
calculated and analyzed. Based on full load, the range of the run out is at popular -50~+50mm for a vehicle of this 
study, while the characteristics of the toe angle of wheel, camber angle and wheel hop gauge changing are 
calculated.
The range of the front toe angle is -0.77°~0.80° in figure3, and which meets the requirements, that is, the change in 
angle of less than ±1°. The jump has a positive camber angle, varied from -0.38°~+2.74° in figure4. The range of 
variation is too large, and the straight running stability will deteriorate automobiles. The range of the caster angle is 
2.77°~3.37° in figure5. The amount of change is small, which meets the design requirements, and is favor of the 
vehicle load handing and stability. The range of kingpin inclination angle is 7.47°~11.16° in the figure6. The 
amount of change is too large and is not conducive to vehicle handing and stability. The figure7 shows that the 
change range of the wheel tread is between -22.844 mm/50mm and 12.723mm/50mm, which it’s an important 
performance for a worn tirer.

The simulation model was builded in ADAMS/VIEW, and combined the date of the front McPherson suspension, 
and elected the method of left wheel jumping, and executed the kinematic simulation of the McPherson 
suspension. The curve of front toe angle, the camber angle, the kingpin inclination angle, the caster angle and 
wheel tread could be got. And the front toe angle of front wheel is too large, and the change range of the wheel 
tread is beyond the common. So these will increased tire wear. 
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6. Suspension performance sensitivity analysis 
The performance of the vehicle front suspension for sensitivity analysis can get the properties of all the suspension 
components and installation location of vehicle suspension and provide a reference to the design of suspension. 
The model of suspension is built and the design parameters of suspension and the sensitivity of the performance of 
the vehicle are calculated with using the Insight module and CAR module in ADAMS. And the sensitivity of 
suspension performance is analyzed in VIEW. In this article, the ADAMS/VIEW is selected for analyzing the 
sensitivity of suspension performance. The main impact factors of operational stability can be found from this 
model. 

6.1 Design variables 
According to the front suspension structure and the position parameters of the front wheel, the length and position 
angle in space of links EG, EF, CB are elected as design variables sensitivity analysis. The table2 shows the 
symbol and the significance of 9 variables. 

Table2: Definition of the design variable 

Number Design Means Code in ADAMS

1 x1 The length of EG DV_1
2 x2 The angle between the EG and xy plane DV_2
3 x3 The angle between EG projection in the xy plane and x-axis DV_3 
4 x4 The length of EF DV_4 
5 x5 The angle between EF and xy plane DV_5
6 x6 The angle between EF projection in the xy plane and x-axis DV_6 
7 x7 The length of CB DV_7 
8 x8 The complement of the angle between CB and xy plane DV_8

9 x9 
The complement of the angle between CB projection in the 
xy plane and the y-axis DV_9

6.2 Sensitivity analysis 
This paper focuses on the front wheel alignment toe angle, the camber angle, and the volume of tire lateral slip, 
which was recorded with the initial values of the sensitivity.The conclusion can be got from the figures 8 to 16. 
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(1) On a larger camber factors followed as: angle between the link EF and xy plane(x5), and complementary 
angle of xy plane with connecting rod CB(x8), angle between the connecting rod EG and xy plane(x2), other 
factors less affected.

(2) The front wheel lateral amount greater factor in turn: the angle between the link rod CB and xy plane(x8), 
the link EF and xy plane angle(x5), EG and xy plane angle(x2), other factors less affected. 

7. The optimization of the MPV suspension 
The smallest amount of sideslip change is made in order to optimize the range direction. The simulation mode is 
executed in the ADAMS/View, with adjustments to the hard point coordinates of air spring independent 
suspension, and then the best hard point coordinate as the last optimization design point. Such parameters as angle 
between EF and xy plane, angle between EF projection in the xy plane and the x-axis, angle between 
complementary angle of CB and the xy plane, and angle between complementary angle of CB projection and 
y-axis are optimized, and the curve of experimental and results of optimization are obtained. 

7.1 The bjective function 
In order to reduce tire wear, we select the front wheel lateral slip amount as the optimization of the objective 
function. Through optimizing such parameters as angle between EF and xy plane, angle between CB and xy plane, 
angle between complementary angle of CB projection and xy plane, angle between complementary angle of CB 
projection in the xy plane and y-axis, the value of the minimum lateral slip of the wheels is obtained. 

7.2 The optimization model 
The objective function in the optimization and design variables are set in the window of ADAMS. The design 
variables are DV_5, DV_6, DV_8 and DV_9. And the optimization goal is that the objective function takes the 
minimum value. For optimization of the front independent suspension performance, the sequential quadratic 
programming method of ADAMS/VIEW is used. Table3 shows the optimization result. 

7.3 The optimization results 
Table3 shows the different values of DV_5, DV_6, DV_8, DV_9 for the twice optimization iteration. 

Table3: The result of suspension optimization 

Iterations Objective function(mm) x5(deg) x6(deg) x8(mm) x9(deg) 
0 2.9869 61.20 73.085 270 73.085 
1 0.33697 62.33 72.601 266.46 72.601 
2 0.33712 64.60 72.601 266.46 72.601 

7.4 Suspension characteristic curves comparing 
The simulation curves of the optimized models are shown as following. The blue curve represents the simulation 
after optimization, and the red curve represents the simulation before optimization. Figures17~21 show the 
comparison results of the alignment parameters. 
The range of variation optimized camber is 0.579°~1.769° from the figure17. The changes of the toe angle of the 
front wheel are not large as that can be seen from figure18. The optimization result of the toe angle is acceptable 
when the wheels balanced and within the design limits. Figure19 shows that the kingpin inclination optimized 
range is 2.733°~3.412°, with expanding the scope of change little compared with optimization before. The change 
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range of the kingpin inclination angle is 8.432°~10.193° from the figure20. The volume of wheel lateral slip range 
is -7.945~0.79 from the figure21.The curve of optimization is better than that of before. 
The parameters of the internal connect position of the steering tie rod, the external position of the lower support 
arm change very large for this suspension model. By adjusting the parameters a greater response to the result of 
each change can be obtained. The camber angle of front wheel, the caster angle, and the volume of lateral slip will 
become better through the comparison of simulation curves, while the change of the toe angle is not obvious. We 
can get a new suspension layout scheme by optimizing design. The simulation results of the suspension 
performance are more reasonable. And the maneuverability and stability of the vehicle can be greatly improved. 

8. Conclusions 
In this paper, taking the front McPherson independent suspension of a MPV as the object, the structure of the 
suspension is analyzed briefly, and the dynamics model of the suspension combined with multi-body system 
dynamics theory is established in ADAMS/VIEW. And the curves of the vehicle performance are obtained, which 
include the toe angle, the camber angle, the kingpin inclination angle, the caster angle and the volume of lateral slip 
of the front wheel. On the basis of the suspension performance simulation, by using ADAMS/VIEW to set the 
variables of the suspension, the influence of the camber angle, the kingpin angle and the volume of lateral slip can 
be analyzed. Those results can provide data for improving the design of MPV suspension. The coordinates of two 
inner points and the tie rod inner point are changed through using optimized design parameters. The layout scheme 
is optimized and executed. Comparing with the previous design, the optimized simulation results are more 
reasonable. 
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1. Abstract 
Robust design aims to find a configuration set in which the structural performance is least sensitive to uncertain 
parameters. The robust design method under loads uncertainty is a nested optimization. In each iteration process, 
the worst-case constraints can be achieved by the anti-optimization, and then the outer loop performs the 
optimization under the constraints. In this paper, a new anti-optimization technique is used to alleviate the 
computational burden with the help of the axial stress forces in members of the truss under each load respectively. 
The axial forces are the main information in the anti-optimization process which can be easily found by finite 
element analysis, and the sign of the forces decide the value of the loads in the corresponding constraints. The 
optimum of the structure is achieved by minimizing the value of the objective function subject to the worst-case 
constraints under uncertainty loads while the robustness is ensured by the anti-optimization process conducting the 
worst-case-scenario. The robust design of a 10-bar and a 25-bar truss under uncertain loads are carried out to 
demonstrate the effectiveness of the present method. 
2. Keywords: robust design; uncertain loads; worst-case; anti-optimization; 

3. Introduction 
The optimization of structure is always performed under deterministic loading conditions. However, the loads are 
uncertain in most practical situations, and the designer must take effects of the uncertainty into consideration. 
The existing popular approaches to describe uncertainties can be classified as probabilistic methods [1,2] and  the 
convex model methods [3,4,5,]. The probabilistic methods require a detailed description of the uncertainties, 
which can hardly be used in practical engineering.  In contrast, the convex model methods, which just require the 
knowledge of the bounds of the uncertain parameters, so it is well suited for cases where lack of information makes 
the implementation of probabilistic approaches very difficult.  
The theory of convex models was investigated in detail by Ben-Haim and Elishako [6]and Elishako et al. [7], and 
it is implemented on the constraints by the use of an anti-optimization process, which finds the worst-case 
produced by the uncertain load condition. The anti-optimization is actually a two-level optimization problem. At 
the outer level, it obtains the best design by optimizing the design variables, while at the inner level it seeks the 
worst condition for a given design from anti-optimization.  
After the anti-optimization method is proposed, many researchers have applied it to the theory and practice. Marco 
Lombardi et al.[8] described a technique for design under uncertainty based on the worst-case-scenario technique 
of anti-optimization, the method can alleviated the computational burden. Marco Lombardi [9] compared two 
different approaches which use anti-optimization, namely a nested optimization and a two steps optimization, 
where anti-optimization is solved once for all constraints before starting the optimization. Stewart McWilliam [10] 
present two new methods for solving constraint equations by anti-optimization method of uncertain structures 
using interval analysis. Zhiping Qiu [11] studied the anti-optimization problem of structures with uncertain design 
variables by combing the conventional optimization and interval analysis. 
In this paper, a new anti-optimization technique is used to alleviate the computational burden with the help of the 
axial stress forces in members of the truss under each load respectively. The axial forces are the main information 
in the anti-optimization process which can be easily found by finite element analysis, and the signs of the forces 
decide the value of the loads in the corresponding constraints. 
4. Problem formulation  
In the deterministic formulation of structural optimization problems, the design variables and parameters are 
assumed deterministic and the objective function as well as the constraints is referred to their nominal values. The 
classical formulation of structural optimization problem can be mathematically expressed as: 

find        X
minimize  f X

                                                                     subject to        0  1,  2,  ...,   ig i kX                                           (1) 

Where 1 ( , , )T
nx x, )T
n,X is the n-dimensional vector of design variables, f X  the objective function, ig X  the 
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inequality constraint functions, and k is the total number of constraints. For simplicity, the equality constraint 
functions are not described here. 
However, one may observe that the objective function f X and/or the constraints ig X  may depend on some 
design parameters subject to uncertainty. In this paper, only loads uncertainty is concerned, and the stress and 
displacement are the constraints, and interval variables are referred to the loads that vary about their nominal 
values and the design variable are controllable design parameters that need to be determined by the designer, such 
as the area of truss elements.  Considering for the sake of simplicity the case where the uncertainty is limited to the 
constraint functions ig X , so Eq. (1) becomes:  

find           X
minimize f X

subject to   ,   1,  2, ,   
allowallow
ii i i kX P

,  1,  2, ,   
allowallow
jj ju u u j t,X P

                                                           L UP P P                                                                   (2) 
in where it is assumed that 1 2 ,P ,[ ,PP ]nP ],PnPP is the loads uncertainty design parameter vector that only the bounds 
are known, PL and PU denote the lower and upper bound of P , i.e. L U [ , ]IP P P P . ,i X P and ,ju X P are 

the implicit response variables: nodal displacement and element stress. allow
i and allow

i  are  the allowable stress 

of the thi element, k is the number of element. allow
ju and allow

ju are the maximum allowable displacement of the 

thj node, t is the number of node.  

In formulation (2), we require that ,i X P  and ,ju X P are satisfied for all the possible values of P , and the 
structural robust optimization problem can be expressed as an alternative formulation is: 

find             X
minimize f X

                   subject to ,  0  1,  2,  ,   max allow
i i i k

IP P
X P

                                 
,  0  1,  2,  ,   minallow

i i i k
IP P

X P

                                  
,  0  1,  2,  ,   max

allow
jju u j t

IP P
X P

                                   
,  0  1,  2,  ,min   allow

j ju u j t
IP P

X P

                                        
L UP P P                                                                                   (3) 

The maximization of ,i X P  and ,ju X P over IP  is a process of finding the worst value of P  for each 
constraint, and this is an anti-optimization process.  
The worst-case set of parameters is searched at each optimization iteration process, and this can be very expensive 
to solve. The novel anti-optimization method proposed in the paper is to alleviate the computational burden which 
is a main difficulty that restricts the application of structural robust design optimization. The process is described 
as follows: 
In the anti-optimization the stress of each element ,i PX  and the displacement of each node ,ju PX are 

obtained under the load P .  When , 0i PX , the force P  will be replaced by UP  which is the upper bound 

of P  in the constraint ,ax  0m
allow
ii P

IP P
X , and the force P  will be replaced by LP which is the lower 

bound of P  in the constraint min ,  0 allow
i i p

IP P
X . Similarly, when ,P 0ju X , the force  P   will be 

replaced by UP  which is the upper bound of P  in the constraint ,a 0 m x
allow
jju P u

IP P
X  the force  P  will be 

instead with LP  which is the lower bound of P  in the constraint min ,  0 allow
j ju u P

IP P
X .In the converse, 

when , 0i PX , the force P  will be replaced by LP  in the constraint ,ax  0m
allow
ii P

IP P
X , and the 

force P  will be replaced by UP in the constraint min ,  0 allow
i i p

IP P
X . Similarly, when , 0ju PX , the 
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force P  will be replaced by LP in the constraint ,a 0 m x
allow
jju P u

IP P
X the force  P  will be replaced by 

UP  in the constraint min ,  0 allow
j ju u P

IP P
X . By the analysis of the anti-optimization process, the worst-case 

can be achieved easily. And then the robust optimization changed to a deterministic optimization problem. In order 
to improve the efficiency of convergence, the initial values of design parameters are inherited by the result of 
certainty optimization. The flow diagram of the optimization process is showed as Figure 1. 

K=1, XX=X0

 Deterministic optimization
Min f(XX)

S.t. gi(XX) 0

Set the result as the initial 
value of the robust 

optimization

Anti-optimization
Max gi(XX,P) 0

Robust optimization
Min f(XX)

S.t. gi(XX,P) 0

N

End

Y

Starting 
point

f Converges?
g´s  are feasible?

K=K+1

 
 

Figure 1: Optimization process 

5. Numerical examples 

5.1. Example 1: 10-bar aluminium truss 
Consider the well-known 10-bar truss which is made of aluminum as shown in Fig. 2. The characteristics of the 
truss are as follows: the modulus of elasticity E is 68 948MPa(10 000ksi), the weight density  is 2768 kg/m3(0.1
lb/in.3)and the length L of each of the vertical and horizontal bars is 9.144 m (360 in.). The maximum allowable 
stress in each member is the same for tension and compression. The allowable stress j,allowable is 172.37MPa (25ksi) 
for all bars except bar 9, for which the allowable stress is 517.11MPa (75ksi). The maximum allowable vertical 
displacement 2,allowable at joint 2 is 0.1270 m (5in.). The cross-sectional area of member j is Aj and the minimum 
gauge constraint of each member Amin is 0.645cm2(0.1in.2). The  joint 4 is subjected to a vertical load P1 while the 
joint 2 is subjected to both a vertical load P2 and a horizontal load P3 as shown in Fig. 2. Their nominal values are 

1P =444.8kN (100 kip), 2P =444.8kN (100 kip), and 3P =1779.2kN (400 kip) respectively.  

1

2

3

4

5

6

p1 p2

p3

                        (1) (2)

(3) (4)

(5) (6)

(7)

(8)

(9)

(10)

18.288 m

9.144 m

 
 

Figure 2: 10-bar truss 

Following the equilibrium and compatibility equations, one may easily obtain the axial forces (i 1,2, ,10)iN ,10) in
the members and the vertical displacement 2 at joint 2 as follows:  

1 2 8
2

2
N p N           (4) 2 10

2
2

N N                          (5) 3 1 2 3 8
22

2
N p p p N       (6) 
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4 2 3 10
2

2
N p p N      (7)  5 2 8 10

2 2
2 2

N p N N    (8)  6 10
2

2
N N                               (9)       

7 1 2 82( )N p p N         (10)   22 1 12 2
8

11 22 12 21

a b a bN
a a a a

            (11)  9 2 102N p N                           (12) 

11 2 21 1
10

11 22 12 21

a b a bN
a a a a

           (13)   11
1 3 5 7 8

1 1 1 2 2 2 2( )
2
La

A A A A A E
   (14)   12 21

52
La a
A E

    (15)   

22
2 4 6 9 10

1 1 1 2 2 2 2( )
2
La

A A A A A E
   (16)   1 2 32 2 1 2

1
1 3 5 7

2 2 2( ) 2( )
2

p p pp p p p Lb
A A A A E

 (17)                                   

3 2 2 2
2

4 5 9

2( ) 2 4( )
2

p p p p Lb
A A A E

      (18)    
010

2
1

i i i

i i

N N L
AE

    (19)                              

Where the values of 0
iN are calculated from Eqs. (4)- (13) with a substitution  1 3 0p p  and 2 1p .

The optimal cross-sectional areas and weight are listed in Table 1 for comparison with its deterministic counterpart. 
They agree well with those of Lombardi [4] and Elishakoff et al. [7], which are also shown in Table 1. Stresses of 
all the elements and displacement of node 2occurring at various load vertices in an optimal structure are shown in 
Table 2, they do not exceed the allowable stresses and/or displacement requirement, and some of them reached the 
allowable values in some load vertices. The anti-optimization technique is just used once in the optimization 
progress, so the method alleviates the computational burden.  

Table 1: Optimal cross-sectional areas of the 10-bar truss under different design conditions 

Member no. 

Cross-section area(cm2) 
Minimum weight design 

Loads with no uncertainty Loads with 10% uncertainty 
Present Ref.[4] Present Ref.[4] Ref.[7] 

1 26.033 26.019 28.797 28.799 28.799 
2 0.645 0.645 0.645 0.645 0.645 
3 26.033 26.045 44.016 44.019 44.019 
4 78.060 78.064 90.584 90.587 90.589 
5 24.932 24.912 27.782 27.783 27.783 
6 0.645 0.645 0.645 0.645 0.645 
7 72.665 72.716 79.851 79.858 79.855 
8 0.645 0.645 0.645 0.645 0.645 
9 17.791 17.817 29.841 29.841 29.843 
10 0.912 0.912 0.645 0.645 0.645 

Weight(Kg) 725.08 725.34 884.41 884.46 884.47 

Table 2: Stresses and displacement of node 2 2 occurring at various load vertices in an optimal structure 
 

   Loads vertices Member no. U U U U U L U L U U L L L L U L U L L L U L L L 
1 1.718 1.7237 1.402 1.409 1.713 1.720 1.399 1.405
2 0.967 1.046 0.712 0.791 0.968 1.047 0.713 0.791
3 1.124 0.319 1.524 0.720 1.323 0.519 1.7237 0.919
4 1.627 1.235 1.7237 1.331 1.627 1.235 1.7237 1.331
5 -1.720 -1.711 -1.412 -1.403 -1.7237 -1.715 -1.415 -1.407
6 0.967 1.046 0.712 0.791 0.968 1.047 0.713 0.791
7 1.7237 1.721 1.569 1.566 1.568 1.565 1.413 1.410
8 -1.163 -1.555 -0.811 -1.203 -0.912 -1.303 -0.560 -0.951
9 2.289 2.287 1.875 1.873 2.289 2.287 1.875 1.873
10 -1.368 -1.479 -1.007 -1.118 -1.369 -1.480 -1.008 -1.119

2 0.101 0.127 0.065 0.092 0.091 0.118 0.056 0.082
 
3.2. Example 2: 25-bar steel truss 
The 25-bar steel truss as shown in Fig. 3 is considered here. The Young’s modulus of the truss E is 199 949.2MPa 
(2.9e104ksi). The length L of each of the vertical and horizontal bars is 15.24 m(600 in.). The joint 12 is 
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hinge-supported while Joints 6, 8 and 10 are roller-supported. Joints 11, 9 and 7 are subjected to vertical loads P1,
P2 and P3 respectively while Joint 1 is subjected to a horizontal load P4 as shown in Fig. 3. Their nominal values 
are 1 3P P 1779.2KN(400kip) , 2P 2224KN(500kip) , and 4P 1334.4KN(300kip)  respectively. The 
maximum allowable stress in each member is the same whether in tension or compression. The allowable stress 

j,allowable is 172.37MPa (25ksi) for all bars. Only the stress constraints are considered in the analysis. The axial 
forces Nj in members can be easily found by finite element analysis. The cross-sectional area of member j is Aj and 
the minimum gauge constraint of each member Amin is 0.645cm2(0.1 in.2).

P4

P1 P2 P3

1 2 3 4 5

6

7

8

9

10

11
12

(1) (2) (3) (4)

(5) (6) (7) (8) (9) (10)

(11) (12) (13) (14) (15)(16)
(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25) 15.24 m

6 x 15.24 m=91.44 m

 

Figure 3: 25-bar truss 

Similar to Example 1, this problem of minimum volume design is solved using the proposed model with the truss 
under nominal loadsP1, P2 andP3 with 10% uncertainty and load P4 with 20% uncertainty. 
The optimal cross-sectional areas and weight are listed in Table 1 for comparison with those of no uncertainty. 
They agree well with those of Lombardi [4] and Ganzerli, S.et al. [12] also shown in Table 3. Stresses of all the 
elements occurring at various load vertices in an optimal structure are computed also, they do not exceed the 
allowable stresses and/or displacement requirement, and some of them reached the allowable values in some load 
vertices.  

Table 3: Optimal cross-sectional areas of the 25-bar truss under different design conditions 

Member no. 

Cross-section area(cm2) 
Minimum weight design 

Loads with no uncertainty Loads P1 through P3 with 10% uncertainty and load P4 with 
20% uncertainty 

Present Ref.[4] Present Ref.[4] Ref.[12] 
1 19.677 19.666 27.139 27.374 26.419 
2 0.645 0.645 0.645 0.645 0.645 
3 1.441 1.442 6.223 6.234 5.117 
4 0.645 0.645 1.633 1.574 4.193 
5 74.740 74.615 90.066 89.793 89.514 
6 23.575 23.536 35.879 35.555 35.687 
7 0.645 0.645 0.645 0.645 0.645 
8 0.645 0.645 3.868 3.896 2.740 
9 0.645 0.645 0.823 0.839 2.107 
10 34.860 34.648 38.913 38.640 39.669 
11 52.263 52.146 65.181 65.006 65.337 
12 82.674 82.708 92.387 92.593 91.671 
13 64.923 64.914 71.306 71.310 71.385 
14 66.725 66.778 73.878 73.884 73.760 
15 68.932 68.937 75.702 75.710 75.692 
16 3.9713 3.965 25.670 25.644 25.340 
17 77.749 77.711 93.160 92.897 93.371 
18 72.191 72.237 78.817 79.097 78.347 
19 44.736 44.730 52.087 52.077 51.580 
20 44.719 44.730 52.008 52.035 51.518 
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21 47.061 47.073 51.965 51.989 52.049 
22 45.953 45.946 50.977 50.961 50.772 
23 48.557 48.492 53.574 53.530 53.535 
24 48.421 48.492 53.560 53.611 53.412 
25 48.930 48.999 54.571 54.645 56.101 

Volume(cm3) 1.791 x 106 1.790 x 106 2.111 x 106 2.111 x 106 2.111 x 106 
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1. Abstract
Bi-directional Evolutionary Structural optimisation (BESO) method is now a well-known and popular method in

topology optimisation. A new interpretation of this method is presented in which the method is viewed as a two-

step procedure. Based on this interpretation, a simple heuristic improvement technique is introduced to improve

BESO results. The proposed improvement technique is tested and verified through numerical examples and its

performance is compared with the averaging sensitivity stabilisation technique proposed in [1]. It is shown that the

proposed improvement is robuster than the averaging sensitivity technique.

2. Keywords: Topology optimisation, BESO, Conjugate gradient method, hard-kill, soft-kill

3. Introduction
The Bi-directional Evolutionary Structural optimisation (BESO) method was originally proposed in references

[2, 3, 4] as an extension to the ESO (Evolutionary Structural optimisation) method introduced by Xie and Steven

[5, 6]. In the ESO method, materials are gradually removed from the least efficient parts of the design domain.

BESO has the capability of adding material to efficient parts as well as removing inefficient materials. Using a

finite element discretisation of the design domain, BESO adds and removes materials through adding and removing

elements.

There are two variations of the BESO method. In hard-kill BESO, the inefficient elements are completely

removed from the finite element model while in the soft-kill variation, they are replaced by a considerably weaker

material. Soft kill BESO can also be extended to solve multi-material distribution problems [7]. In all variations of

BESO the elements can only assume the considered material or existence states, and thus the final topology has no

elements with intermediate density (grey elements). Another advantage of the BESO method is its capability to be

easily combined with any available Finite Element package. Despite these advantages, however, BESO is usually

considered as an intuitive method with no solid mathematical background [8].

Usually the BESO method is said to be founded on the simple idea of gradually removing materials from

the inefficient parts and adding them to the efficient parts of the structure. In this paper, we propose a different

interpretation of this method. This interpretation helps us to propose a simple approach to improve this method.

The original BESO method was very sensitive to the selection of its algorithmic parameters and was not always

stable. An improved version of this method was proposed by Huang and Xie [1]. The improving procedure pro-

posed here can be considered as alternatives to the simple stabilising procedure introduced by Huang and Xie in

section 2.4 of reference [1] (hereafter referred to as HX). We will demonstrate the application of these improving

techniques and compare them with each other through some examples.

4. Design variables in BESO
In BESO, for each element we use one design variable. The design variable of element e is denoted by xe which

can typically assume discrete values of 0 or 1. The design variable vector is denoted by x = [x1,x2, . . . ,xn]
T where

n is the number of elements.

Assuming a soft-kill approach, the following linear interpolation scheme can be used to relate the elastic

modulus of element e to its design variable

Ee = E(0) + (E(1)−E(0))xe, e = 1, . . . ,n. (1)

The hard-kill can be obtained if E(0) = 0 is used in the above equation.

The equilibrium equation can be written as K(x)u = f in which u and f are nodal load and displacement vectors

respectively, and K is the global stiffness matrix derived by assembling element stiffness matrices as follows,

K(x) = ∑
e∈E

Kg
e(xe). (2)

1
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Here Kg
e is the global level stiffness matrix of element e and E represents all the elements which are present in the

design domain and can be defined as E =
{

e ∈ {1, . . . ,n}|Ee > 0
}

.

5. Compliance minimisation problem
Defined as c(u,x) = fT u, mean compliance is the most commonly used objective function in topology optimisation

of structures. The compliance minimisation problem is usually considered with a volume constraint as follows,

Pd : min
x∈{0,1}n

{c(u,x) |K(x)u = f,V ≤ V̄ } , (3)

where V is the total volume and V̄ is the maximum allowable volume of material in the structure.

Sensitivities of the mean compliance w.r.t. design variables take the form

∂c
∂xe

=−uT ∂K
∂xe

u =−uT ∂Kg
e

∂Ee

∂Ee

∂xe
u =−(E(1)−E(0))uT Kg

e

Ee
u =−E(1)−E(0)

Ee
uT

e Keue, e ∈ E , (4)

where ue and Ke respectively denote the displacement vector and local stiffness matrix of element e. In a hard-kill

approach, noting that E(0) = 0 and Ee = E(1), ∀e ∈ E , the above equation will reduce to ∂c
∂xe

=−uT
e Keue, e ∈ E .

In BESO, the efficiency of the elements is measured using a parameter called sensitivity number. Denoting the

sensitivity number of element e by αe, we can write (see e.g. [9])

αe =− ∂c
∂xe

, e ∈ E . (5)

In hard-kill approach Eq.(5) can only be used to calculate sensitivity numbers of non-void elements. A filtering

approach can be used in this case to extrapolate sensitivity numbers of void elements. In [1], Huang and Xie used

a two-level filtering scheme which is also adopted here. In this approach firstly nodal sensitivities are derived by

averaging sensitivities of the elements connecting to each node in the following form

α̃ j =
∑e∈E j veαe

∑e∈E j ve
. (6)

Here, E j represents the set of elements connected to node j and ve denotes the volume of element e. Filtered

element sensitivities are then calculated through the following filtering scheme

α̂e =
∑N

j=1 we jα̃ j

∑N
j=1 we j

, we j = max{0,r− re j} (7)

where α̂e is the filtered sensitivity of element e, N is the number of nodes in the design domain, we j is a linear

weighting factor, r is the filtering radius and re j is the distance between the centroid of element e and node j. In

[1], Huang and Xie showed that this filtering scheme is also useful in overcoming numerical instabilities such as

checkerboard formation and mesh dependency [10].

Different algorithms have been proposed for adding and removing elements in BESO. In the examples solved

here, we use the algorithm introduced by [11] and [1]. This algorithm uses two controlling parameters, namely,

evolutionary volume ratio (Rv) and maximum allowable admission ratio (Ra). The first one controls the volume

change and the second one controls the maximum amount of materials which can be added in each iteration. Once

the volume of the design reaches the limit of V̄ , Rv will have no effect and all later iterations will have the same

volume. In such cases, the number of adding and removing elements will be equal in each iteration, and Ra deter-

mines this number.

6. Reinterpretation of BESO procedure
Consider the following unconstrained continuous version of Pd in Eq.(3)

Pc : min
x∈Rn

{c(u,x) |K(x)u = f} (8)

The BESO algorithm firstly finds a descent (or search) direction based on Pc and then this direction is modified to

satisfy the constraints defined in Pd.

In the first step, the BESO algorithm uses the steepest descent vector which is defined as −∇ f for a gen-

eral objective function f [12]. Denoting the descent vector by d = [d1, . . . ,dn]
T and the gradient vector by

g = [g1, . . . ,gn]
T , in any iteration like k we have

d[k] =−∇c(x[k]) =−g[k]. (9)
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The superscripts in square brackets denote the iteration number. It is clear that α [k]
e = d[k]

e =−g[k]e .

The second step involves modifying the descent vector to satisfy the constraints in Pd. The modified vector

is denoted by d̂ = [d̂1, . . . , d̂n]
T and referred to as the move vector here. Using this notation, in any iteration k,

updating of design variables could be expressed as x[k+1] = x[k] + d̂[k].

Noting the condition xe ∈ {0,1}, the only possible values for d̂e are −1, 0, and 1 corresponding to removing,

not changing, and adding element e respectively. In each iteration, based on Rv and Ra we can determine two

sensitivity number thresholds for adding and removing elements: αadd and αdel (see e.g. [1]). After finding these

thresholds, the relationship between d̂ and d in iteration k can be expressed as

d̂[k]
e = sgn

(
sgn
(

d[k]
e −α [k]

del

)
+ sgn

(
d[k]

e −α [k]
add

))
, e = 1, . . . ,n. (10)

Based on this interpretation, we propose an improvement technique to the first step of the BESO algorithm in

the next section.

7. The proposed improvement technique
We propose a heuristic improvement technique by using nonlinear a Conjugate Gradient method [13] as an alter-

native solver for the first step of BESO. Nonlinear conjugate gradient methods converge faster than the steepest

descent method and demand negligible amount of extra memory and computations which make them suitable for

large-scale problems. In conjugate gradient methods the descent direction is defined as{
d[1] =−g[1]

d[k] =−g[k] +β [k]d[k−1], k > 1
(11)

where β is a scalar. Different formulae are suggested for β . For example the one proposed by Fletcher and Reeves

[13], can be expressed as

β [k]
FR =

g[k] ·g[k]
g[k−1] ·g[k−1]

, k > 1. (12)

To improve BESO, based on Eq.(11), we propose to use the following equation instead of Eq.(9) in each

iteration, {
d[1]

e = α̂ [1]
e

d[k]
e = α̂ [k]

e +β [k]
FRα̂ [k−1]

e , k > 1
(13)

where

β [k]
FR =

∑e∈E

(
α̂ [k]
)2

∑e∈E

(
α̂ [k−1]

)2
. (14)

The HX stabilising procedure involves averaging consecutive sensitivity numbers, i.e. setting d[k]
e = α̂ [k]

e +α̂ [k−1]
e

2
for k > 1. Noting that in BESO only the direction of sensitivities vector is important, this stabilisation technique

can also be expressed by replacing β [k]
FR in Eq.(13) with β [k]

HX = 1. In the next section we test the proposed improve-

ment technique (Eq. 13) and compare it with the HX technique.

8. Numerical examples
8.1. Example 1

A simply supported beam is considered in the first example. The size of the beam is 180×30 and only half of it is

modelled due to symmetry. Four node bi-linear unit square elements are used to discretise the modelled domain.

Design domain of the problem is depicted in Fig. 1a. The force p has the magnitude of 1. Base material has an

elasticity modulus of E = 1 and a Poisson’s ratio of ν = 0.3. The filtering radius is selected as r f = 4.5. All

units are consistent. A hard-kill approach is adopted with Ra = 4% and Rv = 1%. The problem starts with an

initial full design domain and the target volume fraction is 50%. The solution was terminated after 200 iterations

if convergence was not achieved.

The solutions obtained using no improvement (NO), The proposed improvement in Eqs. (13) and (14) (FR),

and Huang and Xie stabilising procedure of averaging sensitivities (HX) are shown in Fig. 1c. The evolution

histories of objective function values are shown in Fig. 1b. It can be seen that without using the improvements, the

solution procedure is unstable. Both FR and HX stabilised the solution procedure and resulted in a considerable

reduction (12%) in the final value of the objective function. The results obtained via FR and HX improvements are

very similar in this case.
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(a)

p

90 × 30

NO

cmin = 217.26

at iteration 71

HX

cmin = 191.53

at iteration 143

FR

cmin = 191.52

at iteration 177

(b)

0 25 50 75 100 125 150 175 200
100

200

300

400

500

Iterations

Objective Function

1,000

1,500

2,000

2,500

3,000

V (×103elements)

Volume NO HX FR

(c)

Figure 1: Design domain (a), optimum topologies obtained (b), and the evolution history of volume and objective

function values (c) for the simply supported beam in example 1.

8.2. Example 2

For the second example a short cantilever beam loaded as shown in Fig. 2a is considered where p = 1. The domain

size is 64× 40 which is discretised into four node bi-linear unit square elements. The material is the same as the

previous example. We start from a full design domain. The target volume fraction is 50%. The hard-kill approach

with Ra = 5%, Rv = 1%, and r f = 4 is used. All units are consistent.

The evolution history of the objective function values and the obtained topologies are shown in Fig. 3b and

Fig. 3c respectively. Like the previous example, without using the improvements, the solution procedure is unsta-

ble. Both FR and HX stabilised the solution procedure and resulted in a considerable reduction (8%) in the final

value of c. Again almost identical results are obtained from using FR and HX improvements.

(a) p
64 × 40

NO

cmin = 40.84

at iteration 176

HX

cmin = 37.59

at iteration 87

FR

cmin = 37.61

at iteration 71

(b)
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20
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50

60
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1,000

1,500
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3,000

V (×103elements)

Volume NO HX FR

(c)

Figure 2: Design domain (a), optimum topologies obtained (b), and the evolution history of volume and objective

function values (cb) for the short cantilever beam starting from full design domain.

To test the proposed approach in a slightly different situation, the same problem is reconsidered with the

initial design depicted in Fig. 3a. As the initial design satisfies the volume constraint, the volume will not change

during the solution making Rv redundant. The evolution history of the objective function values and the obtained

topologies are shown in Fig. 3a and Fig. 3b respectively. It can be seen that without applying the stabilisation

techniques the BESO algorithm is not stable. Although both improvements lead to better solutions, only the FR

approach was successful in obtaining a stable solution in this case.
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cmin = 40.84

at iteration 183
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at iteration 80

FR

cmin = 37.99

at iteration 97

(b)

Figure 3: The initial design and the evolution history of objective function values (a), and optimum topologies

obtained (b) for the short cantilever beam.

8.3. Example 3

In the third example, performance of the improvement techniques are compared in a two-material distribution

problem in absence of filtering. In two material problems, if filtering technique is used, the Ee in the denominator

of sensitivities in Eq.(4) will give more weight to sensitivity numbers of weaker elements. This will result in

unclear topologies [9, 14]. This problem can be solved by using a nonlinear interpolation scheme instead of Eq.(1)

(see e.g. [7, 15]), giving different weights to sensitivity numbers of different material phases [16, 17], modifying

the filtering scheme [14], or simply by avoiding the filtering scheme (see e.g. [18]). The last approach is used

here. Note that in a soft-kill BESO, filtering is not necessary for extrapolating sensitivity numbers. To control

checkerboard formation, 9-node elements are used in this example which are known to improve the behaviour of

topology optimisation methods with respect to checkerboard formation [10].

The short cantilever beam in example 2 is solved again by a soft-kill approach and with two materials with

elastic moduli of E(1) = 1 and E(0) = 0.2 each filling 50% of the design domain. Ra = 1% is adopted in this

example. Fig. 4 shows the obtained results for this example. Even without using any improvement the BESO

procedure is stable in this case. However, it can be seen that in the absence of a filtering scheme, the HX approach

didn’t improve the solution and in fact resulted in a worse design where materials are scattered in the design

domain. The evolution graph of objective function values reveals that the HX solution is unstable (Fig. 4a). The

FR approach, on the other hand, worked well in this case as well and resulted in a slightly improved (0.4%) design

compared to the case where no improvement approach was used.

9. Conclusion
The BESO method is studied and a new interpretation of this method is proposed. Two separate steps are identified

in the BESO algorithm in each iteration. The first step involves finding a descent vector for the unconstrained

optimisation problem. The second one involves adjusting the move direction to satisfy the constraints of the actual

constrained optimisation problem. The current BESO algorithm uses the steepest descent method in its first step

and a rounding off technique in its second step to find a feasible move vector.

A heuristic improvement technique is proposed which involves using a conjugate gradient method instead of

the steepest descent method in the first step of BESO. The difference of the required computational time and effort

for applying this approach is negligible in topology optimisation problems.

Through numerical examples, the usefulness of this approach is verified and its results are compared with the

stabilisation procedure suggested by Huang and Xie [1]. It is shown that the proposed approach can improve

and stabilise BESO solutions in both hard-kill and soft-kill variations. It is also shown that unlike the stabilisation

procedure suggested by Huang and Xie, the proposed approach doesn’t necessarily require using a filtering scheme.
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Figure 4: The initial design and the evolution history of objective function values (a), and optimum topologies

obtained (b) for the third example.
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1. Abstract  
In multifrequency atomic force microscopy (AFM) to simultaneously measure topography and material properties of 
specimens, it is highly desirable that the higher order resonance frequencies of the cantilever probe are assigned to be 
integer harmonics of the excitation frequency. In this paper, a structural optimization technique is employed to 
design cantilever probes so that the ratios between one or more higher order resonance frequencies and the 
fundamental natural frequency are ensured to be equal to specified integers. A one-layer probe with variable width is 
optimally designed for assigning single and multiple resonance frequencies. Moreover, a three-layer model is 
proposed to provide more frequency choices. All the designs are verified by experiments, through the focused ion 
beam (FIB) milling based fabrication technique and AFM measurement. 
2. Keywords: Multifrequency atomic force microscopy, Cantilever probe, Eigenfrequency, Structural optimization, 
Focused ion beam  

3. Introduction 
Among various atomic force microscopy (AFM) techniques, tapping mode is particularly attractive for imaging soft 
specimens because it does not suffer from lateral friction, hence having minimal damages to a soft specimen as well 
as to probe tip. In the tapping mode, a probe is excited at or near its fundamental resonance frequency, and its tip 
touches the sample surfaces once in every oscillation. A feedback controller is used to keep the vibration amplitude 
at a constant level by adjusting the height of probe base or sample table, to provide the topography of the specimen.  

Conventional tapping mode AFM involves the excitation and detection at a single frequency component of 
motion, inevitably losing the information contained in other harmonic components. In recent years, tapping mode 
AFM is emerging to excite or/and detect at multiple frequencies to maximize the potential of AFM for 
characterization, defined as multi-frequency AFM [1]. 

Periodic tapping between the probe tip and the sample surface produces a periodic pulse-like tip-sample interaction 
force, and it was observed that the response of probe due to such a tip-sample force contains rich information about 
material properties of the sample, which can be observed in the higher harmonics of the response [2]. In practice, 
however, there exists a significant difficulty. Because the responses at higher harmonics are typically several orders 
smaller in magnitude than that at the excitation frequency, and also because applying a large tapping force is not 
suitable for high resolution imaging, a reasonable signal-to-noise ratio at the higher harmonics is not readily available 
[3]. 

According to the theory of vibration, if the frequency of a higher harmonic is equal to one of the resonance 
frequencies of the probe, the response of the probe at such a frequency can be greatly enhanced. However, in regards 
to the commonly used rectangular cantilever probe, their high order resonance frequencies do not naturally align with 
any one of the harmonics [1]. Therefore, the probe should be redesigned [4]. Sahin et al. [5] designed a cantilever 
probe with a notch whose third order flexural resonance frequency was equal to the 16th harmonic and the probe is 
called a harmonic cantilever. But this design has a limited capability and a general methodology is not available. Li 
et al. [6] attached a concentrated mass to the probe to tailor the second and the third order eigenfrequencies to be 
integer multiplies of the fundamental eigenfrequency. If large change of the frequencies is required, the mass needs 
to be heavy. As a consequence, this will lower the fundamental resonance frequency of the probe. Xia et al. [7] 
employed the level set based topological optimization method to design harmonic probe. But the result is not 
practical from manufacturing and structure stability issues, and also only one order eigenfrequency assignment is 
achieved.
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For imaging material composition, several harmonics are required to accurately reconstruct the tip-sample interaction 
force, and they should lie in the frequency range with high sensitivity, typically in a low range for soft materials and 
a high range for hard samples. Therefore, a practical methodology is needed to design harmonic probes with pre-
determined eigenfrequencies. Actually, this type of structural optimization problem with eigenfrequency requirement 
has been a subject of extensive interests and investigations in past decade. Maeda and Nishiwaki [8] designed the 
vibrating structures that targets desired eigenfrequencies and eigenmodes shapes. Meske et al. [9] introduced a new 
optimality criteria method to handle eigenfrequency problems. And Du and Olhoff [10] applied SIMP method and 
bound formulation to maximize eigenfrequencies and frequency gaps. Tsai and Cheng [11] utilized SIMP method 
and MAC to obtain desired eigenfrequencies and mode shape.  

Here, this study proposes a design framework for developing a practical novel probe to meet the demands of 
multifrequency AFM. There are two types of design to demonstrate. The first design is one-layer design with 
variable beam width. Another design is three-layer design with symmetric top and bottom layers, whose width are 
the design variables, while the middle layer is kept constant. 

4. Optimization design 
With above defined cantilever design specification, the task now is to devise an optimal design to ensure that the set 
of M orders  of cantilever resonance frequencies match the required set of M harmonics 

 according to  
,   (1) 

Optimization technique is employed here as a systematic approach. The design variable for one layer design is the 
cross-sectional width along the beam length. However, only the width of symmetric top and bottom layer is chosen 
as the design variable for three-layer design.  

The major optimization goal is to satisfy the resonance harmonics assignment constraints. For nano-scale imaging, 
the effective spring constant K1 of the fundamental mode is also required to be high. Also higher excitation frequency 
brings higher scanning rate. Therefore, the objective is to maximize the fundamental resonance frequency, setting the 
function . Thus the design optimization problem is described as follows with multiple frequency constraints: 

Max  
Such that:  ,    (2) 

The weak form of the state equation for eigenvalue problem is given by 
(3) 

where  and . Here, the displacement field u defines the mode shape 
of the eigenvalue problem in bilinear form for structure domain . U denotes all kinematically admissible 
displacement fields and v is the test function. C and  denote the elasticity tensor and material density respectively. 

In the present study, analysis of AFM cantilever probe with variable width and constant thickness distribution is 
modeled by the Bernoulli-Euler beam theory. The slenderness ratio of bending in vertical direction for most 
commercial probes is larger enough to justify the use of Bernoulli-Euler beam theory [12]. During practical tapping 
mode AFM detection process, the optical detection of the probe mainly involves the vertical bending mode. 
Vibration in other directions is neglected. For instance, torsional signal is filtered out at signal analysis step for this 
kind of measurement. 
 
5. Evaluation 
We started the design with a commercial probe stock (AppNano, FORTA). Nominal specifications of the silicon 
probe include: length 225 m, width 27 m, thickness 2.7 m, spring constant 1.6 N/m, and fundamental frequency 
61 kHz. Real dimensions of the probe were also measured, and they were used in the optimization. The material 
properties of silicon is 2330 kg/m3 
since the probe is made from standard (100) silicon wafer. In addition, mass of the probe tip was considered in the 
computation, and it was evaluated from scanning electronic microscopy (SEM) images, which approximately 
accounts for 3% of total mass. The picket-shape end of the probe remained unchanged in the design. 

5.1 One-layer design 
The first case of optimization was to achieve 2/ 1 = 6, i.e., matching the second resonance frequency to the 6th 
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harmonic. Based on the optimized design shown in Fig. 1(a), the cantilever is fabricated from a commercial 
rectangular probe by modification of its width-profile using focused ion beam (FIB) milling (FEI Quanta 200 3D 
FIB). The ion beam energy and current were 30 kV and 5 nA, respectively. Fig. 1 (b) shows the SEM image of the 
probe obtained. The as-prepared probe was then installed on an AFM (Bruker Bioscope) to measure its resonance 
frequencies. In Fig. 1 (c), the first two resonance peaks f1 (64.24 kHz) and f2 (387.26 kHz) are shown. The ratio 
between f2 and f1 is 6.03, which is fairly close to our design expectation. 

Another case of optimization was to simultaneously achieve two integer frequency ratios 2/ 1=6 and 3/ 1=17. 
Fig. 2 (a) shows the design result. After FIB milling, the as-prepared probe, shown in Fig. 2 (b), was measured for its 
resonance frequencies, which are shown in Fig. 2 (c). Here, we only concern with the peaks of flexural vibration. The 
first three resonance frequencies are 61.96 kHz, 369.35 kHz and 1056.3 kHz, respectively. The ratio values of f2/f1 
and f3/f1 are 5.96 and 17.05, respectively. 

It is worthy to note that the fabrication of the final probe was achieved through several rounds of local modifications, 
in consideration of the differences of the cross-section shape between the computational model and the real probe. 
The cross section of the real probe stock is not truly rectangular, but it is treated as rectangular in the computational 
model for convenience.  
 

     
 

Figure.1 (a) Optimally designed result with frequency constraint 2/ 1=6; (b) SEM image of probe after FIB milling; 
(c) Frequency spectrum of fabricated probe 

  

     
 

Figure.2 (a) Optimally designed result with frequency constraints 2/ 1=6 and 3/ 1=17; (b) SEM image of probe 
after FIB milling; (c) Frequency spectrum of fabricated probe 

 
5.2 Three layer design 
Three-layer design provides larger capability for tailoring frequencies. The design domain of three-layer design is 
broader than that of one-layer design, since the width of top and bottom layer can be zero, which is avoided in one-
layer design. The real dimension of probe thickness is 2.8 m. And we set the thickness of top and bottom layer as 
0.7 m. Thus the maintained middle layer has a thickness of 1.4 m.  

The first case of optimization is to achieve 2/ 1 = 4. Fig. 3 (a) shows the pattern of top and bottom layer. Based on 
this design, we fabricate the probe using FIB milling. The ion beam energy and current were 30 kV and 3 nA, 

(c) 

(a) 

(a) 
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respectively. Fig. 3 (b) and (c) demonstrated the probe from front and back view, respectively. Fabricated probe is 
then installed on AFM to measure its resonance frequencies. In Fig. 3 (d), the frequency peaks are 78.89 kHz and 
320. 79 kHz, which means that the ratio between f2 and f1 is 4.07.  

The second case of optimization is to simultaneously achieve 2/ 1=6 and 3/ 1=14. Fig. 4 (a) shows the pattern of 
top and bottom layer. Fig. 4 (b) and (c) present the front and back view of the FIB milled probe, respectively. Fig. 4 
(d) demonstrates the frequency spectrum obtained from AFM measurement. The first three flexural resonance 
frequencies are 77.34 kHz, 455.94 kHz and 1093.6 kHz, respectively. The ratio values of f2/f1 and f3/f1 are 5.90 and 
14.14, respectively.  

Precise depth control of FIB milling is difficult, such that the final milled depth of top and bottom layer are achieved 
by several rounds. Also, the final pattern is obtained after several local modifications. 
 
6. Conclusion 
In summary, a systematic structural optimization method is presented to design harmonic cantilever probes. The 
ratios between one or more higher order resonance frequencies and the fundamental natural frequency are made to be 
equal to specified integers, while the fundamental natural frequency is maximized. The approach is demonstrated 
with one-layer and three-layer designs. Examples of tailoring single and multiple frequencies are presented. The 
harmonic probes designed through the optimization approach were fabricated using the FIB technique. Their 
resonance frequencies were measured, and the results verified the effectiveness of the probes of our design. 
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Figure. 3 (a) Optimally designed top and bottom layer pattern with frequency constraint 2/ 1=4; (b) SEM image of 
probe s front side; (c) SEM image of probe s back side; (d) Frequency spectrum of fabricated probe 
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Figure. 4 (a) Optimally designed top and bottom layer pattern with frequency constraints 2/ 1=6 and 3/ 1=14; (b) 
SEM image of probe s front side; (c) SEM image of probe s back side; (d) Frequency spectrum of fabricated probe 
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1. Abstract
An approach to structural design based on topology and global-local optimization is proposed. It exploits the 
mathematical models of different fidelity. Solid model is used for topology optimization, shell/beam model – for 
structural sizing on global level, refined panel model – for detailed sizing on local model, aerodynamic model – for 
loads and aeroelasticity analysis. Structural design procedure is described. Main features concerning the stated 
global-local optimization problem is discussed. A numerical example of wing optimization of an advanced 
helicopter with low aspect ratio is considered. 
2. Keywords: Aircraft wing, strength, buckling, topology optimization, global-local approach. 

3. Introduction 
The aircraft structural design is very complicated problem. It is due to that many operating constraints arising from 
different technical disciplines, determining the performance of the aircraft, should be taken into account. 
Multidisciplinary design optimization approach is often used to solve this problem involving highly large number 
of design variables and constraints. This process is very time-consuming and, in practice, it is necessary to simplify 
the design problem by using mathematical structural models of different levels. In this case, structural optimization 
should be done both on models of global and local levels. Many technical papers [1–4] are devoted to the 
development of the multilevel methods for analysis and optimization. In the paper [4] authors presented a 
global-local approach for structural analysis and optimization with taking into account strength/buckling 
constraints.
The aim of this work is to combine the structural optimization based on the global-local approach with topology 
optimization to perform a complete design procedure of aircraft structures. Topology optimization of continuum 
structures is to find the optimal designs by determining the best locations and geometries of cavities in the design 
domains. Many numerical methods for topology optimization of continuum structures have been investigated 
extensively, for example [5–9]. Two heuristic methods of structure topology optimization are presented in the 
paper [8]. They are based on the application of the fully-stressed design criterion, used in practice to determine the 
structural rational parameters taking into account the strength constraints. In our context, the topology 
optimization allows to determine the principal load-carrying directions in which structural material should be 
located. These directions are strongly related with the way of load application and number of load cases. Usually 
various engineering interpretations of the topology optimization results can be proposed by designer. In this 
approach several structural layouts are generated, and the global-local structural optimization is performed for 
them.  
The approach is demonstrated on the example of design of low-aspect-ratio wing of advanced helicopter.  

4. Structural design procedure 
The general process of structural synthesis includes the topology optimization stage directed on search of 
reasonable structural layouts under action of some extreme loads. Initial data for the topology optimization are 
geometric outlines of a structure. Flow-chart of structural optimization is shown in Figure 1.  

General geometric outlines

Loads&BC

Topology optimization Engineering interpretation

Structural sizing based 
on global-local approach

Optimal structure

Figure 1: Flow-chart of structural optimization 
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The topology optimization results are interpreted by design engineers. The second stage is design of structural 
elements in the interpreted layouts. This stage includes shape optimization and determination of structural element 
sizes such as shell thicknesses, section dimensions of beam-type elements with taking into account the operative 
constraints of structure. 
We consider that the geometric outlines of mechanical body are specified. They define the place of load-bearing 
structure (design domain). The structure is supposed to be fixed in some parts and is subjected by external loads of 
several load cases. The design domain is divided in detail on finite elements for analysis of displacements and 
stresses by using finite element (FE) method. The main aspects of applied topology optimization methods are 
discussed in the paper [8]. 
An engineering interpretation of topology results are performed intuitively based on the obtained distribution of 
material in solid finite element model. Therefore, several alternative layouts should be generated to make a choice 
of reasonable structural layout after structural sizing. Structural sizing is fulfilled by means of the global-local 
approach to optimization described below. The auxiliary optimization algorithms in this approach are based on 
optimality criteria and mathematical programming methods. Finally, the best structural layout is found by 
comparison of the obtained structural masses. 

4.1. Topology optimization 
The most popular approach for determining the optimal structural layout is to minimize the compliance function or 
the potential strain energy with taking into account a constraint to the given volume (weight) of the structure. 
Mathematically the statement of the structural optimization problem looks as follows 

Find Uf Tmin  subject to 0)( Mdx        (1) 

Here f is a vector of external load, U is a displacement vector, )(x  is a material density in the considered design 
domain,  is a set of elements in the design domain, and 0M  is a value restricting the material mass. The solution 
of the optimization problem is based on the introduction of a design variable x in each finite element, which relates 
Young’s modulus with the density of each finite element of the structure by means of the following expressions: 

xx 0)( =  and pxExE 0)( = ; where 0  and 0E  are the initial density and Young’s modulus of material, and p is 
a penalty value used in algorithms for selection of the needed and unneeded structural elements [6, 9]. Note that the 
problem statement (1) supposes the only one load case. At the same time, the designed structure of aircraft must 
bear various loads, and the stresses in its elements must be less than the allowable values. To allow for many load 
cases the objective function in (1) is replaced by the weighted sum of compliances for all considered load cases. 
Two heuristic methods of topology optimization which consider stress constraints for many load cases are 
presented in the paper [8]. The developed algorithms based on the use of a simple fully-stressed design criterion. 
They allow obtaining reasonable structural layouts with taking into consideration of many load cases and different 
allowable stresses in the structural elements. The comparison of the resulting structures with the optimal topology, 
obtained by two approaches showed that they are in good agreement. Both these methods can be used in the 
structural design of aircraft wing based on topology and global-local optimization. 

4.2. Global-local structural optimization method 
Generally the finite element method is used for static and buckling analysis. These problems are usually solved 
with using different fidelity meshes. The high fidelity grid is not mandatory to perform stress analysis of regular 
aircraft structure but it is significantly required for computation of buckling load and shape of panels. Design 
engineers prepare several mathematical models which include both the full-scale structure under research and its 
separate parts. The global full-scale model includes only global structural parameters. The local model of a 
separate aircraft component should be created with more details to take into account the stress irregularities and to 
determine buckling loads and shapes if compressing forces are available. 
Problems of interaction between the global and local models are discussed in [4]. The main idea is to interpolate 
the internal nodal forces computed on the global model into the nodal forces of the local model. In the optimization 
process on local model applied forces are considered as fixed. The initial elastic parameters of the local FE model 
have to be close to the elastic parameters of the global one. The possible difference between them is due to the 
holes and the stiffening structural elements. The accordance of the elastic material characteristics and the loads on 
the models is performed by their recalculations at the global and local levels of the approach. 
The general optimization problem with using global and local models can be solved by using two-level approach 
described in [2, 3]. In this approach the initial optimization problem is decomposed into separate optimization 
problems of two levels. Consider such two-level approach when system problem is divided into a set of smaller 
subproblems with their own goal functions and constraints. The individual optimization of subsystem is performed 
independently on the first level and coordinate problem is solved on the second (system) level. Generally, the 
nonlinear programming problem is formulated by the following way: 
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Minimize )(Xf  subject to constraints          

,,,2,1,;,,2,1,0)(h;,,2,1,0)(g kj nixxxpkmj u
ii

l
i KKK ==== XX  (1) 

where l
ix u

ix  denotes upper and lower limits of xi, which are components of the vector of design variables 
T

nxxx },,,{ 21 K=X . The vector X  is subdivided into two subvectors Y  and Z : { }T, ZYX = . The vector Y
includes the interaction variables between subsystems and the vector Z has the variables belonging only to 
subsystems. The vector Z  can be partitioned by following way: T

Kk },,,,,{ 21 ZZZZZ KK= , where kZ  are 
the vectors with variables related with only k-th subsystem and K is number of subsystems. 
The vector Y  may appear in all constraint functions while the vectors kZ  appear only in the constraint sets: 

0,0 =)()( hg kk . The bound constraints can be written as Kku
kk

l
k

(u)(l) ,,2,1,, )()( K=ZZZYYY .

The goal function can be expressed as
=

=
K

k
k

kff
1

)( ),()( ZYX , where ),()(
k

kf ZY  is the contribution of the k-th

subsystem to the general goal function. The two-level method can be formulated as follows. 
In the first level problem we tentatively fix the values of the vector Y at values of vector Y*. The problem Eq.(1) is 
reformulated as K independent optimization problems as follows:  
Find the vector kZ  which minimizes function ),()(

k
kf ZY  at satisfying the constraints: 

Kku
kk

l
kk

k
k

k ,,2,1,,0),(,0),( )()()()( K== ZZZZYhZYg .  (2) 
In the second level problem the following problem is solved: 
Find new vector Y* which minimizes the function 

=

=
K

k
k

kff
1

*)( ),()( ZYY ,        (3) 

at satisfying the constraints )()( ul YYY . Here *
kZ  are the vectors of variables which are the optimal solution 

of the first level problems. The constraint on bounds of the vector Y is added into the problem to provide a finite 
value of the goal function )( *Yf at solving the second level problem. 
The iterative algorithm can be represented in the following steps: 

1) Start with an initial coordination vector Y*.
2) Solve the K first level problems Eq.(2) and find the optimal vectors Kkk ,,2,1, K=Z .
3) Solve the first level problem Eq.(3) and find new vector Y*.
4) Check for the convergence of goal function f and the vector Y* by comparison their values with those 

obtained earlier in iteration process. 
5) If the process has not converged, go to step 2 and repeat the process until convergence. 

Satisfying to buckling constraints at structural optimization is important requirement at aircraft design. Such 
constraints are prescribed to structural panel which generally consists of plate elements modeling a skin of the 
aircraft lifting surface and bar elements modeling stiffening stringers. Different buckling shapes can be 
encountered for the panel under compression/tension and shear loads. Stress constraints in panel and gauge 
constraints on panel design variables are also imposed. The design variables for local level (in the panel) are skin 
thickness, sizes of stringer elements and panel stringer step. 

5. Numerical optimization example 
A wing of an advanced helicopter with low aspect ratio is considered as an example for approval of the developed 
method. The research purpose is to find optimal wing structural parameters which provide minimum weight at 
satisfying to strength, buckling and aeroelasticity constraints. Obviously, the minimum of structural weight 
corresponds to some reasonable layout which can be found by topology optimization. 
To determine aerodynamic forces in extreme load cases and to perform aeroelasticity analyses an aerodynamic 
model of the wing has been created. Also the wing outlines serve for generation of a solid finite element model 
which is used in topology optimization (Figure 2, left). It is important to correctly transfer pressure loads from 
aerodynamic to FE model. It was performed by interpolation of the obtained pressures with using polynomial 
function of nodal coordinates in outer surfaces of the FE model. Topology optimization was accomplished to 
minimize compliance at saving 30 percent of initial solid model weight in the final design. The obtained pattern 
where the load-bearing material should be distributed is shown in Figure 2, right. 
In the pattern the lighter regions corresponds to low material densities and the darker regions – to high material 
densities which define the load-carrying regions. It is seen that some wing-box can be considered as structural 
layout together with a set of cross rib elements in the trailing part of the wing. However, it is difficult to choose 
explicitly one layout corresponding to this pattern. That is why it is worth to consider several possible layouts. The 
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following seven ones were proposed based on intuition. They are shown in Figure 3 with hidden upper skin of 
wing.

Figure 2: Initial solid FE model (left), topology result (right) 

Layout 1 Layout 2 Layout 3 Layout 4 Layout 5 Layout 6 Layout 7

Figure 3: Alternative structural layouts 

Description of these seven layouts is given in Table 1. 

Table 1: Description of structural layouts 

1 Single-spar layout in which the spar is in the centre of the maximum material concentration zone. 
2 Two-spar layout in which spars are at the bounds of the maximum material concentration zone. 
3 The same as Layout 2 but the wing-box width is narrowed (front spar is along the maximum structural depths). 
4 Three-spar layout with spars corresponding to Layout 1 and Layout 2.
5 Three-spar layout with spars corresponding to Layout 1 and Layout 3.
6 The same as Layout 2 with additional ribs at the end part of the wing. 
7 The same as Layout 4 with additional ribs at the end part of the wing. 

In the global optimization level the thicknesses of the panel skins, ribs and spars are considered as design variables 
(DV). Minimum thickness for all DV is 1.2 mm. The allowable stress in design researches chosen from strength 
and fatigue conditions is equal 240 MPa. The number of DV in layouts varies from 71 to 89. This difference is due 
to the number spars and additional ribs in these layouts. 
The structural optimization under strength requirements for these seven layouts leads to the following optimal 
weight values: 35.5 kg, 31.6 kg, 31.7 kg, 32.2 kg, 32.3 kg, 32 kg and 32.5 kg, respectively. Therefore, the optimal 
structural layouts from the viewpoint of strength are two-spar configurations. However, buckling analysis showed 
that all of the considered layouts do not satisfy to buckling requirements.  
Then the structural optimization with stress and buckling requirements were accomplished. The best layout here is 
three-spar wing with additional ribs (weight 42.4 kg). The second layout in weight rank is two-spar wing with 
additional ribs (weight 43.2 kg). They are slightly different in weight so these both are studied in further 
investigations. Comparison of all alternative structural layouts with optimal distribution of material showed that 
the weight benefit was about 10 percent owing to the choice of location of the primary elements.  
Optimum thicknesses for design variables are shown in Figure 4. It is worth to mention that thicknesses in 
wing-box root part significantly change both in spanwise and chordwise directions. 

Figure 4: Optimum thicknesses after strength/buckling optimization on global level 
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For some wing upper panels the buckling constraints become active. This is due to the fact that upper panels have 
smooth skin (no stringers). Buckling shape for optimal wing is shown in Figure 5. The buckling load factor is 
equal 1. It is obvious that the stiffened panel is more effective to resist buckling. So addition of stringer elements is 
necessary to include. Addition of such elements in global finite element significantly increases both the number of 
degrees of freedom and the number of DV. Some of new design variables related with stringer elements are 
geometric and they define stringer shape. Therefore it is necessary to consider the design problem with using local 
models of panels. In the local optimization problem the design variables are the number of stringers, thicknesses of 
stringer elements, the stringer depth and skin thickness. In this research the shape of stringer section is rectangular, 
and we have four DV for each panel. Only upper wing panels are considered because they are under the action of 
compression loads. Figure 6 shows relation between global FE model and local one for a separate panel. 

Global FE model of wing

Local FE model of panel

Figure 5: Buckling shape Figure 6: Extraction of local model from global model 

Iterative global-local optimization was performed. The two-spar wing had the least weight (36.3 kg) while weight 
of three-spar wing was 38.1 kg. Note that panel smeared thicknesses are significantly reduced if compared with the 
results obtained for smooth thickness with optimization on global model. For example, thickness of root upper 
panel was 7.4 mm and after global-local optimization it became 3.14 mm. Optimum stringer parameters of this 
panels are following ones: the number of stringers is 6, its depth is 30 mm and its thickness is 1.86 mm. Note that 
different optimal solutions can be obtained during the optimization process at parametric change of stringer step 
and depth. More technological root panel structure was obtained with the stringer depth of 45 mm. In this case the 
skin thickness is 2.01 mm and stringer thickness is 3.45 mm. The global-local approach to optimization of wing 
with stiffened panels allowed reducing of structural weight by 16.8 percent. 
Aeroelasticity analysis was performed for the chosen two-spar layout with additional ribs at the end part of wing. 
Note that the constraint on the divergence speed was satisfied. The obtained optimum parameters after global-local 
optimization do not provide flutter requirements. The flutter speed after analysis was 112 m/s but it must be greater 
than 145.2 m/s. The sensitivity analysis showed that it was necessary to increase minimum thicknesses of the 
lower panel skin up to 1.3 mm. In addition, the needed thickness of lower panel skin in the root part in the trailing 
edge was 1.5 mm. The damping coefficients versus flight speed are shown in Figure 7.  

Figure 7: Damping coefficients versus flight speed 

There three flutter forms with speeds 146 m/s, 147 m/s and 177 m/s. Note that change of panel skin thicknesses for 
taking into account flutter constraints leads to the increase in weight by 0.8 kg. Weight of optimum wing structure
with satisfying all imposed constrains is 37.1 kg. 

5. Conclusions 
The paper has proposed an approach to structural design based on topology and global-local optimization. The 
approach was demonstrated on an example of the low aspect-ratio wing. Application of topology optimization 
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helped to determine several alternative layouts. Comparison of the chosen alternative structural layouts with 
optimal distribution of material showed that the weight benefit was about 10 percent owing to the choice of 
location of the primary elements. By means of structural optimization under strength/buckling requirements two 
reasonable layouts were obtained: the three-spar and the two-spar wing with additional ribs at the end part. It was 
shown that the additional significant reduction of weight could be reached by use of global-local optimization. 
This approach to optimization of wing with stiffened panels allowed additionally reducing of structural weight by 
16.8 percent. It is concluded that the best structural layout from the viewpoint of strength, buckling and 
aeroelasticity is two-spar wing with additional ribs at the end part. 
The developed approach is a very useful tool for the design process of complex aerospace structures. It gives 
reliable results and reduces computational costs compared to a traditional approach to optimization. 
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1. Abstract
Topology optimization yields an overall layout of a structure in the form of discrete density (e.g., SIMP) or 
continuous boundary geometry (e.g., level-set method). One of important drawbacks, however, is that it leads to a 
geometry with zigzag boundaries and/or irregular shapes, which is difficult to be interpreted for manufacturability, 
as well as to be utilized in subsequent applications such as shape optimization. It is considered the most significant 
bottleneck to interpret topology optimization results and to produce a parametric CAD model that can be used for 
shape optimization. The objective of this paper is to interpret geometric features out of a topology design to 
minimize human intervention in producing a parametric CAD model. The active contour method is first used to 
extract boundary segments from the greyscale image of topology optimization. Using the information of roundness 
and curvature of segments, simple geometric features, such as lines, arcs, circles, fillets, extrusion and sweep, are 
then identified. An optimization method is used to find parameters of these geometric features by minimizing 
errors between the boundary of geometric features and that of actual segments. Lastly, using the parametric CAD 
model, surrogate-based shape optimization is employed to determine the optimal shape. The entire process is 
automated with MATLAB and Python scripts in Abaqus, while manual intervention is needed only when defining 
geometric constraints and design parameters. 2-D beam and plate structures are presented to demonstrate 
effectiveness of the proposed methods. 
2. Keywords: geometric features identification, active contour method, topology optimization, shape 
optimization, section optimization 

3. Introduction 
As one of the most active research topics in the field of structural optimization, topology optimization yields a 
prediction of the structural type and overall layout of materials. It can obtain robust results based on 
well-developed numerical approaches, and has received more and more research attentions recently because of its 
great potential of application to many industrial areas. Since most topology optimization approaches are 
element-based, where the initial design space is discretized by uniform rectangular finite elements and the design 
variables are assumed to be constant within each finite element, it is efficient in computation and has been applied 
successfully for solutions of many industrial optimization problems. However, one of important drawbacks of 
topology optimization is that, it is difficult to interpret topological results in terms of geometric features for 
conventional manufacturability. The optimal topological results often come out as greyscale images with zigzag 
boundaries and irregular shapes. They are not only difficult to make in the perspective of manufacturability, but 
also cannot be used directly in subsequent applications such as section and shape optimization. These problems are 
due to the lack of geometric boundary features and model parameterization. Many engineering applications require 
a shape of parameterized and smooth geometry, especially for manufacturing. There is a gap in automated 
geometric information extraction techniques in order to seamlessly integrate topology optimization with section 
and shape optimization. Therefore, there are needs to identify geometric features out of topology design and to 
obtain simple and smooth shapes for achieving cost-efficient design and for manufacturing components 
economically.

In the literature, some conventional methods were proposed to identify geometric boundaries by using image 
interpretation [1-2], density contour [3-4], geometric templates [5-6] and B-spline curves [7-8]. However, 
drawbacks of these methods still exist and make it difficult to achieve an efficient way for geometric features 
identification from topology results. For example, too many manual interventions are required in image 
processing, no parameterized model or geometric features can be obtained from density contours, limited 
geometric features can be represented by templates, and B-spline is expensive in the perspective of manufacturing. 
All of those shortcomings of existing geometric boundary detection methods drove us to interpret geometric 
features out of a topology design to minimize human intervention in producing a parametric CAD model. 

In this paper, the geometric features identification techniques are limited to two dimensional structures, and 
simple geometric components are used for geometric features interpretation. Once the parameterized CAD model 
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for the topology result is obtained, shape optimization and section optimization are employed to fine tune the 
identified geometry and make sure the structural performances in line with that of the topology result. The whole 
procedures yield a structural design framework of integrated topology and shape/section optimization. 

4. Geometric features identification
It is important to identify the boundaries of geometric features from topology results. Although B-spline curves 
can provide nice shapes for a structure, and they are used commonly in daily life, it is very expensive, i.e. money 
and time, to manufacture them. On the other hand, more than 90% of machine parts are composed of simple 
geometric features, such as straight lines, fillets and circles. Therefore, straight lines, arcs, fillets, and circles are 
used as basic geometric features to interpret topology results and construct boundaries of geometry.  

4.1. Active contour method 
Normally, element-based topology results are greyscale images, or result text file for element density values. This 
research can start with either of them. The image functions in Matlab, “imread( )” and “rgb2grey( )”, can read 
images and transform them into image data. Then, the image data are processed by the active contour method 
[9-10] to yield smooth and closed boundary segment data, which are composed of coordinate values. Each of the 
closed segments represents an outer/inner boundary. 

A Matlab code based on active contour method made by Su [11] is used here to extract geometry boundaries 
from topology greyscale images. Figure 1(a) shows the initial greyscale image, and Figure 1(b) shows the 
extracted boundaries (red lines). Actually, the boundaries are expressed by a sequence of points, which are the blue 
crossed points as shown in Figure 1(c).

(a) Greyscale image                        (b) Extracted boundaries                        (c) Boundary points 

Figure 1: Image interpretation by using the active contour method 

4.2. Circles detection 
Among many geometric features, circle is a very common shape, and different from straight lines, arcs and fillets. 
In order to identify a circle, “roundness” is used to detect circles from other geometric features. With identified 
boundary points of a closed loop, the centroid of a geometric feature is expressed as 
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where i is the number of boundary point, and n is the total number of the boundary points of the geometric feature. 
ix  and iy are the coordinates of the i-th boundary point, and 0x  and 0y are the coordinates for the centroid point. 

            Figure 2: A portion of the boundary                           Figure 3: Roundness values 

As shown in Figure 2, a small triangular is formed with two neighbored points and the centroid, whose base 
length and height can be expressed as 
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1 . Therefore, the perimeter and area of this geometric feature can be obtained as 
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where P and A denote the perimeter and area of a closed geometric feature, respectively.  
The roundness of this geometric feature can then be defined by 

24= APm                                                                                                (4) 
where m represents the roundness value of a closed geometric feature. A roundness value closer to 1.0 indicates
that the object is approximately circle. Figure 3 shows the centroids (red circle points) and roundness values for the 
four geometric features. By setting the threshold of 0.9, circles can be identified first. 

4.3. Straight lines and fillets identification 
After identifying circles, it is assumed that other closed-loop boundaries are composed of straight lines and fillets 
between two lines. Since the boundaries are identified and described by points, it makes sense to interpret a straight 
boundary section as a line segment according to its curvature. Starting from the initial point, slopes of lines 
connecting following points with the initial point are calculated. If these slopes change beyond a threshold, it is 
considered that the current line ends and a new line starts from the ending point. A fillet tangent to the two straight 
lines is used to express corner boundaries.

Figure 4 shows the geometric relationship of a fillet and two straight lines (red lines) on a portion of a 
geometric feature (blue cross points), and the relationship is formulated in Eq. (5) to calculate fillet center 
coordinates and tangent points for a given fillet radius. In Figure 4, n1 and n2 are, respectively, the numbers of two 
tangent points’ locations in a closed geometric feature. The points between the n1-th and n2-th points are used to 
approximate a fillet tangent to two straight lines. 

Figure 4: Geometric relationship of a fillet and a straight line 
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where (xc, yc) denotes coordinates of the fillet center point, and r is the fillet radius. (x1, y1) and (x2, y2) are two 
tangent points at both ends of the fillet. k1 and k2 are the slopes, and b1 and b2 are the y-intercept of the two lines.  

In order to estimate more accurate fillets, Eq. (6) is formulated to minimize the maximum distance from the 
initial boundary segment data points to the fillet.  
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                                              (6) 

     Once the optimal fillet radius is obtained from Eq. (6), the fillet center point and two tangent points can be 
determined by solving Eq. (5). Figure 5 shows a pentagon identified with 5 line segments and 5 fillets before and 
after fillet estimation. The blues lines are the initial boundaries, which are not smooth, and the red lines are the 
identified boundaries. The red star points on the red line are tangent points, and red star points inside of the 
boundaries are fillet center points. Arc can be detected in a same way as fillets. 

The estimation process for fillets obviously alleviates the errors between final parameterized smooth shapes 
and initial topological shapes, and makes sure the shapes to be consistent with the geometric features. At last, the 
geometries will be output in forms of parameterized CAD model with straight lines, fillet, arcs and circles, and be 
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rebuilt in Abaqus. 

          Figure 5: Before and after optimization for fillets 

5. Section and shape optimization for identified structure 
Although the boundary shapes are extracted from topology optimization results, the extracted geometry may not 
be considered an optimum geometry because the structural response can slightly be different from that of topology 
design. Therefore, a follow-up section or shape optimization is performed to fine tune the structural geometry for 
desired performances. The same optimization formulation used for topology optimization is better to be used for 
the section or shape optimization. During the follow-up optimization, no new geometry features will be 
introduced, but the initial features will be modified to find the optimum design. 

In the follow-up optimization, there are a couple of things to be noted. Firstly, dimensions of the CAD model 
should be fully constrained so that the entire geometry can be regenerated after its parameters are changed. 
Secondly, since not all of the parameters are necessary for optimization, a limited number of dimensions can be 
selected as design variables, and their lower/upper bounds needs to be determined. The lower/upper bounds are 
selected such that the geometry can be well defined within these bounds. Since the selection totally depends on the 
experiences of designers, this parameterization process has to be done manually, and it is the only time that 
requires human intervention in the whole design procedure.

As the dimensions change, the structural shape and mesh change too. It causes numerical errors when we use 
finite difference method to calculate the sensitivities in optimization. In order to address the issue of mesh-related 
numerical errors, the surrogate model-based optimization approach is employed to perform the shape 
optimization. The optimization problems will be solved by the “fmincon” function in Matlab. The optimization for 
the CAD model is implemented automatically by using Matlab to execute Python scripts for Abaqus.   

6. Numerical examples 
In order to demonstrate the validity and capability of the proposed framework for geometric features identification, 
two numerical examples are tested here. The first example is topology result of a cantilever beam from Yi and Sui 
[12]. Section optimization is considered with beam elements. The second example is topology result of a clamped 
plate from Yi [13], and shape optimization is considered for the topology shape. The topology optimization of both 
structures was performed to minimize structural mass with a displacement constraint.

Example 1: Beam element identification and section optimization. It was required that the displacement at the 
loading point was no larger than 0.35mm. Figure 6 shows the grayscale image of the optimal topology result, 
where the minimum mass was 1990.17kg, and the displacement at the loading point was an active constraint.

Figure 6: Topology shape              Figure 7: Boundaries and roundness      Figure 8: Straight lines and fillets 

Figure 7 gives the boundary points and roundness values of closed boundary segments. By implementing the 
geometric features identification techniques on those boundary segments, the parameterized CAD model with 
straight lines and fillets is overlapped on top of the initial boundaries, which is shown in Figure 8. Although the 
fillets are determined by optimization, they are not used in section optimization, but used to determine the 

Before Optimization After Optimization 
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approximations of straight lines. The middle lines of two closely parallel straight lines are determined one by one. 
They are crossed to each other and construct a beam element structure. As shown in Figure 9, the red lines are 
identified boundary line segments, and the green lines are beam elements of the cantilever beam. 

Since the cantilever beam is symmetric, four section areas are selected as design objectives (shown in Figure 
10). A rectangular profile is defined for each of them. Since the thickness of the beam is 1.0mm, the design 
variables are actually the heights of the rectangular sections of Sec1, Sec2, Sec3 and Sec4 separately. A lower 
bound of lb = [0.1, 0.1, 0.1, 0.1] (mm) and an upper bound of ub = [10, 15, 10, 15] (mm) are given for the design 
variables. Since the mesh on beam elements does not change during optimization, no surrogate model is required, 
and the section optimization is conducted directly. The optimum point is found at x* = [6.12, 7.81, 3.71, 6.71] 
(mm). The structural mass is 1981.13kg, and the displacement at the loading point is 0.35mm. Displacement 
contour of the beam with optimal sections is shown in Figure 11. 

                  Figure 9: Beam element structure                                Figure 10: Design objectives                 

Figure 11: Optimal sections 

Example 2: Plate shape identification and shape optimization. The displacement at the middle of the plate 
along the loading direction was required to be no larger than 0.74m. The result text file of the optimal density 
values is used for image interpretation. Figure 12 shows the topology shape (in black and grey) read by Matlab and 
boundaries (in red) detected by the active contour method. The total mass was 5.31kg, and the displacement at the 
middle was 0.74m. The exact boundaries are identified and shown in Figure 13, where the fillets and arcs are 
already optimized. The CAD model is rebuilt in Abaqus and the fully constrained geometry is shown in Figure 14. 

Figure 12: Topology shape    Figure 13: Identified boundaries         Figure 14: Fully constrained CAD model

Since the geometry is fully symmetric and the dimensions are related to each other, the dimensions for the short 
fillet, x-cordinate and y-cordinate of the fillet center point, and fillet radius, respectively, are considered as design 
variables x1, x2 and x3, which are marked as pink lines in Figure 15. The shape optimization with a displacement 
constraint is performed on the identified geometry. The Kriging surrogate model is utilized to approximate the 

435

Leo
Rectangle



6

relationship between three design variables and the displacement at the middle point of the plate. The optimal 
design is found at x*=[2.01, 4.14, 0.1] (m), where the structural mass is 5.00kg, which is reduced by 5.84% 
compared to the topology result, and the displacement at the middle point  is 0.74m. Figure 16 gives a full 
dimensions of the optimal shape of the identified geometry. The displacement contour of the optimal shape is 
shown in Figure 17.

  Figure 15: Design variables              Figure 16: Optimal shape                Figure 17: Displacement contour                 

7. Conclusions 
In this paper, 2D geometry features are identified from topology optimization results, followed by section or shape 
optimization. Both numerical examples indicate that the proposed techniques for geometric features identification 
are valid and capable to interpret topology results. In addition, the proposed structure design framework shows that
topology and shape/section optimization can be integrated to effectively obtain structural designs for 
manufacturing. However, some future work needs to be considered, for example, parameterizing boundary 
conditions to make process fully automatic, and applying this integration framework into 3 dimensional structures. 
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1. Abstract
In many cases prestressed concrete structures are more advantages than ordinary reinforced concrete structures. 
However, designing prestressed concrete structures that fulfil the optimum criteria is not an easy task. This is 
because there is an interaction between the size of cross sections and prestressing force that has to be given to the 
structures.  Optimization of prestressed concrete structures becomes a challenging task for most structural 
designers. This paper considers optimization procedures for prestressed concrete beams. For obtaining 
prestressing force, the moment coefficient method, which is the ratio of moment due to prestressing force divided 
by prestressing force, is used in the computation.  In statically determinate structures this coefficient exactly is the 
eccentricity between center of gravity of the section and the center of gravity of the prestressing steel. However, in 
statically indeterminate structures, this ratio is not the same as the eccentricity; due to the presence of the 
secondary moments. This leads to the concept of the moment coefficient- .  The optimization of both cross 
sections and prestressing force is carried out using real coded genetic algorithms (RCGAs), which has been 
successfully applied in many problems. One of the advantages of RCGAs is that it has the ability to explore the 
unknown domains that might be difficult to achieve by using binary coded. To show the effectiveness of the 
method, numerical examples are carried out using the proposed method. In the numerical examples, the 
optimization of cross sections and prestressing forces of both simple and continuous beams are considered.  It can 
be shown that the method is effective to obtain the optimum cross section as well as prestressing force. 
2. Keywords: prestressed concrete, optimization, real coded genetic algorithms, indeterminate prestressed 
structures.

3. Introduction 
When the span of structures tends to be longer and longer, the needs of light structures becomes essential. 
Prestressed concrete is one of the solution to reduce the dimension of the members. With the simple concept, i.e., 
to reduce the tensile stress in concrete by applying the prestressing force, while maintaining the compressive force 
within the allowable stress, prestressed concrete has been receiving attention from designers. By using prestressed 
concrete it is possible to design longer structures compare to ordinary reinforced concrete. In another word, it is 
possible to achieve more efficient prestressed concrete members in contrast to ordinary reinforced concrete ones 
for the same loading. Other advantages of prestressed concrete are much less cracking, rapid construction and 
better quality control compared to ordinary reinforced concrete construction. Despite those advantages, designing 
prestressed concrete becomes more complex. This is due to the interaction between prestressing force and other 
requirements such as allowable stresses, which are also the function of the prestressing forces.
One method to design prestressed concrete members is by using the famous Lin’s load balancing method [1], 
which is very simple, especially for one-span simple beams. For complex members, such as continuous beams, 
there will be a secondary moment due to the hyperstatic forces presence in statically indeterminate structures. In 
addition, for continuous beam the smooth transition of the cable profile should be maintained in the middle 
supports that render the application of the load balancing method. In order to alleviate this difficulty, the use of 
moment coefficient- method has been proposed in [2-3]. This method has the ability also to avoid searching the 
concordant cable, which is usually very tedious. In statically determinate prestressed structures the 
coefficient- turns to, exactly, the eccentricity of the tendon with respect to the center of gravity of concrete 
sections.
Recently optimization methods have also received a considerably attention from the structural designers [4-5]. 
These include size, shape and topology optimizations [6-7]. The algorithms used to optimize the problems include 
particle swarm optimizations, genetic algorithms, and ant colony methods [6-9]. In this paper real coded genetic 
algorithms (RCGAs) that have been used in control system [10] is used to optimize the cross sections and 
prestressing force of prestressed beams. 

4. Design of Determinate and Indeterminate Prestressed Beams 
The elastic design of prestressed concrete beams is to ensure that the stresses under service load conditions are 
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within the allowable stresses as follows: 
UL                                                                            (1) 

where L = allowable compressive stress (lower limit), U = allowable tensile stress (upper limit), and  the 
stresses at the extreme fibers can be obtained as 
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                                                              (2) 

in which F = prestressing force, cA = cross section area, FM = moment due to prestress, fy = distance from the 
extreme fibers to the center of gravity of the concrete section, cI = second moment area of the section, and M = 
moment due to external loads. 
The moment due to prestress FM  can be obtained as: 

×

×
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                                                 (3) 

where e  = the eccentricity of center of gravity of the steel (cgs) with respect to the center of gravity of the concrete 
section (cgc), and = prestressing moment coefficient. Eq. (3) clearly indicates that for determinate structures e = 

. The coefficient can be obtained by dividing moment due to prestressing force (as the effect of the equivalent 
load from prestressing) by the magnitude of prestressing force in the tendons [2-3].  Throughout the paper, notation 

will be used as a general case. Eq. (3) also means that here we have already considered the effect of the 
secondary moment due to the hyperstatic moment in the statically indeterminate prestressed concrete structures. 
Following [2-3], at transfer (initial condition), the stress at the top fiber can be obtained as follows: 
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where iF = prestressing force at transfer, × iFi FM , yt = neutral axis distance to top fiber, DLM  = moment due 

to dead load, ti  = allowable tensile stress in concrete at transfer, and ci  = allowable compressive stress in 
concrete at transfer.
Similarly, the stress at the bottom fiber has to follow: 
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where by  = neutral axis distance to top fiber 
At the final condition, the stress at the top fiber has to follow: 
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where F = prestressing force at the final stage after loss of prestress, × FMF , TLM = moment due to the total 

load, t = allowable tensile stress at the final condition, and c = allowable compressive stress  at the final 
condition.
Similarly, the stress at the bottom fiber has to follow: 

t
c

bTL

c

bF

c
c I

yM
I

yM
A
F

 (7)

4.1. Prestressing Force Governed by Stress Conditions at Transfer 
For simplicity, we take the notations: 
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At transfer, when the stress at the top fiber is in tension, and considering Eqs. (8) and (9), after several 
manipulations one can obtain[2-3]: 
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Eq. (11)  becomes 

438

Leo
Rectangle



3




t

2
DLtti

maxi

y
r
MZF , for 0

y
r

t

2
                                                    (12a) 




t

2
DLtti

mini

y
r
MZF ,  for 0

y
r

t

2
                                                    (12b) 

Similarly, when the resulting stress at the top fiber is a compressive stress, we can obtain as follows:  
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Eqs. (12)-(13) are the results to ensure that the stress at the top fiber is within the allowable stress. 
Similarly, in order to make sure that the stress at the bottom fiber at transfer in Eq. (7) is within the allowable 
stress, considering Eq. (10) one obtains as follows. 
When the resulting stress is tensile stress: 
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When the resulting stress is compressive stress: 
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Eqs. (14)-(15) will ensure that the stress at the bottom fiber is within the allowable stress. 

4.2. Prestressing Force Governed by Stress Conditions at the Final Stage 
By using similar steps, the resulting equations from the final stage condition, after loss of prestress  can be obtained 
by considering: 

iFF                                                                                (16) 
where = effective prestress coefficient after loss of prestress.  
Following [2-3], when the resulting stress at the top fiber is governed by the allowable tensile stress: 
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When the resulting stress at the top fiber is governed by the allowable compressive stress: 
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When the stress at the bottom fiber is in tension: 



b

2
TLbt

maxi

y
r
MZF ,  for 0

y
r

b

2
                                                    (19a) 



b

2
TLbt

mini

y
r
MZF , for 0

y
r

b

2
 (19b)

Similarly, when the stress in the bottom fiber is in compression one can obtain: 
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Prestressing forces for indeterminate prestressed concrete beams can be obtained from Eqs. (12)-(20). For 
determinate structures, the coefficient = e. 

5. Optimization of Prestressing Force and Cross Sections 
In this paper real coded genetic algorithms (RCGAs) which have been successfully applied in the control systems 
[10] are used to optimize the cross sections as well as the magnitude of the prestressing force. RCGAs have the 
advantages that they can explore the unknown domain of design variables [10]. This is due to mutation and 
crossover operators used in the RCGAs. The steps of GAs used in RCGAs are also slightly modified, where after 
crossover and mutation, a portion of new individuals are inserted in order to increase the variability in the 
population. In addition, elitist strategy [11] is also used in this paper. Flow chart of RCGAs used in this paper is 
depicted in Fig.1.  The objective function J is taken as the cost of the material given by 

W
1CJ f                                                                              (21) 

where fC  is coefficient to scale the objective function and W is the total cost of the material obtained from 

sscc CWCWW                                                                     (22) 
in which cC = unit cost of concrete, cW = weight of concrete, sC = unit cost of steel, and sW = weight of steel. 

5.1. Numerical Example 1 
The first example is a simple beam having span = 15 m, '

cf = 30 MPa, '
cif = 25 MPa, unit weight of concrete = 24 

kN/m3, unit weight of steel = 7.85 kN/m3, unit cost of concrete = 1,500,000.00 unit/m3, unit cost of steel = 
40,000.00 unit/kg, dead load = 9.1 kN/m, and live load = 5 kN/m. The cable profile is parabolic with no 
eccentricity at the end of the member. The cgs of the tendon at midspan is taken minimum 0.12 m from the bottom 
fiber. The minimum width of beam is set up to 0.4 m. The allowable stress is taken as follows: allowable tensile 

stress at initial '
citi f25.0 , allowable compressive stress at initial '

cici f60.0  , allowable tensile stress at 

the final stage '
ct f50.0 , and allowable compressive stress at the final stage '

cc f45.0 .
RCGAs are used to optimize the structures, where maximum generation is taken = 500, probability of crossover = 
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0.8, probability of mutation = 0.1, portion of inserted new individuals = 10% of the total population, population 
size = 15.  The scale factor fC is taken = 810  and the effective prestress coefficient = 0.8.
After 500 generations the resulting beam section is b = 0.40 m, and h = 0.71 m. The prestressing force at 
transfer iF is bounded between 1755.5 kN and 2693.6 kN. In this case the minimum force iF = 1755.5 kN is used, 
resulting in the objective function J = 6.1518. 

Fig.1. Flowchart for optimization 
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Fig. 2. Best fitness of example 1 

5.2. Numerical Example 2 
A three-span beam is designed as prestressed concrete member. Each span has 15 m in length. Other properties are 
the same as in numerical example 1. The same RCGAs are utilized, where four runs have been carried out to solve 
this problem. In this case fC is taken = 810 .  The evolving best fitness for this case is shown in Fig. 3. After 500 
generations the resulting design is b = 0.40 m, h = 1.28 m, the prestressing force at initial iF = 553.7 kN to 685.1 
kN. By using iF = 553.7 kN, the resulting objective function J = 2.186. 

6. Conclusions 
The optimization method for obtaining the cross sections and prestressing forces has been discussed in this paper. 
Determination of the prestressing force is utilizing the coefficient- so that it is not necessary to compute the 
secondary moment that presence in the statically indeterminate structures. The optimization method is utilizing 
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real coded genetic algorithms. It is noted that for simple beams, the coefficient  is exactly equals to the 
eccentricity of the cable from the center of gravity of the sections. Two numerical examples have been carried out. 
The first is a one-span beam and the second is a three-span beam. It is demonstrated that the procedure is able to 
obtain the cross sections as well as the prestressing force that has to be given to the structures. 
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Fig. 3. Best fitness of example 2 
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Abstract
The emergence of Hypersonic-Glide Vehicle (HGV) in the hypersonic regime brings a new series of technical 
challenges such as strong system integration of parametric model, aerodynamics, thermal, trajectory, and 
problems about rapidly selecting acceptable conceptual designs.Traditionally, the subsystem of HGV models is 
designed and optimized separated without considering coupling, leading to losing the globally optimal solution. In 
this paper, the HGV Integrated Design Environment (HGVIDE) for HGV design and optimization will be 
presented, to improve the quality and efficiency of the traditional single solution optimization. First of all ,a 
parametric design method based on class function/shape function transformation (CST) and power function was 
established as the starting step on which the engineering estimation models for aerodynamic force and flux were 
executed. Secondly, it assesses the effect of vehicle design variables on the maximum lift-drag ratio boost-glide 
trajectory. Finally, the performance optimization problem is presented, which demonstrate the application of 
optimization techniques to the multi-disciplinary and multi-objective design of HGV. The investigation shows that 
the methods feature higher efficient and further complete, thus can give better optimal results for HGV integrated 
design and optimization problems. 

Keywords: Hypersonic-Glide Vehicle, Parametric Modeling, Integrated Design, Multi-objective Optimization

Introduction
Hypersonic vehicles employing high L/D body offer affordable commercial and military applications. The 
emergence of Hypersonic-Glide Vehicle (HGV) in the hypersonic regime brings a new series of technical 
challenges, such as strong system integration of parametric modeling, aerodynamics, thermal, trajectory, and 
problems about rapidly selecting acceptable conceptual designs. To address these challenges, a HGV Integrated 
Design Environment (HGVIDE) which is based on Multi-disciplinary Design Optimization (MDO) method and 
multi-disciplinary integration technology is designed and applied to HGV multidisciplinary design optimization.  
Many examples of MDO applications are presented in the literature . The need to improve the engineering 
design process is an endless challenge . For this purpose, system level optimization is needed to determine the 
most effective integrated concept. Whether the goals are to improve the quality of a design, or to reduce the 
amount of time required to do design, the desire to get better always exists . Traditionally, the subsystem of HGV 
models are designed and optimized separated without considering coupling. However the solution to the design 
problem does not reside within one discipline but will only be found by investigating the complex interactions 
between various disciplines. The objective of this paper was the development of integrated system approach to 
evaluate the best design to achieve overall performance. The HGVIDE is a tool used in  research and development 
arena, focused on the design and optimization to improve the quality and efficiency of the traditional single 
solution optimization. The key idea is to use multi-disciplinary and multi-objective design and optimization 
aiming at aerodynamic performance and ballistic performance simultaneously to get more acceptable results.  
The reference design point for HGV was as shown in figure 2-3 with the evaluation of the unpowered skipping 
trajectory. The major blocks of the simulation are geometry module, aerodynamics force module, aerodynamics 
thermal module, trajectory simulation module, and optimization module. Example capabilities of the process are 
demonstrated followed by conclusions and future plans. 

1 HGVIDE Multi-Disciplinary Module 
There are five main modules which make up the HGVIDE system, such as the Geometry Module, the 
Aerodynamics Force Module, the Aerodynamics Thermal Module, the Trajectory Simulation Module, and 
optimization module..The execution of the HGVIDE system is shown in Figure 1, as a design structure matrix. In 
this figure, the HGVIDE analysis modules are shown on the diagonal of a matrix in their execution order. The data 
generated by a module is shown on the module’s row of the matrix (with the exception of the left column, which is 
input by the user or the optimization system). The data that a module needs from the HGVIDE system is shown in 
Figure 1. This is a useful tool for visualizing the overall process, as “feedforward” interactions are shown in the 
upper right triangle of the matrix, and “feedback” interactions are shown in the lower left. It helps to make module 
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execution order decisions, as the desire is to minimize feedback interactions, which must be handled through 
iteration. Note that the HGVIDE system is far too complex to display in a single figure, so Figure 1 only shows the 
most significant interactions between modules. A system-level optimization layer is then added to the entire 
multidisciplinary analysis system .   

GeometricVariables

Geometry

Aerodynamics

Trajectory

Thermal

TrajectoryConstraintsOuter MoldLineAerodynamicDates

Optimize
Thermal ProtectionPerformanceFlightPerformanceFlightPathA e r o d y n a m i cThermal DatesAerodynamic DatesVolumeRequirementsEntity MoldMaterialSelection

Figure 1: Main Modules of HGVIDE    

1.1 Geometry Module  
The HGVIDE Geometry Module is responsible for maintaining a geometric model of the configuration being 
analyzed, and for updating that model as system level design variables are being changed. This module based on 
class function/shape function transformation(CST) dividing geometry configuration into top view outline 
parameter, side-looking outline parameter and bottom view outline parameter.  
1.1.1 Top View Outline Parameter 
As figure 2 shows, the top view outline parameter consists of six parameter, but total length L and bottom width W
are separately assigned to 4000mm and 2400mm. In addition, the length of the dome L1 and width of the dome 
bottom W1 are nearly constant, so only two parameters are needed, the length of precentrum L2 and width of the 
precentrum bottom W2 to describe the top view outline. 

1L 2L 3L

1W
1

2

2W W

L

1L 2L 3L
L

1H

l

u
uH

lH

Figure 2: Top View Outline Figure 3: Side-looking Outline 

1.1.2 Side-looking Outline Parameter 
As figure 3 shows, the top view outline parameter consists of three parameters, but the thickness of the half dome 
H1 are nearly constant, so only two parameters are needed, the thickness of back cone bottom Hu and Hl to describe 
the top view outline. 
1.1.3 Bottom View Outline Parameter 
Based on class function/ transformation (CST), the bottom view outline physical coordinate  ,x y  is converted 
into parameterized coordinate  ,  as Eq.(1), then the parameterized coordinate  ,  can describe as multiply 
class function  1

2

c

c

N
NC  by shape function  1

2

c

c

N
NS  as follows:

Shape function is 22 cNS   based on this mission. Class function is      21 1 , 0,1cc
NNC  . Where 

1cN , 2cN  are class function index numbers, we can get 1 2c c cN N N   for plane symmetry aircraft. 
In conclusion, the HGVIDE geometry module just need 2L , 2W , uH , lH , cuN  and clN  all six parameters to 

     C S
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express the Hypersonic-Glide Vehicle (HGV) appearance geometry feature. These parameters based on CST are 
separately but definitely, to confirm this module. examples are showed as follows. 

Figure 4: Examples based on CST method 
The HGVIDE Geometry Module provides the structural subsystem data associated with the overall vehicle. The 
data includes a global surface mesh model and mass properties of the vehicle. A conceptual layout of the Geometry 
Module showing its three major components are shown graphically in Figure 5.

3D Model 
GenerationInput To Module Mesh Generation Aerodynamics

Routine Output From Module

Flight Conditions

Figure 5: Architecture of the Aerodynamics Force Module 

1.2 Aerodynamics Force Module 
The HGVIDE Aerodynamics Force Module computes the aerodynamic performance of the vehicle over the 
expected flight envelope using a set of engineering estimation methods to aerodynamic analysis. This includes 
the modified Newton’s formula as Eq.(2) based on Lees’ contribution to complete pressure coefficient simulation 
of the windward side, and the Prandtl-Meyer’s formula as Eq.(3) to complete the leeside. This approach combines 
the panel method code and the engineering estimation methods which described above to bias the low fidelity 
solution. This results in a good compromise between accuracy and solution time. 
Modified Newton’s formula: 

2
max sinp pC C

2 21
1 1

max 2 2
1 1

( 1) 1 22 ( ) 1
4 2( 1) 1p

M MC
M M

 




where PC  is the pressure coefficient maxpC is the max pressure coefficient,  is the inclination of the aircraft. 
Prandtl-Meyer’s formula: 

2
2+1 4- 1+ 1

2 + MpC 
（ 1） a

in which,  is the impact angle. 

1.3 Aerodynamics Thermal Module 
The HGVIDE Aerodynamics Thermal Module computes the stagnation point aerodynamic heating environment, 
and simulates the stagnation heat flux as the main index of the whole vehicle aerodynamic heating. Based on the 
flight conditions, height and temperature of the wall, this module introduces Scala  formula as Eq.(4) to compute 
the density of stagnation heat flux.

312.488 (10.0) (3.281 10 )a
ws b

N

q v
R

 ×
5 5

5 7

(0.9689 6.9984 10 )(5.626 3.2285 10 )

(0.9793 4.6715 10 )(2.838 9.843 10 )
w

w

a T h

b T h

  ×  ×

  ×  ×

where wsq is the density of stagnation heat flux, NR is the radius of curvature of stagnation , v is the flight 
velocity, wT is the temperature of the wall, and h is the flight height.1.4 Trajectory Simulation Module. 
Based on boost – gliding trajectory, the trajectory simulation will consist of a three degree of freedom (3DOF) and 
a three section of process includes boost, free and reentry phase as Eq.(5~7), untrimmed analysis of the vehicle 
starting at time zero to the desired final statement.
Section 1: Boost Phase 
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Section 2: Free Phase 
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For the sake of analysis efficiency, the attitude dynamics and other less important equations are neglected.  

1.5 Multi-disciplinary integration 
Each of these component modules has a clearly description above. The HGV Integrated Design Environment 
(HGVIDE) which based on multi-disciplinary integration technology is designed and applied to HGV 
multidisciplinary design optimization. 

2 HGV Trajectory Performance Multidisciplinary optimization 
The fundamental approach employed in this work included construction of a parametric configuration geometry 
model; development of physics models for aerodynamics, heat flux, and mass properties as functions of geometric 
variables; then use of trajectory analysis to assess vehicle performance and a numerical optimization algorithm to 
search the set of geometric variables that maximize overall performance. To demonstrate the application of 
optimization techniques to the multi-disciplinary and multi-objective design of HGV, overall performances 
optimization problems are established. In this section, six geometry parameters and mass ( M  ) are set as design 
parameters, the trajectory performance design function presents maximal range trajectory fR and minimal total 

heat adsorption capacity of stationary point Q , and the corresponding Pareto fronts are used for describing results. 

2.1 Optimization Model 
Now, there are all seven design parameters, therein six geometry parameters are not facility to complete 
optimization, so we take Latin-Hypercube experiment design (DOE) to acquire the sensitivity of each parameter 
about the fR  and Q . In our research, clN  has the minimal effect on range trajectory (1% ) and total heat 

adsorption capacity of stationary point ( 2% ), as a result, we select other six parameters M , 2L , cuN , uH , lH ,

2W  for optimization. On the other hand, during the parameters sensitivity analysis, it’s easy to find that the 
tendency of maximal range trajectory 

fR and minimal total heat adsorption capacity of stationary point Q
response curve for six geometry parameters are opposite. In practice, the fR and Q are important to HGV 
overall performance design, but the opposite tendency impose restrictions on the best optimization, so only aiming 
at fR and Q  meanwhile, can we realize multi-disciplinary trajectory optimization.  
In order to endure the volume ratio and stability of the HGV, meanwhile considering the structural strength and 
thermal protection, it’s reasonable to regard the volume V, the longitudinal pressure coefficient PX , the dynamic 
pressure   and heat flux Q  as constraint conditions. Optimization model as Eq.(8) follows: 
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Where F is Optimization objective, X is design space, and . .s t  are constraint conditions.
2.2 Multi-disciplinary Optimization Result 
Based on Multi-Disciplinary Integration platform we created before, by calling genetic algorithm optimizer 
Darwin, it’s not difficult to establish the optimization model for Multi-disciplinary Optimization. In the end, the 
corresponding Pareto front is obtained as figure 6 shows.

Figure 6: Multi-disciplinary optimization Pareto fronts 

In figure 6, the based starting design (BS) and optimization Pareto fronts are separately marked as solid and hollow 
circles. More specifically, “Min Q  and Max Rf are maximal range trajectory fR  and minimal total heat 

adsorption capacity of stationary point Q , but the hollow-black ( Ideal ), which represents both maximal range 
trajectory and minimal total heat adsorption capacity of stationary point is conflicted, is impossible to reach. 
What’s meaningful to feasible solution is Pareto fronts which within the range from LBFS to UBFS , such 
as TFS ,can magnify trajectory range and decrease total heat adsorption capacity of stationary point. In 
addition, the Pareto fronts outside of this range, such as TPS , can only change just one of two optimization 
performance. 
In conclusion, the BS and TFS project appearance of HGV are showed in Figure 6, and the comparison between 
BS and TFS is also presented in Table 1. What’s more, trajectory performance multi-disciplinary optimization 
based on HGVIDE in this article have achieved outstanding improvement. The maximal range trajectory 

fR
increases from 4332.6km  to 4874.5km  rising 12.51% , at the same time, the minimal total heat adsorption capacity 
of stationary point Q  decreases from 22284.1kW/m  to 21942.3kW/m  decreasing 14.92% . In practice, we can select the 
finest corresponding Pareto front on the basis of design demands. 
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(a) BS project appearance (b) TFS project appearance 

Figure 7: BS(a) and TFS(b) project appearance of HGV 

Table1: Comparison between BS and TFS 

Index BS TFS Difference(%) 
(km)fR 4332.6 4874.5 12.51 

2(kW/m )Q 2284.1 1942.3 -14.92 

3  CONCLUSIONS 
In this article, a HGV Integrated Design Environment (HGVIDE) which based on Multidisciplinary Design 
Optimization (MDO) method and multi-disciplinary integration technology is designed and applied to HGV 
multidisciplinary design optimization. To develop a reasonable goal requirement in pre-concept design phase of 
HGV, a probabilistic analysis is presented. The procedure consists of probabilistic model based CST, 
aerodynamics force, thermal, trajectory simulation module, and multi-objective optimization. The most 
influential variables are selected by design of experiment method to make approximate model in the initial step. 
The objective is minimizing flux and maximizing range, the use of genetic algorithms to select from discrete 
component choices has been proven valuable in selecting the Pareto front. The HGV design capabilities 
presented in this paper will allow engineers to make quick changes to conceptual aero-shape design and get 
accurate, integrated results. 
Results of the system level optimization showed the HGV tends to accelerate to the optimization efficient. And 
the presented methodology is satisfied to establish the acceptable solution requirement in pre-concept design 
phase.  The HGVIDE system provides a design, analysis, and optimization tool with extensive capabilities, the 
environment can be used for on HGV integrated design and optimization, which has a good reference value for 
HGV overall design. The present approach provides many benefits to conceptual designers. The approach offers 
a better method for comparing the viability of candidate designs.Further work will focus on increasing the 
fidelity of the example models and incorporating more discrete system selection choices for construction of more 
complex systems. 
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1. Abstract
Shape optimization of parameterized thin shell structures is increasingly considered by automotive industry

in order to face nonlinear dynamics problems like crashworthiness. Since the number of shape parameters is im-

portant, traditional multidisciplinary optimization methods such as metamodeling techniques become less efficient

due to expensive calculation times. A way to get around the problem is to switch to gradient methods which are

less sensitive to the number of parameters. However, shape sensitivities are often hard and costly to calculate for

highly nonlinear problems.

Inspired by the Equivalent Static Loads Method, we defined linear static problems on which we perform a

shape sensitivity analysis. After linking sensitivity maps with CAD parameters, gradients are used as descent di-

rections for the nonlinear objective function. We applied successfully the method to two test cases: minimization

of a nodal displacement and maximization of the absorbed energy. Because the calculation of this descent direction

is inexpensive, this new optimization method allows performing crashworthiness optimization studies with a large

number of parameters.

2. Keywords: Shape optimization, Crashworthiness, Equivalent Static Loads, Approximated gradient.

3. Introduction
Depending on the optimization variables that describe the shape of the domain to be optimized, shape optimiza-

tion can be classified in three categories : topology, shape and parametric optimizations [3]. Automotive industry

has a growing interest on parametric shape optimization since it directly takes into account the manufacturing

process. Indeed, knowing more severe specifications and a will of mass reduction, this industry is enlarging the

optimization design space to shape parameters.

Crashworthiness is one of the most dimensioning specifications of the body in white and is still problematic.

Even if it is possible to calculate a descent direction with finite difference [5], this method has not been used due

to the numerical noise, the high nonlinearity and the heavy calculation time (e.g. crashworthiness time calculation

for a full vehicle: around 10h/16 processors) of this rapid dynamics problem. Instead, car designers used meta-

modeling techniques which have been succesfully applied to optimization problems with thickness and materials

parameters and also with a few number of shape parameters [6, 2].

However, the optimization cost of those methods dramatically increase with the number of shape parameters.

A way to get around this issue is to switch to gradient methods where the number of parameters has a reduced

effect on the optimization cost.

Recently, a new optimization algorithm for nonlinear problems, the Equivalent Static Loads Method, has been

proposed by Park [7]. Inspired by this method, we have defined linear static problems equivalent to the rapid

dynamic problem on which we calculate shape sensitivity. This gradient is then used as descent direction for

the nonlinear problem. This method and its applications to two crashworthiness specifications are explained in

following parts.

4. Calculation of the descent direction
In order to test our descent directions, we have applied the method to mono-objective crashworthiness prob-

lems. The rapid dynamic problem could be written as follow :

Optimization problem in rapid dynamic
Find the n shape parameters P = {Pi} , i = 1..n
To minimize JNL(P), the nonlinear objective function

Subject to constraints on the variation of the shape parameters Pmin
i ≤ Pi ≤ Pmax

i , i = 1..n

1

449

Leo
Rectangle



Where XNL is the solution of the rapid dynamic equation (1).

M(P)ẌNL(t,P)+KT [XNL(t,P),P]ΔXNL(t,P) = FNL(t,P) , t = t1..t f (1)

With M the mass matrix, KT the tangent stiffness matrix, FNL the external loading vector and XNL the displacement

vector.

4.1. Equivalent Static Loads concept

Park proposed the Equivalent Static Loads Method (ESLM) and succesfully applied it to several nonlinear

problems [7, 8]. As illustrated in Figure 1, ESLM consists in the creation of f linear static problems equivalent

to the nonlinear problem at a time ts and this for each time step s = 1.. f . The optimization is performed on the

Design Domain (linear static problems) and the result is used to update the Analysis Domain (nonlinear problem).

A new nonlinear analysis is performed and new equivalent static problems are created. This process is repeated

until convergence.

Analysis Domain Design Domain

Nonlinear analysis

MẌNL(t)+KT ΔXNL(t) = FNL(t)
t = t1..t f

Linear static problems

optimization

KLXL(s) = feq(s)
s = 1.. f

New parameters

Calculation of
equivalent static

loads
Solution field feq

Figure 1: Optimization process of the Equivalent Static Loads Method

Linear static equations are defined in equation (2).

KL(P)XL(s,P) = feq(s) , s = 1.. f (2)

where KL is the static linear stiffness matrix of the initial (non-deformed) domain, XL the linear displacement vector

solution of the equation and feq(s) is the equivalent static load chosen to preserve the field at step time ts we want

to optimize in the linear static problem.

For example, if we want to optimize the displacement of a node, we have to preserve the non-linear dis-

placement XNL(ts) solution of (1) at ts. Writing feq(s) = KLXNL(ts), we preserve the nonlinear displacement field:

XL(s) = XNL(ts).

4.2. Presentation of the method

Inspired by the Equivalent Static Loads Method, we propose to use the shape sensitivity calculated on equiva-

lent linear static problems as a descent direction for the rapid dynamic problem. We studied two crashworthiness

specifications. The first one is to minimize a nodal displacement. Then, we defined a static linear problem that

preserve the displacement field. In the second study, we had to maximize the absorbed energy of a part of the

domain. In this case, we had to preserve both strain and stress fields in a linear static problem.

Methods of calculation of the two descent directions are explained in this part. Shape sensitivities are first cal-

culated on the nodes position of the CAE∗ model. The link between this sensitivity mapping and CAD† parameters

is explained in the next section.

4.2.1. Descent direction calculation for the optimization of a nodal displacement

The objective function that we want to minimize is JNL(P) = uNL(ta,P) where uNL(ta,P) is a nodal displace-

ment at ta fixed. Since the objective function is a displacement function, we need to preserve XNL in the equivalent

linear static equation (3).

KL(P)XL(P) = feq (3)

with KL the linear stiffness matrix of the initial non-deformed domain and feq = KLXNL(ta).
The shape sensitivity is issued from the linear model, that meens that we approximate dPJNL by dPJL. Because

∂PJL = 0, the descent direction used for the nonlinear objective function is dPJL = ∂QJL.∂PQ where Q is the nodes

∗Computer Aided Engineering
†Computer Aided Design
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position of the CAE model. We have seen that, under quasi-static and quasi-proportionnal loadings (reversibil-

ity) hypotheses [4], we have 〈dPJNL,dPJL〉 ≥ 0 and then −dPJL is well a descent direction of the rapid dynamic

problem.

Since the explicit algorithm used to solve equation (1) is stable, quasi-static hypothese is validated. The fol-

lowing conditions are needed to validate the second hypothese:

– the initial state is the non-deformed and non-hardened state,

– the material law is a Prandtl-Reuss law,

– the hardening law is a power function,

– principal directions of stress tensor are quasi-constants,

– and elastic strains are negligible.

4.2.2. Descent direction calculation for the optimization of the absorbed energy

Another important crashworthiness specification is to ensure a good behavior of the crash scenario. Engineers

have to control the energy absorbed by a component of the car. The nonlinear objective function is defined in

equation (4).

JNL(P) =
∫

Ω(P)

∫ t f

t1
〈σNL(x, t)〉{ε̇NL(x, t)} dt dV (4)

where σNL is the stress field and ε̇NL(x, t)≈ 1
Δτ (εNL(x, t)− εNL(x, t −Δτ)) with εNL the strain field.

Doing a temporal discretization and writing Δτ = ts − ts−1, we rewrite equation (4) to (5).

JNL(P) =
f

∑
s=1

∫
Ω(P)

〈σNL(x, ts)〉[{εNL(x, ts)}−{εNL(x, ts−1)}] dV (5)

With this kind of objective function, we need to preserve both stress and strain fields within the same linear

static problem. To do so, we have to use the secant stiffness matrix KS(P, ts) which is calculated by assembling the

element secant stiffness matrices: KS(P, ts) =
nb.elem.

∑
e=1

[T e(P)]T [Ke
S(P, ts)]loc[T e(P)] where [T e(P)] is the change of

basis matrix and [Ke
S(P, ts)]loc is calculated with the secant modulus of elasticity visible in Figure 2.

ESE

ε̄NL ε̄

σ̄NL

σ̄

ES =
σ̄NL
ε̄NL

Figure 2: Definition of the secant modulus of elasticity ES

By using the secant stiffness matrix, we can define linear static problems for each time step which preserve

σNL(x, ts1
) and εNL(x, ts2

) in the same equation (6). The equivalent static load is calculated to preserve the strain

field.

KS(P,s1,s2)XL(P) = fε
eq (6)

The equivalent linear objective funtion is then JL(P) =
f

∑
s=1

J̃L(P,s,s)− J̃L(P,s,s−1), where J̃L(P,s1,s2), calcu-

lated with equation (6), is defined in equation (7).

J̃L(P) =
∫

Ω(P)
〈σL(x,s1)〉[{εL(x,s2)} dV (7)

Since J̃L is a compliance-like criteria, it is quite easy to assess a shape derivative. The descent direction used

for the nonlinear problem is then defined in equation (8).

∂PJL(P) =
f

∑
s=1

∂PJ̃L(P,s,s)−∂PJ̃L(P,s,s−1) (8)
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4.3. Test algorithm

In order to test the descent directions calculated previously, we have used the algorithm illustrated in figure 3.

By using an adaptative step-length, the test algorithm is closed to a line-search algorithm.

Initial geometry

ESLs calculation

Shape sensitivity

calculation

Updating of
geometry

New geometry

testing

End

NOK

↘ αk

OK

↗ αk+1

1

2

3

4

5

1 : CAD creation, meshing and crashworthiness calculation

2 : Post-processing and linear static problems definition

3 : JL sensitivity calculation (on nodal positions) ∂QJL and

calculation of the link between nodal positions and shape

parameters ∂PQ

4 : Updating of the shape parameters

Pk+1 = Pk −αk.∂QJL.∂PQ

5 : Meshing of the new CAD model and crashworthiness cal-

culation. We increase or decrease the step-length αk de-

pending on the result.

Figure 3: Algorithm used for testing the descent direction

Previously, we said that the shape sensitivity is calculated on the nodes position. We still have to link the

sensitivity mapping to CAD parameters. In our case, we know the mathematical definition of the geometry : it is a

B-spline surface S headed by its control points P. Because we know the mathematical definition of the parametric

surface, we can easily link the nodal position of a node q and the position of the control point pαβ .

∂pαβ q =
∂S(uq,vq)

∂ pαβ
= bα,l(uq)bβ ,m(vq) (9)

where S is the B-spline surface of orders (l,m), b.,a the B-spline function of order a and (uq,vq) the parametric

coordinates of the node q obtained by minimizing the distance D(S,q) between the node and the surface by a

Newton-Raphson method.

5. Applications
We have used our method on two industrial cases : the minimization of a crash-box crushing that is a nodal

displacement minimization problem and the maximisation of the PEA‡ that is an absorbed energy problem.

5.1. Minimization of a crash-box crushing

In this test case, we want to minimize the crushing of the 150mm length crash-box in steel defined in figure

4-a. This beam has a thickness of 1.5mm and is launched through a rigid wall with an initial velocity of 16km.h−1

(pushing mass : 450kg). The geometry is defined with 3 sketches heading 16 control points illustrated in figure

4-b. Due to symetries, we defined 3 shape parameters on each sketch (9 shape parameters for the problem).

(a) (b)

Figure 4: ”Crash-box” test case (a) and its sketches (b)

Figure 5 represents the results of the optimization. The line-search of the first iteration, figure 5-a, shows that

the problem is noisy and nonlinear. We have done several optimization studies in order to see the effect of the

‡Progressive Energy Absorbed
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repeatability and of the mesh length. These results are visible in figure 5-b and show that a good CAE model

quality is needed. We can also see in figure 5-c the crushing of the initial model and of the optimized one. The

result which seems like a castle could be explained by the fact that the geometry is the one that have the greater

second moment of area.
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Figure 5: Results : line-search used for the first iteration (a),

Effect of repeatability and mesh length on optimization process (b) (mesh length : 2-5mm),

Initial and optimized models crushing (c)

5.2. Maximization of the Progressive Energy Absorbed of a front side member

Traditionnaly, the strategy chosen by engineers to absorbe kinetic energy is a progressive crush of the front side

member. Chase proposed a criterion called Progressive Energy Absorbed (PEA) in order to ensure a good behavior

of the crushing process [1]. We choosed to maximize this objective function for our second test case. The S-beam

visible in figure 6-a is defined with 120 CAD parameters and is launched onto a rigid wall with an initial velocity

of 30km.h−1 (pushing mass : 450kg, thickness : 1.5mm). We also defined 6 zones in order to calculate the PEA

with equation (10).

PEA =
5

∑
N=1

(EAN(UN)−EAN(UN−1))−EA6 (10)

Where EAN(UN) is the energy absorbed by zone N when the beam has crushed of UN , EA6 is the total energy

absorbed by zone 6 and values of UN can be seen in figure 6-b.

(a) (b)

U1
U2

U5

450mm

Z1 Z2 Z3 Z4 Z5 Z6

Figure 6: ”S-Beam” test case, its control net (a) and zones for the PEA calculation (b)

Results are in figure 7. The initial geometry has a bad behavior: buckling. By maximizing the PEA, the rear

part is renforced and in 6 iterations, the front side member is crushing progressively.
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(a)

Initial
crushing

Optimized

crushing

(b)

Figure 7: Results : PEA function of iterations (a),

Initial and optimized models crushing (b)

6. Conclusions
We have proposed a method that use linear static problems in order to calculate a descent direction for a

nonlinear crashworthiness problem. Since the calculation of the shape sensitivity is really fast compared to the

crashworthiness calculation, this descent direction can be used for crashworthiness problems with a high number

of parameters without having a too expensive optimization cost. We still have to calculate a descent direction

for other crashworthiness problems like pulses or the Occupant Load Criterion and use them for multi-objectives

optimization problems.
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1. Abstract
This paper presents a robust technique to design snap-through structures. The structural analysis of the snap-
through structure makes use of an arc length control algorithm. To ensure robustness, the prescribed arc length
per increment is halved whenever complex roots are encountered in the arc length control algorithm, or when the
required number of Newton-Raphson iterations exceeds five. The resulting structural analysis is robust, but now
different analyses makes use of different increment sizes. The resulting optimization problem, which minimizes
the error between a target load-deflection curve and the simulated curve, now contains numerical discontinuities.
We demonstrate how gradient-only optimization algorithms can robustly optimize such problems.
2. Keywords: Snap-through, arc length control, gradient-only optimization.

3. Introduction
Analysis of snap-through structures usually requires the use of the arc length control method [1]. In this method,
the usual equilibrium equations are augmented with parametrizing the prescribed loads, and then solving this free
parameter by setting the computed arc length increment equal to some prescribed value. Usually this prescribed
arc length is selected as constant for each load increment during the analysis.

Sometimes, the arc length control algorithm fails to find a solution for a specific load increment. This can mani-
fest in two ways. First, the quadratic control equation may indicate a complex root. Secondly, the Newton-Raphson
scheme used to solve the global equilibrium equations may need an excessive number of iterations to solve. Even
in cases where the number of iterations are reasonable (<20), our experience indicates that the algorithm may then
find solutions on other branches of the equilibrium path. Therefore, we halve the prescribed arc length increment
whenever complex roots are encountered, or whenever the number of Newton-Raphson iterations exceeds five.

The automatic adjustment of the prescribed arc length increment presents a difficulty when attempting to design
a snap-through structure to provide a specific load-displacement curve, using classical gradient-based optimization
algorithms. The adjusting of the prescribed arc length has the same consequence as allowing automatic time
increments for transient problems: the cost function of the resulting optimization problem contains discontinuities
since the same problem is analyzed repeatedly, each time using different prescribed arc length values.

We have significant experience in solving optimization problems that uses non-constant discretization algo-
rithms [2]. Here we demonstrate how classical gradient based algorithms struggle to solve this snap-through
design problem, since these algorithms can get stuck at the numerical (non-physical) discontinuities. We also
demonstrate how gradient-only algorithms, a family of algorithms that do not use function values at all, succeed in
designing the snap-through structures.

4. Numerical example
We demonstrate our algorithm using a simple 1D optimization problem. The structure of interest is similar to the
well known Lee frame, but here we use a geometrically nonlinear truss code for the analysis. The structure is
depicted in Figure 1. Note that two vertical loads are applied, as well as a single horizontal force. The structure is
analysed for the case λ = 0.5, i.e. the horizontal force is one quarter of the total vertical load.

We use our robust arc-length control algorithm to first demonstrate that the problem can be solved for a large
range of ideal prescribed arc length increments L. For this problem a total arc length of 70 units is prescribed. The
analyses are performed for ideal arc length increments of L = 0.21875, 0.4375, 0.875, 1.75 and 3.5. If these ideal
arc lengths can be used without modification throughout the analyses, this would translate to 320, 160, 80, 40 and
20 equal increments to analyse the problem. Figure 2 depicts the horizontal and vertical displacement of point C,
using the two extreme choices for L. Using L = 0.21875 required 320 increments, while using L = 3.5 required 26
increments (since some load steps required L to be reduced). Figure 3 depicts the equilibrium path of point C in
space. Note that at about 70% of the total arc length, the equilibrium path undergoes a sharp turn. It is this corner
that is difficult to negotiate if we use a large ideal arc length increment.
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Figure 1: Undeformed and deformed truss, depicting 5 equal arc length increments
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Figure 2: Undeformed and deformed truss, depicting 5 equal arc length increments
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Figure 3: Displacement of Point C for a total arc length of 70 units.
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Now that the analysis has been demonstrated to be robust, we can proceed to investigate an optimisation
problem. We pose a 1D optimisation problem, using the horizontal force component Fx = λP as the single design
variable. We use the horizontal and vertical force-deflection curves as target curves, for the case λ = 0.5 and
L = 0.21875 (visible as the solid lines in Figure 2). In cases where we use a larger value for L, the analysis
requires fewer increments. In order to compute a cost function (sum of square error for 320 increments) for these
cases, we construct an interpolating spline between the total arc length and the quantity of interest (horizontal
displacement, vertical displacement and load). This allows the computation of the cost function for any number of
load steps available. Note however that this step does introduce discontinuities in the cost function as soon as one
analysis requires a different number of increments as another. To demonstrate the nature of these discontinuities,
we compute the cost function for various choices of L. The cost function is computed for λ ∈ [0.47;0.53]. Since
the target curves were computed for L = 0.21875 and λ = 0.5, we expect the cost function minimum to be at
λ = 0.5.

Figure 4 depicts the cost function curves for various choices of L. Note that as the ideal arc length is increased,
the optimum of the cost function curve drifts from the correct solution (λ = 0.5), and some discontinuities occur.
This behaviour is identical to the variable time-stepping problem in [2]. Classical gradient based algorithms may
become trapped in the highlighted local minimizers, if a line search process happens to locate these local min-
imizers. These step discontinuities manifest as ridges in higher dimensional optimization problems, and in our
experience are more likely to affect classical gradient based algorithms.
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Figure 4: Cost function as the horizontal force varies

Figure 5 depicts the gradient of the cost function, using analytical derivatives. Although the cost function
suggest discontinuities, any analysis is either to the left or the right of the discontinuity. For such an analysis, an
analytical sensitivity analysis can be performed. Therefore, we have the gradient of the cost function available
everywhere.

The suggested algorithm to solve this discontinuous optimization problem, is a gradient-only algorithm. For
algorithmic details, refer to [3]. In essence, function values are ignored and we search for a sign change in the
cost function gradient. Notice from Figure 5 that the function gradient also contains small discontinuities, but the
information remains consistent (i.e. there is no sign change in the gradient over the discontinuity).

Note the drift in the optimum for the largest choice of L = 3.5, from the actual solution λ = 0.5 to λ = 0.5049.
The quality of the solution can only be judged by comparing the target curves to the solved load-displacement
curves, as done in Figure 6. Notice that all the features of the target curves are captured.

Finally, to further motivate the use of varying arc-length increments, Table 1 summarizes the analyses times for
various choices of L. There is clear benefit in using large ideal arc-lengths, but this benefit diminishes gradually.
If the ideal arc-length is chosen too large, almost every increment has to be re-run with a smaller arc-length, and
this reduces the benefit of using large arc-lengths. Nevertheless, for this problem we can expect a speed increase
of a factor 6 when we solve the optimization problem using L = 3.5 rather than L = 0.21875.
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Figure 5: Cost function derivative as the horizontal force varies
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Figure 6: Optimal solution using ideal arc length L = 3.5 versus the target load-displacement curves
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Table 1: Analysis times for different choices of L

L Time(s)
0.21875 8.83
0.43750 5.17
0.87500 2.76
1.75000 1.68
3.50000 1.46

5. Conclusions
We demonstrated that gradient-only algorithms can be used to solve optimization problems that use variable arc-
length control methods in the analysis step. Although the analysis algorithm introduces numerical discontinuities
into the cost function, gradient-only methods are insensitive to these discontinuities. We are currently working on
higher dimensional problems, including shape design variables.
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Abstract
The aim of this work is to present a procedure developed in order to minimize the cost of reinforced concrete building 
frames. To achieve this objective the cross sections dimensions, the area of steel and the concrete strength of beams and 
columns were taken as design variables. The constraints related to dimensions and strength were based on the Brazilian 
standard ABNT NBR 6118 (2007). The total cost, composed by the costs of concrete, steel and formworks, was 
minimized by the usage of Harmony Search Algorithm (HS), an optimization method developed by Geem,  Kim and 
Loganathan (2001), inspired by the observation that the aim of music is to search for a perfect state of harmony. The 
search process is compared to a musician’s improvisation process. Some structures were analyzed, and the results were 
compared to those obtained from the conventional design procedure, in an attempt to identify the influence of factors 
such as resistance class, material costs and beams/columns costs on the optimal design of reinforced concrete building 
frames. This work is a sequence of former studies of the authors regarding optimization of grillages and columns 
sections by heuristics methods.  
Keywords: Building. Frames. Optimization. Reinforced Concrete. Harmony Search Method.  

1. Introduction 

Structural analysis and design usually involve both highly complex procedures and a great number of variables. As a 
consequence, the solution has to be found iteratively while initial values are set to the variables based mainly on 
designer’s sensitivity and experience. Also, the number of analysis steps is remarkably increased if optimum values are 
to be found among all possible alternatives. To mathematically describe the physical response of a structure, extreme 
function values can be found by using optimization techniques.  
The great development of structural optimization took place in the early 60’s, when programming techniques were used 
in the minimization of structures weight. From then on, a great diversity of general techniques has been developed and 
adapted to structural optimization. However, one of the reasons normally attributed to the little application of the 
optimization techniques to real structural engineering problems consists of the complexity of the mathematic model 
generated, normally described by non-linear behavior functions and producing a non-convex space of solutions (several 
points of optimum), problems for which the resolution by traditional mathematical programming methods have proved 
to be little efficient. For the resolution of these kind of problems the heuristic methods have played an important role, 
since they involve only values of functions in the process, regardless if there is unimodality or even continuity in their 
derivatives. Despite the great emphasis in the development of global optimization methods, researchers are even far 
from the attainment of a method that can be applied with the same efficiency to any class of problems. 
This work presents the application of Harmony Search method to the optimization of reinforced concrete building 
frames. To achieve this objective the cross sections dimensions, the area of steel and the concrete strength of beams and 
columns were taken as design variables. The constraints related to dimensions and strength were based on the Brazilian 
standard ABNT NBR 6118/2007 [1]. This work is a sequence of former studies of the authors regarding optimization of 
grillages and columns sections by heuristics methods (e.g. [2] and [3]). 
The next sections of this paper present a brief description of the optimization method, the developed formulation,   
simple application example and some preliminary conclusions.

2. Harmony Search Optimization Algorithm 

Harmony Search Algorithm (HS) is a metaheuristic proposed by Geem, Kim and Loganathan in 2001 [4]. It consists in 
an analogy to musical improvisation of jazz, where musicians try to find, through repeated attempts, the perfect 
harmony (best solution to a problem). Iterations are called improvisations or practice. Variables correspond to musical 
instruments. Values for variables are the sounds of instruments. Each solution is called harmony, and the calculation of 
the objective function is called aesthetic estimation. The method can be summarized in five steps: 

 – Initialization of problem and algorithm parameters: definition of the objective function, the constraints and 
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parameters of the algorithm. Main parameters are Harmony Memory Size (HMS), Harmony Memory Considering Rate 
(HMCR), Pitch Adjusting Rate (PAR) and Maximum Improvisation (MI). 
 – Initialization of Harmony Memory: definition of first Harmony Memory (initial group of solutions). Harmony 
Memory (HM) is represented by a matrix, each line corresponding to a solution vector. The matrix has a number of 
rows equal to HMS and number of columns equal to the number of variables of the problem (N). Harmonies are 
generated randomly between a lower and upper range. 
 – Improvisation of a new harmony: from the initial solution, a new harmony is generated. This step is performed 
by using the parameters PAR and HMCR. For each variable of the new solution, a random number between 0 and 1 is 
generated. This number is compared to the value of HMCR (Harmony Memory Considering Rate). If the random 
number is lesser (probability equal to HMCR), the value of the respective variable in the new solution vector is 
retrieved from Harmony Memory existing. If the random number is greater (probability equal to 1-HMCR), a new value 
for the variable is generated. The choice of this new value can be done in two different ways. Again, a random number 
between 0 and 1 is generated and compared to the parameter PAR. If the number is less than the rate (probability equal 
to PAR), Harmony Memory is considered, but with little adjustment, defined by bw (maximum variation of tone) and a 
random number. If this is greater than PAR (probability equal to 1-PAR), the new value for the variable is randomly 
generated within the interval of possible solutions. 

 – Update of Harmony Memory: At each new harmony improvised, it is checked whether this is better than the 
worst harmony of Harmony Memory (HM), relative the objective function. If confirmed this condition, the new 
harmony replaces the worst harmony of HM. 

 – Check the stopping criterion: usually, the maximum number of improvisations MI. If it is not achieved, the 
algorithm returns to the third step (improvisation of a new harmony). 

 Regarding the original work of Geem, Kim and Loganathan, several improvements and variations of the method 
have been proposed by other authors. An extensive study regarding these variations can be found, e.g., in Ingram and 
Zhang [5], and in Fourie, Green and Geem [6]. 
 Mahadavi, Fesanghary and Damangir [7], for example, refined the method by developing the Improved Harmony 
Search Algorithm (IHS). It was suggested in IHS the dynamic variation of parameters PAR and bw, according to the 
number of iterations, between minimum and maximum limits for each factor. PAR increases linearly, while the 
parameter bw decreases exponentially.

Along with the inclusion of the variable parameters of IHS, other variations in original algorithm were proposed and 
incorporated into present work: 

-Instead of generating all initial solutions randomly, as usual, one predefined solution can be included in the 
Harmony Memory; 

-To avoid premature convergence to local minimum, the Harmony Memory is restarted when all solutions achieve 
similar values. Only the best current solution is included in this new HM; 

-As an additional stopping criterion to avoid unnecessary calculations, the algorithm developed in this work can 
terminate the search when the best solution found does not varies after successive NR restarts.  

3. Problem formulation 

Considering rectangular cross sections of a plane frame, the objective of optimum design is to obtain a configuration 
that is capable of producing internal forces (Nrd and Mrd to columns and Mrd and Vrd to beams) equal or higher than the 
applied external loadings (Nsd, Msd, Vsd), with minimal cost. The verification is made according to Brazilian standard 
ABNT NBR-6118/07 [1], regarding strength and limitations of size, spacing, and steel ratio. 
Regarding columns, the design variables are the values that represent the cross section dimensions and the steel bar 
diameters, as well as the concrete strength. To beams, the width is fixed, since its influence is not significant in relation 
to the height. In addition, the reinforcement section can be easily obtained from the height. Based on this fact, just the 
height of concrete section and the concrete strength were considered as design variables to beams. In this study, the 
dimensions of the cross section of beams and columns were considered as discrete, varying in steps of five centimeters.  
The diameters of the reinforcement bars of columns were limited to those available in commercial stores and the beams 
steel areas were considered as continuous. The concrete strength can vary in steps of 5MPa. 
The cost function to be minimized in the optimization process considers the total cost of materials, being: cost of 
concrete per unit volume, cost of the reinforcement per unit mass and cost of formwork per unit area. All costs provide 
a relative value per unit length of the optimized element. This cost is multiplied by the total length of beams and 
columns, giving the total cost of the frame.  

4. Preliminary Results 
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The formulation was implemented using the Fortran programming language, by the association of Harmony Search 
optimization method and frame analysis by the displacement method.
The input parameters used by the optimization software are: number of nodes, number of beams, number of columns, 
nodal coordinates, position of each element, cross sectional dimensions, support conditions, imposed loads, 
characteristic strength of steel, characteristic strength of concrete, unit cost of concrete, unit cost of steel and unit cost of
formwork. 
Some numerical simulations were performed in order to test the efficiency of the proposed procedure. For these 
simulations, several initial solutions were utilized, resulting in the convergence to a single optimal solution, regardless 
the cross sectional initially adopted to beams and columns. 
Some preliminary results are presented in the sequence of this work. The example consists in a 20 meters frame, 
composed by a variable number of columns. The analysis started by considering 11 columns (spans of 2 m), according 
to Figure 1. Beams and columns width were set at 0.2 m, with columns height of 3 m. A load of 16 kN/m was applied to 
beams, with the self weight computed automatically, based on the specific weight of the material (25 KN/m³). The 
characteristic concrete strength (fck) was equivalent to 25 MPa, with the following unit costs, denominated in Brazilian 
currency (R$): CA-50 steel bars = R$ 3.97/kg; CA-50 steel bars = R$ 3.89/kg; formworks = R$ 8.68/m2, and concrete = 
R$ 233.55/m3

.

Figure 1: example - original frame 

To the original configuration, the optimized sizes of concrete section and the amount of gauges of the elements were 
achieved, and the corresponding total cost was computed. After each analysis, the number of columns was gradually 
reduced, in order to identify the optimal spacing. Figure 2 illustrates the results obtained, indicating that the optimal 
span was about 4 m to the example. It can be stressed that this result is quite similar to those suggested by practitioners. 
In this case, the optimal span corresponds to a relation beam height / span of 13.33.  

Figure 2: example - cost versus span to variable number of columns 

Figure 3 presents the relative cost of elements (beams and columns). It can be seen that the beams correspond to the 
major part of total cost to spans greather than 5 m. In addition, based in Figure 4 it can be observed that, despite the 
span considered, the main cost is due to the amount of steel, followed by concrete.  
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Figure 3: example – relative cost of elements 

Figure 4: example – relative cost of materials 

In order to assess the behavior of Harmony Search when compared to other heuristics, the optimization of isolated 
elements was performed with both Harmony Search and Simulated Annealing. Both methods led to similar results, but 
the number of function evaluations was much larger with Simulated Annealing. In addition, it was observed that 
optimal cost decreases rapidly to HS, when compared to SA. 

5. Conclusions 

This work dealt with the problem of optimization of reinforced concrete building frames, following the requirements of 
the Brazilian standard NBR 6118 (ABNT 2007), and using the Harmony Search optimization method. To the examples 
analyzed, the optimization method was quite efficient in minimizing structural cost. The software has been an important 
tool for pre-sizing of reinforced concrete elements. To the example presented in this work, the optimal span was about 4 
m, coincident with the practice. As observed in former studies developed by the authors, the steel accounts for the 
biggest part of the overall cost of elements, followed by concrete and formworks.
Other structures with higher complexity are being studied in order to generalize the obtained results, as well as to obtain 
parameters to allow the designers to reduce the global cost of building structures. 
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1. Abstract
A method of transplanting ICM (Independent Continuous and Mapping) ideas into material with penalization 
(TIMP) for continuum structural topology optimization is proposed in this paper. TIMP method is a development 
of SIMP (Solid Isotropic Material with Penalization) method, which is widely studied and used by internal and 
overseas researchers. Since the filter function in ICM and the penalty function in SIMP are observed regarding to 
their similar formulations, the mathematical connection between the two methods yields analogies. Thus, several 
progresses in ICM are transplanted into SIMP for further developments, which yield to the TIMP method. There 
are two basic perspectives in TIMP: (1) weight and allowable stress penalty functions are added into SIMP besides 
Young’s modulus penalty function, and (2) design variables in TIMP are confined to the artificial material 
densities in SIMP. In order to demonstrate the validity and capability of TIMP, topology optimization models of 
minimizing weight with displacement/stress constraints under multiple loading cases are constructed. The unit 
virtual loading method is utilized to explicit displacement constraints, while the stress constraint globalization 
strategy is employed to convert enormous stress constraints into global structural distortion energy constraints. 
Three penalty functions in TIMP method play an important role to obtain sensitivities of constraints for free. The 
nonlinear programming algorithm is used for solutions, and the whole solution programming is implemented by 
Python scripts on ABAQUS software. Several numerical examples are presented for testing, and the effects of 
linear and nonlinear element weight penalty functions on the convergence speed are studied and discussed through 
numerical examples. It is demonstrated that, the proposed method is efficient and valid, and a nonlinear weight 
penalty function can yield higher convergence speed than a linear function. 
2. Keywords: ICM method, SIMP method, TIMP method, displacement constraints, stress constraints 

3. Introduction 
The traditional structural topology optimization was early proposed by Maxwell at the end of the 19th century and 
further studied by Michell at the beginning of the 20th century. However, the modern structural topology 
optimization has been started since 1988, when Bendsøe and Kikuchi [1] proposed the Homogenization method 
(HM). The concept of continuum structural topology optimization was presented after that, as well as 
corresponding numerical methods. With the development of high performance computing science and technology, 
the research on numerical approaches for the continuum structural topology optimization has been made great 
progresses, and  most of them are based on the “ground structure approach” [2]. Besides HM, the ground structure 
approach is represented with the Solid Isotropic Material with Penalization (SIMP) method [3], the Evolutionary 
Structural Optimization (ESO) method [4], the Independent Continuum and Mapping (ICM) method [5], the Level 
Set Method (LSM) [6] and so on. 

Among these numerical approaches, the SIMP method is popular and has many practical applications because 
of its easy implementation. However, the development of SIMP method has stopped in a theory system with only 
one penalty function, which is the Young’s modulus penalty function. While we thought about whether there was 
something we could do for its improvement, it’s found out that the ICM method could be instructive. There are two 
reasons to do so. Firstly, the ICM method has made significant progresses over the decades. Its theory foundation 
is tamped and its modeling and solution approaches are tempered. Several numerical laws have been concluded 
within this method. Secondly, although the filter function in the ICM method has different definitions from the 
penalty function in the SIMP method, their mathematical formulations are similar. Therefore, it is possible to 
transplant progresses and ideas of the ICM method into the SIMP method. The transplanting work could achieve 
big developments of SIMP. 

In SIMP method, the artificial relative density variables are defined between 0 and 1. The penalty function is 
formulated to put penalization on the Young’s modulus of element with intermediate densities. The material used 
for an element yields to 0 or 1 by the penalization. Therefore, the core idea of SIMP is the concept of penalization. 
ICM method uses the independent continuous topological variables. The polish and filter functions are formulated 
to realize the higher-order approximations of the step function and its inverse function separately. The independent 
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topological variables, which are discrete as 0 or 1 in nature, are mapped as continuous variables in [0, 1]. The 
continuous topological variables will be inverted into discrete variables at the end of optimization. The core idea of 
ICM is the concept of approximation. 

If the penalization of SIMP is analogized with the approximation of ICM, new penalty functions can be 
presented: element weight penalty function and allowable stress penalty function. In previous application of SIMP, 
elemental weight is a linear function of the artificial relative densities. However, in ICM, several filter functions, 
including the element weight filter function, are nonlinear functions. It implies that the element weight penalty 
function could be linear and nonlinear. Therefore, this paper proposes a method of transplanting ICM ideas into 
material with penalization for the continuum structural topology optimization, which is called TIMP. TI represents 
Transplanting ICM Ideas, and MP is the latter half part of Solid Isotropic Material with Penalization. Since ICM 
and SIMP methods have not been compared to each other on the perspective of “ideas” before, the proposed TIMP 
method will further the developments of SIMP, and solve topology optimization problems easier than the 
traditional SIMP method. 

The validity and capability of TIMP method is going to be demonstrated through three concrete tasks in this 
paper: (1) to formulate optimization model of minimizing weight with displacement constraints under multiple 
loading cases by TIMP, and (2) to construct optimization model of minimizing weight with stress constraints under 
multiple loading cases by TIMP and convert enormous local stress constraints into global structural distortion 
energy constraint by utilizing the stress constraint globalization strategy; (3)to provide unified formulations and 
solutions for the two optimization models, and to develop the solution process into secondary development 
software by Python scripts in ABAQUS.  

4. TIMP method 
In SIMP method, the Young’s modulus penalty function is described as below, 

0
i

p
ii EE E (1)

where the subscript “i” is the number of the element, and i  denotes the element relative density variable (the 

ratio of the actual material density to the artificial material density). Ep  is called the penalty factor. 0
iE  and 

iE are the element Young’s modulus for actual material and for artificial material separately.
With the idea of approximation in ICM method, different formulations of highly nonlinear and derivative filter 

functions are used to approximate inverse functions of the step functions [7]. Element weight, stiffness and 
allowable stress et al. are identified by them. This paper uses the method of analogy in the way that, the relative 
density variables and the penalty function in SIMP are, respectively, in analogy to the independent topology 
variables and the filter functions in ICM. Therefore, ideas of ICM method are transplanted into SIMP method, and 
two penalty functions in the form of power function similar to Eq.(1) are introduced as bellow, 

0
i

p
ii ww w                                                                                      (2) 

0
i

p
ii                                                                                       (3) 

where iw  and i  represent, respectively, the element weight and material allowable stress for elements with 

intermediate densities. 0
iw  and 0

i  are, respectively, the initial element weight and initial material allowable 
stress for elements filled with actual material. wp  and p  are, respectively, the penalty factors of element weight 
and allowable stress. Obviously, Eq. (2) is linear when 0.1wp , and nonlinear when 0.1wp .

Figure 1: Curves for penalty functions in TIMP method 
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3

Based on the above analogies between ICM and SIMP methods, a new theory system on the basis of Eq. (1), Eq. 
(2) and Eq. (3) is proposed and called TIMP method. Their curves are plotted in Figure 1, where a) for the Young’s 
modulus penalty function, b) for the element weight penalty function, and c) for the allowable stress penalty 
function. 

Actually, Eq. (2) was usually used in a linear expression for researches by using SIMP method, but never 
presented in the name of penalty function. However, the TIMP method could have both linear and nonlinear 
expressions of the element weight penalty function. It is an expansion and development of the SIMP method. 

5. Topology optimization problems with displacement constraints under multiple loading cases 
The minimum-weight formulation for topology optimization with displacement constraints under multiple loading 
cases is usually expressed as below, 




),1(     1       
),,1;,,1(   )(   s.t.

      )(inM
                                 or   F

min N,i
RrLluu
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i
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                                                  (4) 

where  is the artificial relative density vector, and )(W  is the total weight of the structure.  “l” and “r” are, 
respectively, the number of loading case and number of point with displacement constraint in a loading case. 

)(lru  represents the displacement function at the r-th point of interest in the l-th loading case, and ru  is the 
allowable displacement at this point. “L” and “R” are, respectively, the total number of loading cases and total 
number of points with displacement constraints. “N” is the total number of elements. In order to avoid the 
singularity of the stiffness matrix, the minimum value of the artificial relative density is min = 0.001. 

Based on the TIMP method, element weights under different densities can be identified with Eq. (2), and the 
total weight of the structure can be expressed as below, 
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According to the derivations in the paper [8], the displacement function was expressed explicitly with Eq. (1) 
by using the unit virtual loading method. Thus, the explicit expression for the displacement at the r-th point of 
interest in the l-th loading case can be stated as 
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                                                                            (6) 

where lriu  represents the displacement contribution of the i-th element to the displacement at the r-th point of 

interest in the l-th loading case. 0
lriD  is the constant coefficient in the displacement contribution function of the 

i-th element to the displacement at the r-th point of interest in the l-th loading case. 

6. Topology optimization problems with stress constraints under multiple loading cases 
Topology optimization problems with stress constraints under multiple loading cases can be formulated as below, 
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                                                            (7) 

where li  is the von Mises stress of the i-th element in the l-th loading case, and  is the allowable stress. The 
objective can be expressed in the same way as Eq. (5). 

The stress constraints globalization strategy is based on the von Mises yield criterion, and deals with the local 
stress constraints into a single combined relationship. This globalization strategy has been applied effectively in 
ICM method [9]. Its main ideas can be transplanted and used in TIMP method too. According to the von Mises 
yield criterion, when the element distortion energy density is no less than a certain allowable value, the strength of 
the material is about to yield. On the contrary, it is safe only if a relationship exists as below, 
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where d
liU  is structural distortion energy density of the i-th element in the l-th loading case, and d

iU  is allowable 
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distortion energy density of the i-th element. v  denotes the Poisson’s ratio. Y  is the yield stress of the material 
(allowable stress), and liVM  represents the equivalent von Mises stress of the i-th element in the l-th loading case. 
It should be noted that a safety factor is required in Eq. (8) for practical engineering problems.  

By multiplying the element volume iV  on both sides of Eq. (8) and performing the summation of all elements, 
the structural total distortion energy constraints can be obtained and described as below, 
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Thus, stress constraints are globalized into structural distortion energy constraints in Eq. (9), whose left side 
could be identified with Eq. (1) and right side could be identified with both Eq. (1) and Eq. (3). Their formulations 
are expressed as below, 
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where “n” is the number of iteration. )1(n
i  is the relative densities obtained from the (n-1)-th iteration, and 

)1()( nd
liiUV  represents the distortion energy of the i-th element in the l-th loading case obtained from the (n-1)-th

iteration, which can be computed by finite element analysis. 0
0

0

3
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i
i

d
i E

vU 
 , and it represents the allowable 

distortion density for the element with solid material.  
Eq. (9) could be also expressed in a different form as below, 

N
U
UN

i
d

i

d
li

1

                                                                               (11)

One should be noticed that ili YVM  is a sufficient and unnecessary condition for Eq. (11). Therefore, the 
stress constraints in Eq. (7) can be replaced by the structural distortion energy constraints as below, 
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where l  is the adjusting factor of the structural distortion energy for the l-th loading case, and )(
VMmax

l  , 

where VMmax  denotes the maximum von Mises stress and  is a constant determined by tests. 

7. Unified models and solutions 
In order to reduce the unnecessary calculation caused by the inactive constraints, whose left side values are far less 
than the right side values, only the active constraints can be selected to construct the optimization models. Thus, 
the subscripts l and r in displacement /stress constraints are merged into a single sequential number j, and the total 
number of active constraints is denoted by La.

Assuming that Ep
iix  , 1ix , and Ep

ix  001.0 , a unified formulation for Eq. (4) and Eq. (7) with 
explicit objective and constraints formulations can be described as below, 
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Ep
p2

= , and jj NB  . Therefore, the sensitivities of objective and constraints are obtained for free by using 

methods and approached in Section 5 and Section 6.  
The nonlinear programming algorithm, Dual Mapping Sequential Quadratic Programming (DMSQP), can be 

used for solutions of Eq. (13). Since the dual problem of Eq. (13) is formulated based on the dual theory, the 
number of design variables are reduced incredibly. Then, Sequential Quadratic Programming (SQP) is employed 
to address the dual problem based on its Kuhn-Tucker conditions. The whole solution programming is 
implemented by Python scripts on ABAQUS software, and results will be output automatically. 

8. Numerical examples 
In order to demonstrate the validity and capability of the TIMP method, a plate structure is studies here, and the 
influences of the linear element weight penalty function (LEWPF) and nonlinear element weight penalty function 
(NEWPF) on the convergence speed are observed specifically.  

Figure2 shows the dimensions of a rectangular plate. The concentrated loading is P1= P2 =3600N. Multiple 
loading cases are considered, and they are: Case 1 is to apply P1 at the intersection of 1/3 horizontal and 1/2 vertical, 
Case 2 is to apply P2 at the intersection of 2/3 horizontal length and 1/2 vertical, and Case 3 is to apply both P1 and 
P2 at the same time. The material properties are that, the Young’s modulus E=210GPa, Poisson’s ratio v=0.3, and 
density =7800kg/m3. The allowable stress of the material is 100MPa. Filtering schemes are utilized to alleviate 
the mesh-dependency and checker-board issues. 

Figure 2: A rectangular plate with multiple loading cases 

Firstly, topology optimizations with displacement constraints for the plate under different boundary 
conditions (BCs) are observed. It is required that the displacements along the loading direction at the loading 
points are no more than 0.028mm when the plate is clamped, and no more than 0.064mm when it is 
simply-supported. Both of LEWPF ( wp =1.0) and LEWPF ( wp >1.0) are used and optimization parameters are set 
by trial and errors. Figure 3 and Figure 4 show the optimum topologies of the clamped and simply-supported plates 
separately. The parameters and final results are presented in Table 1. It is found out that, the optimum topologies 
are similar while under the same BCs, and the utility of NEWPF yield less iterations and better satisfaction with 
stress constraints than the utility of LEWPF. 

                        a)                                        b)                                         c)                           d) 

Figure 3: Topologies under displacement constraints: a) clamped plate with LEWPF, b) clamped plate with 
NEWPF, c) simply-supported plate with LEWPF, and d) simply-supported plate with NEWPF

Table 1: Optimization parameters and results for clamped plate with displacement constraints 

BCs. wp Ep Iterations Displacement / mm Weight reduced by / % Case 1 Case 2 Case 3 

Clamped 1.0 3.0 30 0.023 0.023 [0.028, 0.028] 51.28 
1.5 4.5 20 0.024 0.024 [0.028, 0.028] 52.99 

Simply-supported 1.0 3.0 36 0.042 0.043 [0.064, 0.064] 39.32 
1.5 4.5 31 0.042 0.042 [0.062, 0.062] 40.17 

0.01m

0.05m 0.05m

0.1m

0.05m

P1 P2

469

Leo
Rectangle



6

Secondly, topology optimizations with stress constraints for the plate under different BCs are studied too. 
Figure 5 and Figure 6 show the optimum topologies of the clamped and simply-supported plates separately. The 
parameters and final results are presented in Table 2. 

                        e)                                        f)                                         g)                                          h) 

Figure 4: Topologies under stress constraints: e) clamped plate with LEWPF, f) clamped plate with NEWPF, g) 
simply-supported plate with LEWPF, and h) simply-supported plate with NEWPF 

Table 2: Optimization parameters and results for clamped plate with displacement constraints 

BCs. wp Ep p  Iterations Max von Mises Stress / MPa Weight reduced by / % Case 1 Case 2 Case 3 

Clamped 1.0 3.5 1.7 0.5 26 97.34 97.34 103.68 68.12 
1.5 3.5 2.0 1.5 23 85.10 85.10 92.77 65.47 

Simply-supported 1.0 3.0 2.0 3.0 13 78.52 78.52 101.86 30.78 
1.5 3.5 2.0 1.5 11 76.36 76.36 90.42 21.07 

9. Conclusions 
The proposed TIMP method is a development of the SIMP method, and its application in addressing topology 
optimization models with displacement and stress constrains under multiple loading cases are detailed discussed in 
this paper. Numerical examples of a rectangular plate under different boundary conditions demonstrate that using 
nonlinear element weight penalty function yields better results and higher convergence speed than using linear 
element weight penalty function. It is indicated that the TIMP method is valid and capable to address complicated 
topology optimization problems.  
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Abstract
A novel mathematical programming approach is proposed in this study to assess the linear buckling load of steel 
structure with uncertain system parameters. The considered uncertainties of system parameters are modelled by 
the interval approach such that only bounds of uncertain parameters are available. This particular uncertainty 
model is applicable for situations where probabilistic approach is inapplicable due to the insufficiency of the data 
of system parameters. By implementing an alternative finite element formulation for the two-dimensional beam 
element, the deterministic second order geometrically nonlinear problem is formulated into a mathematical 
programming problem. Furthermore, by treating all the interval uncertain system parameters as bounded 
mathematical programming variables, the integration of interval uncertainties in the deterministic linear buckling 
analysis becomes possible, such that the lower and upper bounds of the buckling load can be adequately obtained 
by solving two explicit nonlinear programs. The proposed computational scheme offers a single-phase interval 
buckling analysis for steel structures by combining the linear analysis of the structure at its reference configuration 
with the eigenvalue calculation. Such ability can well maintain the physical feasibility of the engineering 
structures for the purpose of uncertainty analysis, so the physically meaningful lower and upper bounds of the 
buckling load can be efficiently obtained. In addition, unlike traditional uncertain buckling analysis, the proposed 
method is able to thoroughly model the dependency between uncertain system parameters (i.e., the physical 
relationship between cross-sectional area and second moment of area of beam element must be compatible when 
cross-sectional area possesses uncertainty). One numerical example is presented to illustrate the accuracy and 
applicability of the proposed approach.
Keywords: interval analysis, buckling, steel structure, mathematical programming, dependency. 

1. Introduction 
Linear buckling analysis provides a computational framework which has been prevalently implemented for 
assessing the safety of engineering structures against large deformation. Due to its extensive applicability, 
computational efficiency and remarkable accuracy, linear buckling analysis has been extensively performed in 
modern engineering applications by integrating such analysis framework into front-edge engineering analysis 
software.  
However, one practical issue often encountered among engineering application is the impact of uncertainties of 
system parameters. The existence of uncertainties of system parameters is inherent, and the impact upon the 
structural response is mercurial yet inevitable [1]. Such implications can influence structural performance [2], and 
consequently structural safety would be compromised if the impacts of uncertainties are not addressed 
appropriately [3]. 
In order to rigorously assess structural safety against large deformation, buckling analyses with considerations of 
uncertainties of system parameters have been proposed. Numbers of research works on the linear buckling analysis 
with stochastic uncertainties have been developed. However, types of uncertainties of system parameters are not 
unique. Such diversity of uncertainty stimulates further development of other forms of non-deterministic linear 
buckling analysis for various engineering situations. 
This paper presents a mathematical programming based uncertain linear buckling analysis for assessing the 
buckling load of engineering frames which involve interval uncertain parameters. The presented method offers the 
worst and best case buckling loads of frames including both uncertain-but-bounded material properties and 
loading conditions in two explicit calculations. Uncertain linear buckling analysis is transformed into an 
eigenvalue problem with interval parameters within finite element (FE) framework. Furthermore, the proposed 
method is able to reformulate the interval eigenvalue problem into two explicit nonlinear mathematical programs 
(NLP), which individually depicts the feasible regions for the worst and best case buckling load. The applicability, 
accuracy, as well as the computational efficiency of the presented approach are illustrated through a practically 
motivated numerical example.

2. Deterministic linear buckling analysis 
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From traditional finite element method (FEM), by assuming constant axial force, the deterministic linear buckling 
analysis can be formulated into an eigenvalue problem as: 

0zKK GM  )( b  (1) 

where dd×
GM KK ,  denote the conventional material and geometric stiffness matrices at reference 

configuration respectively; d denotes the total degree of freedom of the structure; b  denotes the structural 

buckling load which is the minimum positive eigenvalue of Eq.(1); dz  is a non-zero vector which denotes the 
eigenvector corresponding to the buckling load or the eigenvalue. Since the eigenvalue analysis defined in Eq.(1) 
is indeterminate, the eigenvector z denotes the shape of the buckling of engineering structure instead of actual 
buckled deformation [4]. 
In this study, an alternative FE formulation of the 2-dimensional beam is adopted. For ith element, the adopted FE 
model is illustrated in Figure 1. 

Figure 1: Generic 2D frame element i with second-order geometric nonlinearity (a) generalized stresses, (b) 
generalized strains 

The adopted approach is based on the second-order geometric theory which assumes that displacements from 
undeformed configuration are geometrically small [5]. For a generic 2D frame element, there are four generalized 
stress/strain components involved in the second-order geometrically nonlinear 2D frame element. The axial and 
two end rotational components are adopted from linear analysis such that: 

3
321 ][ Tiiii qqqq  (2) 

3
321 ][ Tiiii eeee  (3) 

whereas the additional transverse component is employed for the purpose of the second-order geometrically 
nonlinear analysis [5], which takes the form of: 

 ][ ii qGGq  (4) 

 ][ ii eGGe  (5) 

where, iq  and i
Gq  denote the generalized stresses which are illustrated in Figure 1(a); ie  and i

Ge  denote the 
generalized strain which are illustrated in Figure 1(b). Therefore, the equilibrium condition of the ith 2D frame 
element for the second-order geometrically nonlinear analysis is: 
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3

iiiTiiT FqCqC GG 0  (7) 

where iL  is the length of the ith element. The elemental compatibility condition is defined as: 
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and the constitutive condition is defined as: 
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where iii IAE ,,  are the Young’s modulus, cross-sectional area and the second moment of area of the ith element, 
respectively. Eqs.(6)-(15) alternatively formulate the three governing equations for the second-order geometrically 
nonlinear 2D frame element. This unconventional formulation is equivalent to the governing equation formulated 
by the traditional FEM. For example, let 0  and substitute Eqs.(10), (11) (14) and (15) into Eq.(7), thus 
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where iiiTi
000 CSCKM  , and iiiTiiiTi

GFGGG CSCCSCK  00 . Eq.(16) coincides with the traditional FE formulation 
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for linear buckling analysis. Therefore, the eigenvalue problem of the linear buckling analysis of 2D frame with n
elements can be alternatively expressed as: 

0)()( 00cr000cr  zCSCCSCzCSCzKK GFGGGM
TTT  (17) 

where for a second-order geometrically nonlinear 2D frame, d3n×
0C and dn×

GC  are the two global 

compatibility matrices, and their transposes are the global equilibrium matrices; 3n3n×
GSS ,0  and nn×

FS
are the global deterministic stiffness matrices calculated at reference configuration for 2D frames. Eq.(17) presents 
the alternative formulation for the deterministic linear buckling analysis which is beneficial for interval linear 
buckling analysis.

3. Solution algorithm of uncertain linear buckling analysis of frame structure 
The uncertain parameters considered in this investigation are including the Young’s modulus, cross-sectional area 
and second moment of inertia of each structural element, as well as the externally applied loadings at reference 
configuration.
Therefore, by considering uncertainties of parameters, the worst case buckling load can be calculated by solving: 

bmin  

:subject to
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and the best case solution can be determined as: 

bmax  

:subject to
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where iz detb,  denotes the ith component of the deterministic buckling mode vector, which is the eigenvector 
corresponding to detb, . In addition, the constraint )(AI f  is introduced to model the dependency between the 
cross-sectional area and the second moment of area of the same structural element.   
Eqs.(18) and (19) provide a mathematical programming based approach for calculating the worst and best case 
buckling loads for 2D frames. The proposed method transforms the uncertain linear buckling analysis, which in 
essence is an interval eigenvalue problem, into two explicit NLPs. By adopting the formulation of the generalized 
stress/strain with the unique structural characteristics of the stiffness matrices, the interval parameters are able to 
be extracted out from the stiffness matrices and explicitly modelled as mathematical programming variables. 
Unlike traditional interval analysis, the proposed method involves no interval arithmetic such that the sharpness of 
the worst and best buckling loads are not compromised due to the inveterate issue of dependency associated with 
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interval arithmetic [6]. 

4. Numerical example 
In order to illustrate the applicability, accuracy, and efficiency of the presented computational approach, one 
practically motivated frame structure is investigated. The reference configuration of the structure is shown in 
Figure 2. The NLPs involved in both worst case and best case calculations are solved by a commercial NLP solver 
named CONOPT [7], which implemented within a sophisticated modelling environment named the general 
algebraic modelling system or GAMS [8]. 

Figure 2: Ten-storey five-bay frame 

The considered uncertain parameters are including the Young’s modulus, cross-sectional area of beam and 
column, second moment of inertia of beam and column, as well as the applied loadings at reference configuration. 
All the information on the uncertain parameters has been presented in Table 1.  

Table 1: Interval parameters of ten-storey five-bay frame 

Interval Parameters Lower bound Upper bound 
E
Ac
Ab
Fv
Fh

176 GPa 224 GPa 
326.8×10-4 m2 361.2×10-4 m2

56.34×10-4 m2 62.26×10-4 m2

68kN
24kN

92kN
36kN

For the ten-storey frame shown in Figure 1, 400WC270 has been implemented to model all columns whereas 
beams are modelled by 310UB46.2 [9]. In order to maintain the physical feasibility between the cross-sectional 
area and second moment of inertia for the same element, the following compatibility conditions are introduced as: 

5
c

2
ccc 1020241.01898.0)( × AAAI  (20) 

for all the 400WC270 columns, and 
5

b
2
bbb 1040288.08876.0)( × AAAI  (21) 

for all the 310UB46.2 beams. 

475

Leo
Rectangle



6

The worst and best structural buckling load calculated by the proposed NLP approach are 81.27NLP
worstb,   and 

34.53NLP
bestb,   respectively. Due to the unavailability of analytical solution for complex structure such as the one 

in current example, the Monte-Carlo simulation method with 100,000 simulations has been performed to partially 
verify the accuracy of the proposed method. The results reported by 100,000 simulations are 01.36mcs

worstb,   for 

the worst case, and 55.40mcs
bestb,   for the best case. It is obvious that the performance of the Monte-Carlo 

simulation with 100,000 iterations provides enclosed solutions and the computational efficiency consumed is far 
more than the proposed NLP method.  

5. Conclusion
Uncertain linear buckling analysis with interval parameters has been investigated. A mathematical programming 
founded approach is presented to assess the buckling loads of engineering frames against undesirably large 
displacement by calculating the worst and best case buckling loads. 
All interval parameters considered in this study are able to be modelled as mathematical programming variables 
with upper and lower bounds through reformulations of the traditional FE approach. The advantage is that the 
interval dependence associated with interval arithmetic can be completely eliminated, so the sharpness of the 
extremity of the buckling loads can be enhanced.
For situations, such as eigen-buckling analyses of structures involving repeated eigenvalues, structures with 
closely spaced eigenvalues, as well as defective structural systems etc, have not been investigated in the present 
study.
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Abstract  
In this contribution, we consider a shape optimization problem of a simple crashworthiness structure. The 
application example is an aluminum frame clamped on one side and impacted on the other side. The structural 
analysis is carried out with the finite element method using explicit time integration. Contact phenomena, buckling 
phenomena und non-linear material data are taken into account. With the aid of this example, a large number of 
different meta-models using radial basis functions, Kriging (Gaussian processes) and neural networks are 
generated.  
The advantages and disadvantages of these different methods and the problems by relying on the common quality 
criterions “coefficient of determination ” and “leave-one-out-cross-validation ” are shown. The 
combination and superposition of the different meta-model techniques is investigated in order to enhance the meta-
model prediction capability. 

Keywords: meta-models, crashworthiness, Gaussian Processes, Kriging, neural networks, radial basis functions  

1. Introduction 
For a limited number of design variables, the use of meta-model techniques is very popular in structural 
optimization processes. Hereby, we get smooth and continuous descriptions of the structural responses. The quality 
of the meta-models can be scaled individually depending on the available time.  After the creation of the meta-
models, the optimization can be performed without further time-consuming finite element simulations using the 
responses of the meta-models.  
When using meta-models for non-linear dynamic mechanical problems (e.g. crashworthiness problems), the 
nonlinearities and the limited amount of sampling points due to the high computational effort, can cause low 
prediction capabilities of the meta-models. Further difficulties can arise due to non-smooth behavior of the 
structural responses, insufficient material data, physical and numerical bifurcation points and finite element mesh 
dependency.  
In commercial and scientific software codes there exist a large number of different meta-model-techniques. The 
question arises which one is the most suitable for the mechanical problem at hand and which quality criterions can 
be used for this decision.  
In this contribution a large number of different meta-model techniques and some combinations and superpositions 
of the different meta-models is investigated in order to enhance the meta-model prediction capability. 

2. Crashworthiness example 
The considered application example shown in figure 1 is an aluminum frame (300 x 150 x 5 mm, wall thickness: 
2 mm) clamped on one side and impacted by a rigid wall under an angle of 10 degree. The rigid wall has a mass 
of 2 kg and an initial velocity of 5 m/s. The design variable describes the y-position of the inner walls (symmetric, 
see figure 1b). Figure 2 shows the deformation and the reaction force of the frame depending on the value of the 
design variable.  

3. Meta-model techniques 
In this chapter the relevant meta-modelling techniques are described and applied to the crashworthiness example. 
For this purpose 7 sampling points are used, assuming that more sampling points are not available. The quality 
criterions  and if possible  are calculated. In order to evaluate these quality criterions and the prediction 
capabilities of the meta-models, 6 additional validation points are used. For this purpose the regression parameter 

 is calculated for the validation points similarly as  is calculated for the sampling points. 

1
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Figure 1: Aluminum frame [1] 

    
y = 20 y = 46,9 y = 70,3 y = 130 

   

Figure 2: Deformation and reaction force of the frame depending on the value of the design variable [1] 

3.1 Radial basis functions 
The value of a radial basis function depends on the distance to a center point  called radius .
Some common types of radial basis functions are:

- Linear: ,
- Cubic : ,
- Multiquadric:  with the positive shape parameter .

The interpolation is typically done by a linear combination of n (normalized) radial basis functions centered around 
the n sampling points:

The weights  can be determined by the following equation system: 

Figure 3 shows three meta-models with different kinds of radial basis functions for the crashworthiness example. 
The real (usually unknown) relation between the design variable and the structural response is indicated by blue 
dots. The training sampling points are pictured by red dots and the validation sampling points by purple dots.

x
y

v0

(a)                                                                         (b)

frame

rigid wall

700

900

1100

1300

1500

1700

1900

2100

20 40 60 80 100 120

R
ea

ct
io

n 
fo

rc
e 

[N
]

Y-position inner wall [mm]

y = 20 mm

y = 46.9 mm

y = 70.3 mm

y = 130 mm

(1) 

(2) 

2

478

Leo
Rectangle



Figure 3: Meta-modeling example with radial basis functions [1]

3.2 Neural network 
A neural network consists of three different kinds of neurons: the input neurons (process input data), the output 
neurons (process output data) and the hidden neurons (internal representation of the environment/problem). A 
common net type is a feed-forward multi-layer-perceptron net (figure 4). 

Figure 4: Meta-modeling with neural networks: multi-layer (a),  
neuron input/output (b), common neuron activation functions (c) [1, 2, 3] 

The neural networks learn with training data (here: sampling points). The learning process is an optimization of 
the weights between the neurons to minimize the error between the neural network outputs and the given sampling 
points. A common approach for this is the supervised learning with backpropagation, which is a version of the 
method of steepest descent adapted for neural networks. 
Figure 5 shows three different approximations with multi-layer-perceptron networks for the crashworthiness 
example. Each consists of a single input neuron, a single output neuron and two layers of hidden neurons. The 
number of hidden neurons in each hidden layer varies.
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Figure 5: Meta-modeling example with neural networks [1] 

3.3 Gaussian Processes (Kriging) 
Gaussian processes are also known as Kriging. The similarity influence (figure 6) of a sampling point on an 
arbitrary point is defined with the covariance function. A common approach is the “squared exponential”: 

Figure 6: Similarity influence of a sampling point [1] 

A covariance matrix between all sampling points with the x-value vector px can be calculated as: 

The covariance matrix between an arbitrary point and the sampling points can be determined as: 

The interpolation g x  can be defined as: 

Three different Kriging interpolations for the crashworthiness example are shown in figure 7. They differ in the 
choice of the parameter theta, which is similar but not identical to the length scale parameter  in (9). Theta = 
8.8315 is optimized for a maximal value of .
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Figure 7: Meta-modeling example with Gaussian processes [1]

3.4 Typical characteristics of the different approaches 
Typical characteristics of the three described approaches are summarized in table 1. There exist a lot of other meta-
model techniques which are not considered in this contribution, e.g. support vector machine regression, random 
forest or fuzzy regression model. 

Table 1: Typical characteristics of the described approaches for meta-modeling 

Radial basis functions Neural networks Gaussian Processes (Kriging)
- Interpolation depends 

on the type of the 
radial basis function 

- Smooth transitions 
between the sampling 
points  

- This smoothness limits 
the versatility

- “Black-box-systems” 
- Limited versatility due to the activation 

function 
- The higher the number of hidden neurons 

the better the versatility but the higher the 
risk of overlearning 

- The training can be computationally 
expensive 

- The approximation accuracy of the given 
sampling points can be poor 

- High resilience to outlier sampling points

- Usually it is an interpolation 
- Very versatile and can even adapt 

to non-smoothness 
- The length scale parameter l

controls the “frequency” 
- The determination of this 

parameter can be difficult, a 
common approach is an 
optimization of this parameter by 
the maximum likelihood principle

4. Superposition of the meta-models 
The quality criterions  and , the average absolute error at the validation points  and the regression 
parameter for the validation points  for each meta-model of the crashworthiness example are summarized in 
table 2. 

Table 2: Validation of the meta-models 

Meta-model 
Linear radial basis function 1 0.15501 159.984148 0.35718969 
Cubic radial basis function 1 -1.4867 117.684404 0.68113786 
Multiquadric radial basis function 1 -2.6459 129.308549 0.70727437 
Neural network 10 hidden neurons 1 - 96.9827279 0.87212213 
Neural network 4 hidden neurons 1 - 78.6433099 0.85968893 
Neural network 25 hidden neurons 1 - 93.5231771 0.8740076 
Kriging Theta = 8.8315 1 0.1702 112.8654049 0.7219 
Kriging Theta = 1.1039 1 -5.0133 150.4035117 0.6510925 
Kriging Theta = 35.326 1 -0.31938 196.3350898 -0.73714623 
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Often all available sampling points are used for the training of the meta-model in order to maximize its quality. 
This is especially true for crashworthiness problems, where due to the high computational effort of each crash 
simulation only a very limited number of sampling points is available. In these cases there is no validation data 
and usually  is the main descision criterion for the evaluation of a meta-model. 
Astonishingly, for the given crashworthiness example there is no correlation between  and the real prediction 
capabilities of the meta-models (evaluated by ). For example the radial basis function meta-model with the 
highest value of  (linear radial basis function) has the lowest value of  of all radial basis function meta-
models.  
The question arises whether there exists a possibility to reduce the risk of choosing a meta-model with a low 
prediction capability by relying on common quality criterions like  and .
In relation to the computational effort for the generation of the sampling points, the computational effort for the 
creation of meta-models is very low. The idea is to generate a lot of different meta-models and to find a suitable 
superposition of the models in order to enhance the overall prediction capability or at least to reduce the risk of 
choosing a meta-model with a low prediction capability. 

Figure 9 shows four different meta-models which are based on the superposition of the meta-models shown in the 
previous chapter. For the superposition the meta-models are weighted equally.  
The superposition of all meta-models has a value  of 107.29. The average value of  of all meta-models 
is 126.192258. This difference is quite surprising, because the superposition is just a simple averaging of the meta-
models. Because of the lower average error the  value of the superposition of all meta-models is with 0.73399 
also significantly better than the average  value of all meta-models with 0.55414. 
This is also true for the  values of all other superpositions compared to the average  value of the meta-
models which have been used for the superposition (radial basis functions: 126.1 to 135.66, neural networks: 
89.118 to 89.716 and Kriging: 136.15 to 153.2). Whether this is a mere coincidence or a possible strategy for the 
enhancement of meta-modeling remains the topic of further research. 

Figure 8: Superposition of the meta-models 
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1. Abstract
In this paper, the stiffness and damping parameters of a six-degree-of-freedom (DOF) heavy duty vehicle seat 
suspension are optimised on the base of different vibration excitations with genetic algorithm (GA). Optimisations 
are implemented under two conditions, that is, all the legs have same stiffness and damping, and legs which are 
symmetric with x axis have same stiffness and damping. Swept sinusoidal vibrations are applied as excitations. 
Translational vibration along x and y axes and rotational vibration around x and y axes are carried out, 
respectively. The optimisation results show that a smaller weighted value of root mean square (RMS) acceleration 
in six DOFs according to ISO 2631-1 can be obtained under the second condition, which means the suspension can 
be more comfortable. But higher acceleration transmissibility from the vibration excitation to the same DOF 
acceleration output around the resonance frequency is also obtained under the second condition. These results 
indicate that when optimising multi-DOF heavy duty vehicle seat suspension, the dominant vibration DOF will 
cause vibrations in other DOFs due to the structural coupling. So the dominant vibration DOF and its related 
vibration DOFs should be considered at the same time.
2. Keywords: six-DOF, seat suspension, GA. 

3. Introduction 
Nowadays, the vehicle seat suspension has been an increasing demand because the exposure to vibration 
transferred from rough road has significant influence on drivers’ safety, heathy and comfort[1], especially, for 
heavy duty vehicles which always work in severe environments . Generally, a one or two degrees of freedom 
(DOFs) vibrations are considered to design and optimise seat suspension[2, 3]. However, heavy duty vehicles 
always have special functions, such as digging, dumping and shovelling, and the vibrations will come from 
different sources besides rough road surface. Therefore, a multi-DOF seat suspension should be designed to satisfy 
the requirements of heavy duty vehicles. 
The multi-DOF motion platform has been widely applied in many fields. Based on its parallel mechanism, a kind 
of six-DOF vehicle seat suspension is designed. The six-DOF suspension includes one base platform which is 
fixed on the vehicle cab floor, one top platform which is used for assembling vehicle seat, and six legs which are 
used to connect the base and top platform. There are springs and dampers in each leg.  
As the suspension performance is closely related to the choices of the spring stiffness and the damper damping 
property, how to choose the optimal stiffness and damping will be critical for the seat suspension performance. 
Due to the complex structural configuration of the six-DOF seat suspension and because there are six springs and 
six dampers in the six-DOF seat suspension, conventional optimisation algorithms based on gradient calculation 
are hard to be applied. In this paper, the genetic algorithm (GA), which is a well-known stochastic search algorithm 
for global optimization of complex systems based Darwinian principle of “survival of the fittest” [4, 5], is used to 
search for the optimal stiffness and damping for six legs. The weighted value of root mean square (RMS) 
according to ISO 2631-1 in six-DOF of top platform and the relative displacement of top and base platform are 
considered when optimising the suspension. Numerical results are obtained and analysed in the paper.

4. Six-DOF heavy duty vehicle seat suspension 
Vertical and horizontal vibrations are always involved for the design of passenger vehicles seat suspension. For 
heavy duty vehicles such as excavators and drill rigs which have special functions, vibrations come from multiple 
sources except road surfaces. Therefore, the drivers will suffer multi-DOF vibration. 

4.1. Six-DOF suspension design 
Multiple-DOF motion platform is a kind of parallel mechanism which has a six-DOF movable top platform. Based 
on the structure of multiple-DOF motion platform, the six-DOF vehicle seat suspension is designed as shown in 
Figure 1. The six-DOF suspension includes one base platform which is fixed on the vehicle cab floor, one top 
platform which is used for assembling vehicle seat, and six legs connecting the base and top platform. There are 
springs and dampers in each leg. The x axis points to the vehicle traveling direction, and the two sides of x axis are 
symmetric. When the base platform suffers a six-DOF vibration translating along x, y and z axis, and rotating 
around x, y and z axis, the suspension can attenuate it in six-DOF.
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(a)          (b) 
Figure 1: Six-DOF vehicle seat suspension. (a) Side view (b) Top View. 

4.2. Six-DOF suspension model 
The traditional modelling method used to compute dynamics and derive equations is error-prone and complicated.  
SimMechanics is a new way which can model 3D multibody system easily and accurately using blocks in 
Matlab/Simulink. In this paper, a 3D model is designed in PTC Creo firstly. Then the 3D model is transferred into 
SimMechanics. An 80kg load is added on the top platform to imitate the weight of seat and driver. The stiffness k
and damping c of six legs can be set independently. The translation displacements and rotation angles of six-DOF 
vibration can be implemented on the base platform. Using sensor blocks in SimMechanics, we can get the 
vibration response of seat surface. 

5. Optimisation method 
Parameter optimisation of vehicle seat should involve two things, drivers’ comfort and vehicle handling. 
Attenuating the vibration acceleration transmitting to seat surface can enhance drivers’ comfort, which always 
need soft springs when the vibration frequency is higher than resonance frequency. And in low frequency band, 
hard springs can perform better in attenuating seat surface acceleration. The displacement between seat surface and 
cab floor is an important factor which influence vehicle handling. So the seat surface acceleration and relative 
displacement should be considered comprehensively when optimise suspension parameter. 

5.1. Vibration evaluation 
Root-mean-square (RMS) acceleration is always used to evaluate vibration. The six-DOF vibration total value of 
RMS acceleration can be determined as Eq. (1). The translational vibration RMS accelerations ,  and  are 
expressed in , and the rotational vibration rms accelerations ,  and  are expressed in . The 
multiplying factors k are given by ISO 2631-1 for seat surface vibration [6]. In Eq. (1),  ,  ,  , 

 ,  , . A small  implies the driver fell 
comfortable when operating a vehicle.

(1)

5.2. GA optimization 
GA is a well-known stochastic search algorithm for global optimization of complex systems. It applies Darwinian 
principle of “survival of the fittest” and uses selection, crossover, and mutation operators to breed good solutions. 
For optimizing the six-DOF seat suspension parameters of springs and dampers, GA is utilised to search the 
optimal stiffness and damping of suspension legs to obtain a minimal seat surface vibration total value . The 
stiffness band of springs is set as 9000 to30000 N/m, and the damping band of dampers is set as 50 to 1000 
N*s/m. At the same time, the relative displacement between seat surface and cab floor is limited in m in 
three axes. 

6. Optimisation results 
To simplify the optimisation process and at the same time present more optimisation options, the optimisation is 
operated in two conditions. In the first condition, all the legs of the suspension are assumed to have the same 
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stiffness and damping. The second condition considers the symmetry of the suspension, so leg 1 and leg 6, leg 2 
and leg 5, leg 3 and leg 4 share the same stiffness and damping respectively. In each condition, the suspension is 
optimised in four kinds of vibration excitations. Translational vibrations along x and y axis and rotational 
vibrations around x and y axis are respectively implemented on the base platform of the suspension. In this paper, 
the swept sinusoidal signal is applied as vibration sources. The amplitudes are 0.01m for translational vibration and 
1 degree (about 0.0174 rad) for rotational vibration. And the vibration frequency band is between 0.5 to 10 Hz.

6.1. Optimised stiffness and damping 
The GA optimisation results with two conditions are shown in Table 1. In the same legs condition, the optimisation 
results of translational vibration along x axis and rotational vibration around x and y axis have the same stiffness 
around the lowest value and different damping. This is because lower stiffness always leads to smaller 
acceleration, and proper damping can limit the biggest displacement around resonance frequency. Figure 2 shows 
the total value of RMS acceleration of the optimised suspension. It implies that when taking the symmetry of the 
suspension into account, we can get more comfortable optimisation parameters under these four kinds of vibration 
excitation.

Table 1: GA optimisation results 

Vibration 
DOF

Symmetric Legs Same Legs 
L1 and L6 L2 and L5 L3 and L4 All Legs 

k(N/m) c(N*s/m) k(N/m) c(N*s/m) k (N/m) c(N*s/m) k(N/m) c(N*s/m) 
x 17366.1 979.2 12643.7 703.6 12893.5 320.8 9000.3 682.6 
y 9407.9 531.1 10436.5 785.8 13953.3 812.2 10148.5 782.3 
rx 29111.6 830.1 11039.8 59.5 12414.8 621.9 9000.3 410.9 
ry 9000.2 287.6 12597.7 499.4 9001.3 54.3 9000.3 511.9 

Figure 2: Total value of RMS acceleration 

6.2. Comparison of optimisation results under two conditions 
When only translational vibration along x axis is implemented on the base platform of the 6-DOF seat suspension, 
the optimisation result considered the symmetry property can get a lower total value of RMS acceleration. But it 
gets higher acceleration transmissibility along x axis in resonance frequency, as shown in Figure 3 (a). Figure 3 (b) 
shows the RMS acceleration in six-DOF respectively and the six-DOF total RMS acceleration. It notes that the 
condition with same legs has a bigger rotational acceleration around y axis. While in condition with symmetric 
legs has a third dominant acceleration along z axis. 
Figure 4 shows that there is a similar result when only translational vibration along y axis is implemented. 
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(a)                                                                          (b) 
Figure 3: Vibration along x axis. (a) Transmissibility (b) RMS acceleration 

(a) (b)
Figure 3: Vibration along y axis. (a) Transmissibility (b) RMS acceleration 

When optimising the 6-DOF suspension under rotation vibration, in the vibration excitation DOF, the 
transmissibility of the one optimised based on symmetric property in resonance period is higher than the other one. 
But it will decline quickly unlike optimisation under translational vibration. 
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(a)                                                                          (b) 
Figure 3: Vibration around x axis. (a)Transmissibility (b) RMS acceleration 

(a) (b)
Figure 3: Vibration around y axis. (a)Transmissibility. (b) RMS acceleration 

7. Conclusion 
In this study, a 6-DOF heavy duty vehicle seat suspension is designed in PTC Creo, and modelled in 
SimMechanics. GA is applied to search the optimal stiffness and damping of suspension legs. The optimisation is 
implemented under two conditions which are taking the suspension symmetry into account and taking all the legs 
to have the same stiffness and damping. Swept sinusoidal vibration signals which including translational vibration 
along x and y axes, and rotational vibration around x and y axes, are carried out on base platform of the suspension 
respectively. Eight sets of optimisation results are compared and analysed. The condition considering symmetry 
can get smaller total value of RMS acceleration which means it can be more comfortable. But its transmissibility in 
vibration excitation DOF is always higher in resonance period. When taking multi-DOF vibration optimisation, 
the dominant vibration DOF will cause vibrations in other DOFs. Heavy duty vehicles always have special 
working environments in which the dominant vibration DOFs are different. Designing and optimising the 
multi-DOF heavy duty vehicle seat suspension should consider the dominant vibration DOF and other related 
DOFs vibration at the same time. 
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1. Abstract  
This paper investigates the likelihood of buckling mode interaction in shape optimisation of manufacturable 
cold-formed steel columns. A literature review is carried out to examine local, distortional and global buckling 
mode interactions. Optimised columns available in the literature and the research outcomes previously carried out 
by the authors are discussed in some detail. The average elastic buckling stresses are reported herein and the need 
for incorporating the buckling mode interactions into shape optimisation algorithms is quantified. 

2. Keywords: Shape optimisation; Cold-formed steel structures; Buckling mode interactions. 

3. Introduction 
Cold-formed steel (CFS) structures are widely used due to their advantages over hot-rolled steel, which include a 
high capacity to weight ratio, lightweight profiles, reduced installation time and manufacturing processes at room 
temperature [1]. The manufacturing processes, namely “roll-forming” and “brake-pressing”, allow the formation 
of any cross-sectional shape. Yet, CFS cross-sections used in practice are mainly limited to “Cee”, “Z” and “ ”
cross-sectional shapes, with or without intermediate stiffeners [2]. As the cross-sectional shape of the CFS profiles 
controls the fundamental buckling modes (local (L), distortional (D) (for open sections) and global (G)), 
discovering innovative and optimum cross-sectional shapes is a key element in saving material and enhancing the 
profitability of CFS members. The need is reinforced by the recent development of a new structural design method, 
the Direct Strength Method (DSM) [3], which allows designing any cross-sectional shape with the same degree of 
difficulty. 

In the literature, shape optimisation of manufacturable CFS profiles has mainly been studied by Leng et. al. [4], 
Wang et. al. [5, 6] and Franco et. al. [7]. In these studies, different optimisation methods were used to achieve 
similar objectives. Nevertheless, the capacity of the optimised profiles was always calculated using the DSM as 
published in the North American [8] and Australian [9] design specifications. Therefore, only local-global (LG) 
buckling mode interaction was considered in the DSM equations [8, 9]. In all of the above studies, various column 
lengths and number of manufacturing folds per cross-section were investigated. 

Results from the literature and the research performed by the authors show that, (i) the nominal member axial 
compressive capacity of short and intermediate columns is governed by local or distortional buckling [4], (ii) the 
nominal member axial compressive capacity of all columns is typically governed by global buckling [6] and (iii) 
the nominal distortional and global axial compressive capacities are close to each other [4, 6]. This indicates that 
global-distortional buckling mode interaction may occur. However, as the different buckling modes have different 
post-buckling reserves [10],  similar level of local, distortional and global capacities does not necessarily involve 
interaction. The aim of this paper is to quantify if buckling mode interaction needs to be considered in the design 
equations in shape optimisation of CFS manufacturable columns.  

In this paper, existing literature on local-distortional (LD), distortional-global (DG) and local-distortional-global 
(LDG) buckling mode interactions is reviewed. The corresponding DSM equations in compression are also 
reviewed. The average elastic buckling stresses of the optimised cross-sections available in the literature [4] and 
those of the authors’ previous study [6] are summarised herein and the likelihood of the buckling mode interaction 
occurring in shape optimisation of manufacturable CFS columns is quantified. 

4. Existing literature on buckling mode interaction 
Buckling mode interaction was shown to significantly affect the post-buckling behaviour and ultimate strength of 
CFS members [11-13]. Yet, only LG buckling mode interaction is currently considered in design specifications [8,
9]. Numerical and experimental investigations, such as in [11-14], are currently performed to better understand LD, 
DG and LDG buckling mode interactions and new DSM buckling mode interaction equations are being developed. 
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However, as these new equations are usually conservative when no buckling mode interaction is considered, the 
domain of validity of these equations is currently unclear. A summary of the DSM equations can be found in [15] 
and in Sections 4.1 to 4.3. 

CFS columns usually experience buckling mode interaction due to close values of elastic buckling stresses [15], i.e. 
fol  fod (for LD buckling mode interaction), fod  foc (for DG buckling mode interaction) and fol  fod  foc (for LDG 
buckling mode interaction), where fol, fod and foc are the local, distortional and global elastic buckling stresses, 
respectively. 

Silvestre et. al. [13, 16] numerically investigated the influence of LD buckling mode interaction on CFS lipped 
channels. The ratio between the distortional and local elastic buckling stresses (fod / fol) was chosen between 0.9 
and 1.1. The studies conclude that for columns that are not prone to distortional buckling (distortional slenderness 
ratio d  1.5) and the range of fod / fol ratios considered, the LD interactive compressive strength is fairly accurately 
estimated by the DSM pure distortional nominal capacity in compression Ncd. For slender column against 
distortional buckling ( d > 1.5), the LD interactive compressive strength can be estimated by the modified DSM 
equations (Eqs. (3) and (4)) presented in Section 4.1. Young et. al. [14] and Kwon et. al. [17] experimentally tested 
CFS lipped channels that experienced LD buckling mode interaction despite large fod / fol ratios, ranging between 
1.1 and 2.7 in [14] and 1.4 and 3.2 in [17]. In these two studies, interaction was deemed to occur due to the high 
yield stress of the specimens that permits the development of elastic secondary bifurcation. 

Dinis and Camotim [12] studied DG buckling mode interaction and the length of the columns was so selected that 
fod = foc. To avoid LD buckling mode interaction, the columns were designed to have the distortional elastic 
buckling stress to be 20% lower than the local elastic buckling stress. This suggests that a ratio fod / fol less than 0.8 
is sufficient to prevent LD buckling mode interaction. 

Dinis et. al. [11, 18] experimentally and numerically investigated LDG buckling mode interaction of CFS lipped 
channels and designed the profiles to ensure a strong interaction with the elastic buckling stresses, fol, fod and foc, of 
no more than 3-4% apart.  

4.1 DSM equations for LD buckling mode interaction  
Schafer [10] estimated the nominal capacity of CFS columns against LD buckling mode interaction by replacing 
the nominal yield capacity Ny  in the DSM equations for pure local buckling with the nominal distortional capacity 
Ncd. The nominal capacity in compression Ncld for LD buckling mode interaction is then given as, 

cdcldld

cd
cd

ol

cd

ol
cldld

NN

N
N
N

N
NN

:776.0For 

15.01:776.0For 
4.04.0

 (1) 

where Nol is the elastic local buckling load and ld is the LD non-dimensional slenderness ratio expressed as, 

ol

cd
ld N

N   (2) 

Eq. (1) is referred to as an NLD approach. Yang and Hancock [19] adopted a similar method to Schafer [10] but 
replaced the nominal yield capacity Ny in the DSM equation for pure distortional buckling with the nominal local 
capacity Ncl. The nominal capacity in compression Ncdl for LD buckling mode interaction (referred to as the NDL 
approach) is then given as, 
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 (3) 

where Nod is the elastic distortional buckling load and dl is the distortional-local (DL) non-dimensional 
slenderness ratio expressed as, 
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od

cl
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N    (4) 

4.2 DSM equation for DG buckling mode interaction 
Silvestre et. al. [20] expressed the nominal capacity in compression Ncde for DG buckling mode interaction in a 
similar way to [19] and replaced the nominal local capacity Ncl in the DSM equation for pure distortional buckling 
with the nominal global capacity Nce. Ncde is then expressed as, 
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6.06.0

 (5) 

where de is the DL non-dimensional slenderness ratio expressed as, 

od

ce
de N

N    (6) 

4.3 DSM equation for LDG buckling mode interaction  
Dinis et. al. [11] proposed a new DSM equation for LDG buckling mode interaction and assessed its accuracy. The 
nominal capacity Nclde in compression against LDG buckling mode interaction is given as, 
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 (7) 

where Ncde is the nominal capacity for DG buckling mode interaction (Eq. (5)) and lde is the LDG non-dimensional 
slenderness ratio expressed as, 

ol

cde
lde N

N    (8) 

5. Results and discussion 
Studies on shape optimisation of manufacturable CFS columns available in the literature [4] and that of the authors 
[6] are summarised in Table 1, which consists of a total of 22 studies cases. Note that the work presented in [7] is 
not considered herein as the elastic buckling stresses of the optimised sections are not reported. Note also that the 
study described in [4] includes both construction (for end-use purposes) and manufacturing constraints, and 
considers singly and point-symmetric cross-sections. The algorithm converges to “Cee” and “ ” cross-sectional 
shapes for the 610 mm and 1,220 mm long columns, respectively, and to “Cee” and squashed “S” cross-sectional 
shapes for the 4,880 long columns. Although the algorithm presented in [6] considers singly-symmetric 
cross-sections only, it converges to closed or nearly closed “Cee” and “bean” cross-sectional shapes for all column 
lengths. Further the elastic buckling stresses in compression for the 4,880 mm long column in [4] are not presented 
and compared herein as they were not reported in [4]. 

Fig. 1 plots the elastic buckling stress ratios fod / fol, fol / foc and fod / foc for the cases reported in Table 1. The 610 mm 
and 1,220 mm long columns in [4] and the 500 mm long columns in [6] usually show close local and distortional 
elastic buckling stresses, with fol and fod within 20% of each other. LD buckling mode interaction is therefore likely 
to occur. However, for these columns, the distortional slenderness ratio is less than 1.5 and the DSM equation for 
pure distortional buckling is able to accurately predict the strength of the columns (see Section 4 and [9]). No DSM 
interaction equations therefore need to be considered for these columns. For the 1,500 mm and 3,000 mm long 
columns in [6], fol is in general at least twice greater than fod and no LD buckling mode interactions is likely to 
occur. 
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In Fig. 1, the global elastic buckling stress is always greater than the distortional counterpart. For 5 out of 22 
studied cases, the ratio fod / foc is less than 0.5. Therefore DG buckling mode interaction is unlikely to occur for 
these cases. For the remaining cases, the fod / foc ratio closer to unity (1.0) is 0.85 and the average fod / foc ratio equals 
0.68. Therefore, no close proximity of the global and distortional elastic buckling stresses exists for the remaining 
cases and the likelihood of DG buckling mode interaction is low. 

Additionally, the elastic local, distortional and global buckling stresses are never close to each other, i.e. all within 
15 % of each other, and LDG buckling mode interaction is therefore unlikely to be encountered. 

Table 1: Summary of available studies in the literature 

Study 
Yield 
stress 

fy (MPa) 
Objective of algorithm Number of 

folds Nf

Column length 
(mm) 

Leng et. al. [4] 228 Maximise the column capacity for a 279.4 
mm wide and 1 mm thick steel sheet 

4, 6, 8, 10 
and 12 610 1220 4880 

Wang et. al. [6] 450 
Minimise the cross-section area of a 1.2 

mm thick columns subjected to axial 
compressive load of 75 kN 

5, 7, 9, 11, 
13 and 15 500 1500 3000 

Fig. 1 Elastic buckling stress ratios for optimised columns reported in [4, 6] 

7. Conclusions 
The authors have investigated the likelihood of buckling mode interaction in shape-optimised manufacturable CFS 
columns. The literature on buckling mode interactions and the DSM equations proposed by various researchers to 
determine the nominal capacity of a column experiencing LD, DG and LDG buckling mode interaction were 
reviewed. Although, the nominal global and distortional capacities are close to each other, this paper shows that 
strong buckling mode interactions are unlikely to be encountered in the studied cases. As such, buckling mode 
interactions still need to be further assessed in future studies on shape-optimisation of CFS members. 
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1. Abstract  
In this paper a new method of solving large-scale linear programming problems related to Michell trusses, 
generalized to multiple load conditions and three-dimensional domains, is proposed. The method can be regarded 
as an extension of the adaptive ground structure methods developed recently by the first author. In the present 
version both bars and nodes can be switched between active and inactive states in subsequent iterations allowing 
significant reduction of the problem size. Thus, the numerical results can be attained for denser ground structures 
giving better approximation of exact solutions to be found. The examples of such exact solutions (new 3D Michell 
structures), motivated by the layouts predicted numerically, are also presented and can serve as benchmark tests 
for future methods of numerical optimization of structural topology in 3D space. 
2. Keywords: 3D Michell structures, multiple load cases, adaptive ground structure method, linear programming, 
active set and interior point methods, new exact solutions for structural topology optimization. 

3. Introduction 
In spite of some inherent limitations (e.g. neglecting stability requirements for compression bars), the classical 
theory of Michell structures plays an important role in structural topology optimization, by enabling the derivation 
of exact analytical solutions for the least-weight trusses capable of transmitting the applied loads to the given 
supports within limits on stresses in tension and compression. Thus the exact solutions derived by means of this 
theory may serve as valuable benchmarks for any structural topology optimization method. 
In general, the exact solutions are very hard to obtain since they require in advance a good prediction of the optimal 
layouts. Fortunately, this difficult task of predicting the optimal layout can effectively be carried out numerically 
using the adaptive ground structure method developed recently by the first author. In this method the solution is 
achieved iteratively using a small number of properly chosen active bars from the huge set of possible connections. 
The problem of enormous number of potential bars becomes particularly hard for space trusses subjected to 
multiple load conditions because the optimization problem grows very rapidly and becomes too large even for 
supercomputers. 
In this paper a new and more advanced solution method for large-scale optimization problems is proposed. It is 
based on adaptive activating of new bars in the ground structure and eliminating large number of unnecessary bars. 
Moreover, in this new method the nodes can also be switched between active and inactive states. This is 
particularly important for 3D problems because the optimal 3D trusses tend to assume forms of lattice surfaces 
(shell-like structures) while most of design space becomes empty. As a result, the size of the problem can be 
significantly reduced. The method makes it possible to obtain new numerical solutions for deriving new optimal 
topologies for 3D Michell structures. A class of new 3D exact solution inspired by numerical results is also 
presented. The method proposed in the present paper is a natural extension of the adaptive ground structure 
methods developed by Gilbert and Tyas [1], Pritchard et al. [3] and Sokó  [5-7]. 
Concluding, the aim of this paper is two-fold: a) to develop a reliable and efficient optimization method based on 
the adaptive ground structure approach, and b) to obtain substantially new exact solutions of spatial Michell trusses 
subjected to multiple load cases.  

4. Primal and dual forms of the optimization problems of multi-load plastic design 
Any optimization problem can be written in different forms which are mathematically equivalent but can lead to 
significantly different calculation times using the given optimization method (see [7]). In other words, the 
formulation of the optimization problem should be matched to the method applied. 
According to well-known duality principles, the plastic design optimization problem can be written in either 
primal or in dual form. Both of them play an important role in the proposed method and should be considered 
together. 
The most concise formulation of plastic design optimization problem for multi-load cases can be written as 
follows: 
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where V is the total volume of the structural material in the truss of M potential bars; L is the vector of lengths of 
bars; B is the geometric matrix; vectors P(l) define nodal forces for the given load cases l 1, 2, …, K, where K is 
the number of load cases; S(l) is the vector of member forces for load case l; A is the vector of cross-section areas 
(the main design variables); T and C denote the permissible stresses in tension and compression, respectively. 
The primal form (1) is not convenient for direct application of simplex or interior point method and it is 
recommended to convert it to a more applicable form (see [7] for details). The inequalities (1)3 can be converted to 
equality constraints using properly adjusted slack variables c(l) and t(l),
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which then allow elimination of original design variables A and S(l)
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Note that c(l) and t(l) are the vectors of slack variables which can be interpreted as the additional forces which can be 
added without violating the restrictions of permissible stresses (1)3 (i.e. they denote not forces itself but unused 
reserves of internal forces). 
Using (3) the original problem (1) can be converted to the standard linear programming problem with the 
following primal form: 
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The problem (4) looks for the first time as much more complicated than problem (1), but contrary to (1), all the 
design variables are non-negative and all constraints are equalities, so after comparison of the standard form of (1) 
with (4), one can easily deduce that the size of the problem is reduced more than twice. Note that the form (4) is 
new in the literature and more economical than the formulations proposed in [3] or [7]. Moreover, for K  1 it 
automatically reduces to a well-known form used for one-load case problem (see [1] or [5]) thus no additional 
separate code is needed for this special case.  
Note that (4) is written directly in the standard linear programming formulation 
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but the order of the design variables t(l) and c(l) is very important because it influences the bandwidth of the 
coefficient matrix H and consequently the computational time. The best choice is grouping the variables by 
subsequent load cases: 
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so the appropriate cost vector c and right hand side vector b can be defined as 
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The coefficient matrix of problem (23) under ordering (25) has a possibly small bandwidth (almost 
block-diagonal) and as before (c.f. (7)) is regular, repetitive, very sparse; and can be written as 

F0000
GG000

0F00
0GG0
00F0
00GG
000F

H KMxMKNK 2))1((  (8) 

where sub-matrices F and G are defined as follows 
TT BBF MN 2        and      CTMxM //2 IIG  (9) 

The evident advantage of the formulation (4) can be recognized after comparing the sizes of coefficient matrices H
in (1) and (4) and one can easy check that the size (both number of rows and columns) of matrix H in (4) is more 
than two times smaller. Moreover, the new matrix H is more efficient for computation due to its almost 
block-diagonal form, and for rather special case with only one load condition H F which means that it is as 
efficient as casual formulation for one-load case problem (c.f. Sokó  [5]).
For activating new bars in the adaptive ground structure method we need also dual variables but using the 
primal-dual version of the interior point method they are calculated automatically and for free. The convenient for 
next treatment dual form of multi-load case problem was derived in [7] and is given by 
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where u, e+, e  are Lagrange multipliers, called adjoint nodal displacements and adjoint member elongations for 
tension and compression, respectively. They are independent variables for every load condition (l) but constrained 
together by (10)2 which enables deriving the generalized optimality criteria for multi-load trusses. These criteria 
can be formulated as follows (see [7] for details). 

Theorem 
In the stress-based multi-load truss optimization problem the optimal solution has to satisfy the following 
conditions: 
1) for every bar of the truss the "total adjoint multi-load strain iˆ " is restricted by 1 

1ˆ...,,2,1 iMi  (11) 
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2) moreover, the non-zero cross-section area Ai is needed only for ‘fully strained’ bar:

0then1ˆif
1ˆthen0if

ii

ii

A
A

 (15) 

The term “fully strained” corresponds to the total and normalized adjoint strain defined in (12) but from the other 
point of view every bar in the truss is also fully stressed for some load case but not necessarily for other ones. It is 
a subtle and different situation from one-load case problem for which all bars are fully stressed together. Here, for 
multi-load case, some bars can be fully stressed only for chosen load conditions and can even be inactive for other 
ones.  
The conditions (11,12) define the domain of feasible adjoint strain fields and can be utilized in the adaptive ground 
structure method discussed in the next section. They are used to filter the set of new active bars and also as a stop 
criterion. 

5. The adaptive ground structure method with selective subsets of active bars and nodes 
Due to limited space of the paper we can describe the new method only briefly. The main idea of activating new 
bars is the same as before [7] but now after each iteration the nodes are split into two subsets: active and inactive 
nodes. Then, in the subsequent iteration the adjoint displacements are updated only for active nodes. Inactive 
nodes appear in empty regions where no material is needed. Thus before starting the next iteration all bars 
connected with inactive nodes can also be eliminated (temporary for the current iteration). Consequently, the size 
of the coefficient matrix of the problem (3) is much smaller in terms of the number of rows and columns. It should 
be noted that inactive nodes are not removed forever from the ground structure and can be activated if necessary. 
Moreover, the adjoint displacements of these nodes have to be preserved for subsequent iterations for checking the 
optimality criteria. Of course this complicates the code but is necessary and crucial to assure convergence to a 
globally optimal solution. The step by step procedure for the proposed method can be described as follows: 

First iteration:  
1. Set iter  1, d  1 and generate the initial ground structure Nx Ny Nz:1 1 1 with bars connecting only the 

neighbouring nodes. Contrary to the previous versions these bars can also be deactivated in subsequent 
iterations. 

2. Solve the problem (4) for this initial ground structure and get the dual variables )1(
)(lu .

Next iterations:  
3. Increment the number of iteration iter.
4. Increment the distance of connections d  max(dmax, d+1), together with dx, dy, dz.
5. Select the new set of active bars in the ground structure Nx Ny Nz:dx dy dz:

– for every bar compute normalized strain using the displacement fields from the previous iteration:  
)1(

)(
iter
lu

l
(l),iC(l),iTi )(ˆ      (see (12)-(13)), 

– if toli 1ˆ , then activate (add) i-th bar, 
– otherwise, if 3.0î  and d < dmax then deactivate (remove) bar, 
– if d < dmax and the number of added bars is too small then go to step 4. 

6. Check the stopping criterion: 
– if d = dmax and there are no new bars added then finish (we approach the optimum solution because for all 

potential bars i  1:M the constraints (10)2 are satisfied and the solution cannot be further improved) 
7. Calculate the volumes of material connected to nodes; if the volume of a chosen node is equal or close to zero 

and, moreover, no any new bar is added to this node, then deactivate it together with all connecting bars; then 
remove the appropriate degrees of freedom from the system but keep adjoint displacements of inactive nodes 
‘frozen’ for the next iteration.  

8. Solve primal problem (4) for reduced system of active bars and nodes and get dual variables )(
)(

iter
lu  (combine 

the updated adjoint displacements of active nodes with frozen displacements of inactive nodes).  
9. Repeat from step 3. 

The program implementing the above algorithm has been written in Mathematica using parallel computing.  

6. Examples of two-load case problems with spatial Michell trusses 
In both examples presented in this section we assume: a) equal permissible stresses in tension and compression 

T C 0, b) and equal magnitudes of applied point forces ||P(1)||  ||P(2)|| P.
As the first example, consider the two-load case problem presented in Fig. 1 in which the two independent point 
loads are applied in the centre of the upper square of the bounding cuboidal domain ddd 32/2/  and 
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directed along x and y axes, while the continuous full support is applied on the whole bottom square.  
In Fig. 1a we present the exact optimal solution obtained using the superposition principles and the concept of 
component loads [4]. The optimal structure is composed of two orthogonal long cantilevers lying in diagonal 
planes. The exact volume of the structure can be calculated using the formulae derived by Lewi ski et al. [2]. The 
numerical confirmation of this analytical prediction is presented in Fig. 1b and was performed for the ground 
structure with 20 20 60 cells, 26901 nodes and more than 300mln potential bars. The solution was obtained in 
less than 2 hours using classical computer with Intel i7 processor which clearly indicates a good efficiency of the 
proposed method. Note that ‘numerical’ volume is only 0.3% worse than the exact analytical solution.

Vexact  19.22932421 P d / 0 Vnum  19.2818 P d / 0

Figure 1: Example of a 3D Michell structure for two loading conditions:  
a) an exact analytical prediction using the concept of component loads,  

b) numerical confirmation using the ground structure with 300mln potential bars 

The second example is presented in Fig. 2 and is a subtle modification of the previous problem. Now the 
independent point loads are directed along the diagonals of the upper square of the bounding cuboidal domain 
d d 3d. Moreover, these loads have to be optimally transmitted to four fixed supports in the corners of bottom 
square. The exact analytical solution of this modified problem is harder to predict even using the concept of 
component loads. Hence in this example we firstly discovered the optimal layout numerically using the same 
density of the ground structure as before (i.e. more than 300mln bars). The numerical result presented in Fig. 2a 
suggests that the exact solution consists of four plane long cantilevers forming a specific hip roof (it is not clearly 
visible just from Fig. 2a but is evident after rotating this structure in 3D space). Then, employing the layout 
predicted numerically, the new exact analytical solution was obtained and presented in Fig. 2b. As before, the 
exact volume of this complex structure can be calculated using the formulae derived in [2], and is about 0.3% 
better than the volume obtained numerically. At the end, both numerical and analytical solutions of Fig. 2ab were 
also verified by using the superposition of two trusses corresponding to appropriate component loads, see Fig. 3c.  

7. Concluding Remarks 
Note that the optimal solutions presented in Figs 1 and 2 form shell-like structures composed of lattice surfaces 
with Michell trusses inside. Hence most of design space is empty and it was the main motivation for developing a 
new improved method in which both bars and nodes can be eliminated if unnecessary. As before, despite the 
iterative nature of the method the convergence to a global optimum as guaranteed.  
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Vnum  19.7503 P d / 0 Vexact  19.67476252 P d / 0 component trusses 

Figure 2: Example of 3D Michell truss for two independent load cases: a) numerical recognition of the optimal 
layout; b) exact analytical solution; c) optimal trusses for two component loads 
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1. Abstract
In this work a procedure is presented to perform topology optimization of components of flexible multi-
body systems, which are modeled with the floating frame of reference formulation. For the topology
optimization, the solid isotropic material with penalization (SIMP) method is used. In order to capture
the actual loads on the flexible components in the optimization, integral type objective functions are
employed and exact gradients are provided. The latter are computed by the adjoint variable method to
handle the large number of design variables.

2. Keywords: Topology Optimization, Flexible Multibody Systems, Integral Type Objective Function,
Sensitivity Analysis, Adjoint Variable Method

3. Introduction
For topology optimization of components of dynamically loaded flexible multibody systems the equivalent
static load method is often employed, see [5, 7]. Thereby, the actual loads on the flexible components
are first imitated by a finite set of equivalent static loads. These loads are derived from the results of
a dynamic multibody system simulation and are assumed to be static and design independent. Then
a static response optimization is carried out with regard to the equivalent static loads. Finally, the
next optimization loop is started performing another multibody system simulation using the optimized
design. By this procedure the computation of the objective function and its gradient is significantly
eased. However, the gradient is only an approximation of the actual dynamic problem.
Depending on the origin of the loads, e.g. whether they are caused by external forces or due to the
inertia of their self-weight, the simplifications made in the equivalent static load method can lead to
severe differences in the gradients. These might cause the optimization algorithm to search in the wrong
direction and converge to undesired solutions. Therefore, a topology optimization procedure is presented,
which relies on integral type objective functions and exact gradients, which are computed using the adjoint
variable method, see [3]. In this way the actual dynamical loads can be captured in the objective function
and the gradient.
The paper is organized in the following way. Section 4 addresses the topology optimization of flexible
multibody system. Some basics of the floating frame of reference formulation and the SIMP method are
given and the optimization procedure is described. In Section 5 the gradient computation of functional
type objective functions using the adjoint variable method is explained. Then, in Section 6 the procedure
is tested performing a topology optimization of a piston rod of a flexible slider-crank mechanism, which
is only loaded by its own inertia forces. Finally, Section 7 concludes with a brief summary and discussion.

4. Topology Optimization of Flexible Multibody Systems
The method of flexible multibody systems is a well established approach to model and analyze compliant
mechanisms, which perform large rigid body motions. These systems are assembled from rigid and flexi-
ble bodies, spring and damper elements, and actuators, which are connected via joints and bearings, see
Fig. 1(a). If the deformations are comparatively small the floating frame of reference formulation can be
used to efficiently incorporate flexible bodies into the multibody system. In the following the basic ideas
of the floating frame of reference formulation are briefly reviewed, for a detailed description see [10, 11].
In addition, the SIMP approach and the optimization procedure are described, which are used to perform
topology optimization of components of flexible multibody systems.

1
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(a) Flexible multibody system
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KP(t)

KP(t0)

undeformed
configuration Ω0

deformed
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(b) Kinematics of a single flexible body using the floating frame of
reference formulation

Figure 1: Flexible multibody systems modeled with the floating frame of reference formulation

4.1 The Floating Frame of Reference Formulation
In the floating frame of reference formulation the flexible body motion is defined using two sets of
coordinates, see Fig. 1(b). One set gives the position and orientation of a body-related reference frame
KR and describes the large nonlinear motion. The second set describes the deformation of the body with
respect to KR using a Ritz approach. That is, the displacement uP at the point P and the rotation ϑP

of the coordinate system KP fixed in P are approximated by

uP(cRP, t) = Φ(cRP)q(t) and ϑP = Ψ(cRP)q(t) (1)

as products of global shape functions Φ and Ψ and time-dependent elastic coordinates q. The global
shape functions are often obtained from finite element (FE) models of the flexible bodies. More precisely,
the equations of motion of a linear FE model of the flexible body

M eq̈e +Keqe = f e, (2)

with the mass matrix M e, the stiffness matrix Ke, the vector of applied loads f e and the nodal degrees
of freedom qe ∈ R

n have to be set up. Then, the global shape functions Φ and Ψ are obtained from a
model reduction of (2) using, for instance, modal truncation or component mode synthesis, see [4].
After the kinematics of the bodies is derived the equations of motion of the flexible multibody system can
be obtained in minimal coordinates by applying a principle of mechanics, such as d’Alembert’s principle,
and it yields

M(t,y)ÿ = f(t,y, ẏ). (3)

Thereby, M is the global mass matrix and y ∈ R
f are the generalized coordinates, which comprise both

the rigid body degrees of freedom yr and the elastic degrees of freedom q. The right-hand-side vector
f contains the applied forces, inner forces from elastic deformations as well as centrifugal, Coriolis, and
gyroscopic forces.

4.2 The SIMP Approach
One way to perform topology optimization is to distribute a limited amount of mass in a discretized
design domain such that an objective function, for instance the compliance, becomes minimal under
certain loading conditions. A common method to relax and treat this kind of hard to solve mass/no mass
integer optimization problem is the SIMP approach, see [1, 2]. Thereby, continuous density-like design
variables xi ∈ [0, 1], i = 1 . . .m, are introduced and used to parameterize the material properties of the
m subdomains. Following the penalization strategy in [9], the density and stiffness of an element i is
computed as

ρi =

{
cxq

i ρ0, for xmin = 0.01 ≤ xi < 0.1,

xiρ0, for 0.1 ≤ xi ≤ 1,

Ei = xp
iE0.

(4)

Thereby, ρ0 and E0 are the density and the stiffness of the solid material, while c, p and q are scalar
parameters. In the topology optimization, the FE model (2), which is used to determine the global shape

2
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(∇ψ(k),∇h(k))

x(k)

ψ(k),h(k)

performance
satisfying?

yes

no

evaluation of the

performance

initial design

x(k), k = 0

final design
x∗ = x(k)

propose new design
x(k), k = k + 1

simulation model

generate SIMP
parameterized FE model

M eq̈e +Keqe = f e

qe ≈ V qmodel reduction of SIMP
parameterized FE model

derivation of equations of
motion reduction; time
simulation of FMBS
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Figure 2: Schematic representation of the optimization procedure

functions Φ and Ψ, is parameterized by this SIMP approach, whereby each element is a subdomain.

4.3 Optimization Procedure
The established topology optimization procedure including a detailed description of the simulation model
is shown in Fig. 2. Starting from the initial design x(0), at first the performance of x(0) is evaluated by
a numerical simulation of the flexible multibody system. The simulation model contains the following
steps.
At first, a SIMP parameterized FE model is generated in a reference domain. Then, a model reduction
of the SIMP parameterized FE model is performed to reduce the number of elastic degrees of freedom
and to determine the global shape functions. In the next step, the flexible multibody system is assembled
from rigid and flexible bodies, i.e. the equations of motion (3) are derived in minimal coordinates, and
thereafter the time simulation can be performed. In the last step of the simulation model the objective
function and, if present, the constraint equations and their gradients are evaluated.
Continuing the iterative optimization procedure, it is checked whether the performance of the design
x(k) satisfies given criteria. If this is the case x∗ = x(k) is accepted as the solution of the optimization
problem and the optimization procedure is terminated. If the performance is not satisfying yet, an
improved design x(k+1) is proposed by the optimization algorithm and the next optimization loop is
started. As optimization algorithm an elementary version of the Method of Moving Asymptotes [12] is
used.
The whole optimization procedure from the generation of the FE model, the model reduction, the mod-
eling of the flexible multibody system, the time simulation to the optimizer is established in Matlab.

5. Sensitivity Analysis of Functional Type Objective Functions
For a successful application of the optimization procedure presented in the previous section, the efficient
gradient computation is of major importance. Due to the large number of design variables the usage of
the finite difference method would result in excessively high computation times. Therefore, the gradients
are computed using the adjoint variable method instead. It is derived in [3] for the sensitivity analysis of
rigid multibody systems and can be transferred to flexible multibody systems as described in [6].
Given a parameterized flexible multibody system in minimal coordinates as initial value problem

equations of motion (ODE): M(t,y,x)ÿ − f(t,y, ẏ,x) = 0,

initial positions and velocities: Φ0(t0,y0,x) = 0, Φ̇
0
(t0,y0, ẏ0,x) = 0,

implicit final condition: H1(t1,y1, ẏ1,x) = 0,

(5)
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then the gradient of functional type objective functions in form of

ψ(x) =

t1∫
t0

F (t,y, ẏ, ÿ,x)dt (6)

can be computed with the adjoint variable method as follows. At first, the adjoint variables, which are
also referred to as Lagrange multipliers, τ ∈ R, μ ∈ R

f and ν ∈ R
f have to be determined at the final

time t1 from the equations

τ1 =
F 1

Ḣ1
, μ1 = −τ1

∂H1

∂y1
and M1ν1 = −τ1

∂H1

∂ẏ1 . (7)

Thereafter, the adjoint differential equations for μ and ν, which read

μ̇ =

(
∂ODE

∂y

)T

(ν + ξ)− ∂F

∂y
,

Mν̇ = −μ− Ṁν +

(
∂ODE

∂ẏ

)T

(ν + ξ)− ∂F

∂ẏ
,

(8)

are derived and solved by a backward time integration from the final time t1 to the initial time t0.
The auxiliary variables ξ ∈ R

f are computed from the algebraic equation Mξ = ∂F/∂ÿ. It should be
mentioned that the adjoint differential equations and, hence, the effort to solve them do not depend on
the design variables x. However, the partial derivatives of the equations of motion with respect to the
generalized positions y and velocities ẏ have to be provided.
After the backward time integration of Eq. (8) the adjoint variables η0 ∈ R

f and ζ0 ∈ R
f are determined

from the equations (
∂Φ̇

0

∂ẏ0

)T

η0 = M0ν0 and

(
∂Φ0

∂y0

)T

ζ0 = μ0 −
(
∂Φ̇

0

∂y0

)T

η0. (9)

Finally, the gradient can be computed as

∇ψ = −τ1
∂H1

∂x
−
(
∂Φ0

∂x

)T

ζ0 −
(
∂Φ̇

0

∂x

)T

η0 +

∫ t1

t0

[
∂F

∂x
−
(
∂ODE

∂x

)T

(ν + ξ)

]
dt, (10)

whereby the adjoint variables and the partial derivatives of the equations of motion with respect to the
design variables x are needed. For the computation of ∂ODE/∂x the global shape functions, used to
approximate the deformations of the flexible bodies, have to be differentiated with regard to the design
variables. To compute these derivatives efficiently Nelson’s method is used, see [8].

6. Application Example
In order to test the proposed optimization procedure, the topology of a flexible piston rod of a slider-crank
mechanism is optimized, see Fig. 3(a). The results are compared with those of a second optimization,
in which the equivalent static load method is used. In the modeling of the slider-crank mechanism the
slider block is omitted. Therefore, the piston rod is only loaded by its own inertia forces, which occur
during the motion of the system.
The motion is composed of two stages. In the first one, the crank is accelerated within two seconds from
a resting position until a constant angular velocity is reached. In the second stage, the angular velocity
is kept constant for another second.
The design domain, in which the optimal topology of the piston rod shall emerge, possesses the dimensions
(1.0×0.06×0.01)m and is discretized using 200×12 finite elements, see Fig. 3(b). Thereby, the interface
elements, which include the elements of the first and the last column in the mesh, are solid. The inner
2376 elements are parameterized by the SIMP law (4) using the parameters c = 105, p = 3, q = 6,
E0 = 0.5 · 1011 N/m2 and ρ0 = 8750 kg/m3.
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rigid crank

flexible piston rod

x

y

ϕ

(a) Flexible slider-crank mechanism

interface elements interface elements

SIMP parameterized elements
Ei = Ei(xi), ρi = ρi(xi)

(b) SIMP parameterized FE model of the design domain

Figure 3: Flexible slider-crank mechanism
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Figure 4: Optimization results comparing integral type objective functions and equivalent static loads

The optimization problem is formulated as minimal compliance problem with a volume restriction
V (x)/V0 ≤ 0.5 and reads

min
x∈Rh

ψi(x)

subject to h(x) = V (x)− 1

2
V0 ≤ 0,

0.01 ≤ xi ≤ 1, i = 1 . . . h,

(11)

whereby two different objective functions ψi(x), i = 1, 2 are defined. On the one hand, being an example
of functional type objective functions, the integral compliance

ψ1(x) =

t1∫
t0

qT
e Keqedt (12)

shall be minimized. On the other hand, employing the equivalent static load method [5, 7] the compliance
is evaluated and summed up at nesl = 100 time points tj , which are uniformly distributed in [t0, t1]. Here,
the objective function ψ2(x) is computed as follows

ψ2(x) =
t1

nesl

nesl∑
j=1

qT
e,jKeqe,j , (13)

whereby the scaling t1/nesl is not necessarily needed but introduced to ease the comparison of ψ1 and
ψ2. The elastic coordinates qe,j = qe(tj) are recovered after the time simulation and are assumed to be
constant in the gradient computation of the static response optimization.
Two optimizations are carried out, in which ψ1 and ψ2 are minimized. The resulting compliance histories
and material distributions after 50 iterations are given in Fig. 4. It can be seen that in both optimizations,
the evolving designs are stiffened with regard to bending loads. However, while the optimization of ψ2 gets
stuck in an intermediate layout with a majority of gray elements, a design emerges in the optimization of
ψ1, where most of the elements are either white or black and even checkerboard patterns are formed. This
clear difference can also be observed in the compliance which is reduced from ψ1(x

(0)) = ψ2(x
(0)) = 0.246

to φ∗
1 = 0.02 and φ∗

2 = 0.066, respectively.
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It can therefore be concluded that for the application example the simplifications made in the equivalent
static load method do not apply and as a consequence the optimization yields an unsatisfying design.
In contrast, the presented optimization procedure, which relies on an integral type objective function
and exact gradients, is able to solve the problem. However, this ability comes with a price. While the
optimization of ψ2 takes only about 1.5 h, the optimization of ψ1 needs roughly two days due to the
increased effort in the gradient computation.

7. Summary and Conclusion
An optimization procedure is presented to perform topology optimization of flexible multibody systems,
modeled with the floating frame of reference formulation. The flexible bodies are parameterized using the
SIMP approach. In contrast to previous approaches, functional type objective functions are employed
and exact gradients are provided. In the gradient computation the adjoint variable method is used to
handle the large number of design variables. As testing and comparing example, a topology optimization
is performed for a flexible piston rod of a slider-crank mechanism. The results show that it is possible with
the presented method to optimize multibody systems, which do not meet the necessary requirements to
use the equivalent static load method. However, even though an appropriate method is used to evaluate
the gradients efficiently the total optimization time is comparatively high.
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1. Abstract
Composite materials are now making their way into the primary structures of large transport aircraft and have

contributed to more efficient airframes. However, the composites used so far consist in conventional plies with

fixed angles. The introduction of the capability to manufacture tow-steered composites opens the door to more

efficient airframes by enabling more tailored structures. This paper will propose a general method for setting up

tow-steered composite structural optimization problems. This method also features a method for mapping poten-

tially thousands of discrete ply angles to a complex structure of interest. This mapping is amenable to adjoint

gradient computation, which would otherwise be prohibitively expensive for any problem with a high enough fi-

delity to be of use. While the motivation of this method is to parameterize and optimize composite tow angles,

it can handle both spatially varying tow angle and thickness variables separately and together. Several structural

problems are proposed and their results presented. From these results we show that this method offers a robust

design parameterization while being general enough to be applicable to a large number of structures. While purely

structural, the presented methodology can be extend to aerostructural design optimization.

2. Keywords: Structural optimization, tow-steered composites, composites, fuel burn, flexible wing

3. Introduction
Tow steering is a relatively new composite manufacturing technique in which a machine is used to distribute com-

posite fibers with a continuously varying direction on a surface, as opposed to the typical uni-directional laminae.

This effectively gives the designer control over the local stiffness properties of their structures and enables the

tailoring of the deflected shape for a prescribed load. This allows the structure to deform in ways that reduce stress

concentrations, or result in passive load alleviation. With such unprecedented control over the behavior of the

structure, a natural question to ask is: How can we find the optimal fiber distribution to maximize the performance

of our structure? This question can be answered with multidisciplinary design optimization (MDO). Examples

of these problems would include designing a wing to defect in flight to optimally reduce fuel burn, such as in

Kenway and Martins [8], or designing structure that can withstand complex load distributions while minimizing

weight. Spatially varying composite ply distribution optimization has been studied by Kennedy and Martins [6]

and Hvejsel et al. [1] among others. However in these cases the fiber angles were forced to take discrete values

due to manufacturing constraints. In the present paper we now relax that constraint and allow all angles to take

continuous values. Continuous tow steered optimization has been investigated by groups such as Jegley et al. [4]

and Jutte al.[5]. The difference is the paper proposes a new method for tow parametrization and optimization over

a full 3D model using gradient based optimization techniques.

4. Method
In this section, we describe the method for performing tow-steering via numerical optimization. The high-level

approach is to use a shell-element structural solver with the shell stiffness computed from the local tow angle

through first-order shear deformation theory (FSDT). The shell stiffness matrices are permitted to vary within each

element, reusing the element shape functions. The tow angle distribution across a structural component is smoothly

parametrized using B-spline surfaces, so the design variables for optimization are the B-spline control points of

this parameterization. A necessary intermediate step between the B-spline parameterization and computation of the

stiffness matrices is to perform a local tow angle transformation to reverse the effect of each quadrilateral elements

orientation because we use unstructured quad meshes, in general. We use a gradient-based optimizer with adjoint-

based derivative computation to enable optimization with a large number of design variables. Figure 1 illustrates

the steps involved in mapping the design variables to the objective and constraint functions using an extended

design structure matrix (XDSM) [9] diagram.
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Optimizer Control points

B-spline Nodal tow angles

CLT Nodal stiffnesses

Interpolation Gauss pt. stiffnesses

Matrix assembly Global stiffness matrix

Linear solution Nodal displacements Nodal displacements

Kinematics Gauss pt. strains

Objective/constraints Functionals

Figure 1: Extended design structure matrix (XDSM) diagram showing the steps in the tow-steering optimization.

(a)

Constant

(b)

Perturbed

Figure 2: B-spline control points and the resulting tow angle distributions.

Section 4.1 describes the B-spline parameterization and Sec. 4.2 discusses the FSDT formulation and the afore-

mentioned local angle transformation. Section 4.3 provides brief descriptions of the structural solver and optimizer

used in this work.

4.1 B-spline parameterization

A unique requirement of the tow-steering problem is a parameterization that ensures that the tow paths on each

structural component are smooth, while maintaining freedom for the optimizer. We achieved such a parameteri-

zation by using B-spline surfaces to define a continuous and smooth tow angle distribution within each structural

component. Additional smoothness of the fiber paths can be assured by applying a constraint on the minimum

radius of curvature of the path. The tow angle distributions are controlled by the B-spline control points, which can

be considered the inputs for the parameterization, and the outputs are the tow angle values at the nodes. For this

work, we use shell elements whose stiffness matrices vary using the same shape functions as the displacements.

We use B-splines because of their many favorable properties—they have compact support, the number of

control points and order can be arbitrarily controlled, and they have a constant Jacobian since they are linear with

respect to the control point values. A B-spline surface is simply a tensor-product generalization of a B-spline curve

and is mathematically defined as

P(u,v) =
m

∑
i=1

n

∑
j=1

Bi(u)B j(v)Ci j,

where P is the output of the B-spline surface, Ci j are the control point values, u,v are the parametric coordinates,

and Bk are the piecewise-polynomial basis functions. In this context, P(u,v) would be the tow angle evaluated at a

parametric location (u,v) in the structural component, which are assumed to be topologically 4-sided, and Ci j are

the tow angle control points. Figure 2 shows the B-spline control point locations overlayed on a constant and a

perturbed tow angle distribution.
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(a) 2D Parametric Map (b) 3D Curved Surface

Figure 3: Illustration of the local tow angle transformation.

4.2 Computation of the stiffness matrices

Given the tow angle at each node, the shell stiffness properties are calculated using FSDT; that is, we obtain the A,

B, D, and A∗ matrices. Prior to this, however, the nodal tow angles given by the B-spline parameterization must be

transformed to obtain the equivalent angle in the elements frame that would produce the same effective angle. This

transformation is pre-computed as an initialization step; starting with one of the elements, the algorithm marches

out to neighboring elements, computing the rotation of each neighboring element relative to the current one. In

each element, the pre-computed rotation is added to the tow angle from the global frame to obtain the correct

angle in the local frame. This effectively guarantees a continuous fiber distribution so long as the surface can be

transformed into the 2D mapping with at most one cut, so an example where this would not work would be a cube.

This method can be generalized for any number of control points or laminae layers. A special case of this mapping

is the case in which tow angle control points are all set to the same value, which in 3D corresponds to wrapping

parallel lines around the curvature of the surface. The parametric warping process can be seen in Fig. 3.

4.3 Structural solver and optimizer

The structural solver used in this work is the toolkit for the analysis of composite structures (TACS) [7]. TACS

is a general finite-element package that enables the implementation of custom elements and material models, but

in this work, we use shell elements with a mixed interpolation of tensorial components (MITC) formulation and

FSDT. TACS has been developed specifically for gradient-based optimization, so it provides the necessary routines

to implement the adjoint method. The adjoint method enables the computation of a gradient at a cost roughly equal

to running a single structural analysis, and this cost is independent of the number of design variables. For a detailed

explanation of the adjoint method, the reader is referred to Martins and Hwang [10].

The optimizer we use in this work is SNOPT [2], an active-set reduced Hessian Sequential Quadratic Program-

ming (SQP) algorithm. SNOPT is effective in solving large-scale nonlinear optimization problems with sparse

constraints. We interface to SNOPT from Python via the pyOpt package [11]; pyOpt is an optimization suite that

enables simple access to many optimizers with a common optimization problem definition.

5. Results

5.1 Optimization problem

Several compliance minimization problems will be considered, each of which takes the form .

minimize 1
2 uT Ku

with respect to θcp

The compliance is minimized subject to each of the control point tow angles parameterizing the design. For

every case only a single ply optimization was considered, however multi-ply optimization is possible as well. The

composite properties used for each problem are listed below in Tab. 1.

5.2. Verification of B-spline parameterization

To assess the robustness of the B-spline parameterization, we solved the optimization case originally proposed by

Hvejsel et al. [1] . In this case, a 1 m x 1 m x 0.05 m plate is clamped on all edges and subjected to a uniform

pressure loading on the top. The objective of this optimization is to minimize the compliance of the plate with
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Table 1: Material Properties

Property Value

E1 54 GPa

E2,E3 18 GPa

G12, G13, G23 9 GPa

ν12 0.25

respect to the ply angles. In the case of Hvejsel et al. [1], the angles were forced to take discrete values. In

our case, we relax that requirement and allow a continuous fiber distribution. The discrete case was used as a

benchmark and the result can be seen in Fig. 4. The continuous optimization case was run with 25, 100, and 200

control points uniformly distributed throughout the plate, and in each case, we started with all the fibers in the x-

direction. The optimization results are shown in Fig. 5. It can be seen that the optimal designs for the discrete and

continuous cases are similar in pattern: the fibers point radially towards the edges and form a diamond toward the

center. Due to their smooth nature the bi-splines have a more difficult time modeling the sharp angle changes seen

in the boundary between the inner and outer square regions. The final compliance for the 25, 100, and 400 control

point designs was 10.19 J, 9.18 J and 8.89 J, respectively. For reference, the discrete case yields a compliance of

8.83 J, while the initial zero degree case yields. It is not surprising to see that as the number of control point is

increased, the minimum compliance decreases. While it is surprising that the continuous cases did not outperform

the discrete case, it is important to note that due to the symmetry of the problem this case features local minima

as is explored in the following section. Using different initial distributions, the solution will converge to a slightly

better optimum.

Figure 4: Solution to the discrete case (8.83 J).

(a) 25 Control point case (10.19 J). (b) 100 Control point case (9.18 J). (c) 400 Control point case (8.89 J).

Figure 5: Clamped plate solutions for variable tow angles
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Figure 6: Cantilevered plate problem.

Case A: 45◦ Starting Point (8.45 J) Case B: 90◦ Starting Point (10.56 J) Case C: 92◦ Starting Point (8.45 J)

Figure 7: Cantilevered plate solutions.

5.2. Exploration of Local Minima

The next problem that was looked at was a simple cantilevered 3 m x 1 m x 0.01 m plate under a triangular

distributed load shown in Fig. 6. The objective function was again compliance, which was minimized with respect

to 40 control point ply angles. The global minimum to this problem is when all fibers point along the axis of

bending, in this case the x-axis or 0◦ This problem was run with three different initial uniform tow distributions,

of 45◦, 90◦, and 92◦, corresponding to cases A, B, and C, respectively. The model contained 9801 elements with

60,000 degrees of freedom. The results for each case are shown in in Fig. 7. As was expected, in all three cases

the optimizer tries to re-orientate the tow angles to 0◦. The fibers furthest away from the clamped end change the

least since the compliance is very insensitive to these values. What is interesting to note is that while case A and

C converged to a compliance of 8.45 J case B only converged to 10.56 J, a difference of 25%. We can see from

the pattern that while most of the fibers point along the x-axis there is a ’U’ shaped pattern going down the center,

preventing it from achieving the same value as cases A and C. The fact that the solution for case B and C differ so

much despite only differing slightly in initial values seems to suggest that there is a local minimum to the problem

due to the symmetry of the problem.

5.3. Structural Wing Box Optimization

The final problem that was considered was a full wing box modeled from the NASA Common Research Model

(CRM). This wing box structure is created using GeoMACH [3], an open-source parametric modeler for aircraft

geometries and structures. We first create the wing box geometry in GeoMACH, and once we specify the desired

locations of the ribs, spars, and stringers, GeoMACH automatically generates a parametric unstructured quadrilat-

eral mesh of the structure. In this work, we do not change the geometry of the wing.

For this problem the structure was loaded with a uniform suction pressure on the upper surface and an equal

in magnitude positive pressure on the lower surface such that the net resultant force on the wing is upward. The

magnitude of the pressure on both surfaces was 3.6 kPa. The model contains 16,659 elements with just under

100,000 degrees of freedom. The optimization was again a compliance minimization of the entire structure. The

design variables consist of 80 tow angle control points, 40 on both the upper and lower skins of the wing box.

This problem was run from two initial designs: one with the fibers pointing along the span of the wing and the

other with the fibers pointed along the chord. The initial compliance was 28.7 MJ for the spanwise case, and 50.1

MJ for the chordwise case. Both cases converge to the solution seen in Fig8 (b) with a final compliance value

of 25 MJ.This is a 50% and 13% improvement for the chordwise and spanwise cases respectively. The figures

show the upper surface only, however the lower surface shares similar features in fiber distribution. While this

is an impressive improvement for the chordwise distribution, clearly this case would represent one of the poorest

engineering choices in practice. It is more informative to compare the optimum with the spanwise case, since this

represents a more intuitive design choice. We can see that for the optimized wing, most of the fibers still point in

the spanwise direction. The differences exist toward the trailing edge, where the fibers change direction sharply to

point in the chordwise direction. The span-wise fibers on the main part of of the wing act to reduce the bending

stresses, since this is where the load is carried. The reason for the sharp transition at the aft of the wing is that this

juncture is where the ribs end the model, so the optimizer places the fibers in the chord-wise direction to make up

for the loss of rigidity in the aft region.
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(a) Initial (b) Optimized

Figure 8: Initial and optimized tow angle distributions.

6. Conclusion
We presented a method for parameterizing and optimizing tow steered composite structures. We presented two 2D

optimization problems to benchmark the performance of the parameterization, and included a third, more sophisti-

cated, problem in three dimensions to demonstrate its utility. From our study we conclude that the method is indeed

robust, however is limited in the sense that sharp tow angle changes are difficult to achieve. It has also been shown

that certain problems may be subject to local minima due to the parameterization. While the optimization cases

presented in this paper focused on compliance minimization it can be easily extended to more general optimization

problems with multiple laminae layers.
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1. Abstract
Multi-point constraints have been used in analysis of structures, since the early 1970’s. However, limited research

regarding the sensitivity analysis and design optimization of multi-point constraints have been done. We recently

showed for the master-slave elimination approach that for the analysis using Newton’s method, the exact consistent

tangent contribution requires the second derivative contribution of the multi-point constraint relations. However,

the second-order contribution is often omitted when conducting the analysis resulting in an inexact consistent

tangent contribution.

In this study, we investigate whether the exact consistent tangent contribution is essential when designing

multi-point constraints for structural applications. The multi-point constraint design problem is to design a fric-

tionless roller guide for a center loaded simply supported beam. The unconstrained design problem aims to find

the geometry of a frictionless roller guide such that the centroid of the beam follows a prescribed load path . We

compute the exact analytical gradients of the objective function using the the exact consistent tangent contribution

of the multi-point constraints. In addition, we also compute the approximate analytical gradients of the objective

function, where the only approximation in the sensitivity analysis is the inexact consistent tangent contribution of

the multi-point constraints.

We then investigate the difference in design optimization performance when supplying the exact and approx-

imate analytical gradients. We compare the ability and performance of steepest descent and BFGS conjugate

gradient algorithms with a cubic line search strategy to design the multi-point constraints when both the exact and

inexact gradients are supplied.

2. Keywords: Multi-point constraint, exact consistent tangent, inexact consistent tangent, design optimization,

analytical sensitivities.

3. Introduction
Finite element based multi-point constraint (MPC) research was introduced in the middle seventies by the well

known Gallagher textbook [2]. This textbook was supplemented by a number of papers from the late seventies

[3, 4] to early eighties [5, 6, 7]. These papers mainly included discussions on the analysis of linear and nonlinear

MPCs for the master-slave elimination and Lagrangian approaches. The discussion on MPCs got rekindled in the

nineties and early 2000s, with papers that mainly focussed on linear MPCs [8, 9, 10, 11, 12]. These papers touched

on implementation approaches [9, 10, 11], programming abstractions that are well suited to implement MPCs [8]

or specific applications [12].

Unfortunately, not much work has been conducted on the sensitivity analysis or the use of sensitivities in

the design of nonlinear MPCs. We recently showed [1] that for the analysis of MPCs using Newton’s method

in the master-slave elimination approach the exact consistent tangent contribution requires the second derivative

contribution of the multi-point constraint relations. However, the second-order contribution is often omitted when

conducting the analysis resulting in an inexact consistent tangent contribution that are often employed with inexact

Newton strategies. The inexact consistent tangent contribution is sufficient to efficiently analyze nonlinear MPCs.

It however remains unclear whether they are sufficient to approximate design sensitivities for the efficient design

of MPCs.

In this paper, we investigate whether the design sensitivities requires the exact consistent tangent or whether

the inexact consistent tangent is sufficient to design MPCs efficiently or at all using conventional gradient based

algorithms. Instead of using the master-slave elimination approach we conduct all analyses using the Lagrangian

approach to enforce MPCs. To the best of our knowledge this is the first time that the design sensitivities computed

using the exact consistent tangent from the primary analysis for MPCs is investigated.

In this study, we indicate vectors by {·} and matrices using [·].

4. Sensitivity Analysis
Consider the partitioning of the nonlinear system of equations into free (f), prescribed (p) and MPC (c) degrees of
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freedom,

{R f }= {F int

f }−{F ext

f }= {0} (1)

{Rc}= {F int

c }−{F ext

c }= {0} (2)

{Rp}= {F int

p }−{F ext

p }= {0}, (3)

which we solve using Newton’s algorithm. The MPC (c) degrees of freedom are all the degrees of freedom that are

associated with the MPC equations. The prescribed displacements are applied at the start of the iterative process,

which leaves only the free and MPC degrees of freedom to solve

{R f }= {F int

f }−{F ext

f }= {0}, (4)

{Rc}= {F int

c }−{F ext

c }= {0}, (5)

in addition, to the nonlinear MPC equations that are written in residual form

{Rmpc
c }= {0}. (6)

The Lagrangian approach allows us to formulate the problem using the potential energy approach [2]. The

potential energy for elastic media is given by the sum of the strain energy or equivalently the work conducted by

the external loads, and the work potential of the external loads [13],

Π(Uf ,Uc) =
∫
{F int

f }Td{Uf }+
∫
{F int

c }Td{Uc}−{F ext

f }T{Uf }−{F ext

c }T{Uc}, (7)

which we can augment with the nonlinear MPC equations to obtain the Lagrangian functional

L (Uf ,Uc,λ ) =
∫
{F int

f }Td{Uf }+
∫
{F int

c }Td{Uc}−{F ext

f }T{Uf }−{F ext

c }T{Uc}+{λ}T{Rmpc
c (Uc)}. (8)

Note the presence of the additional unknowns {λ}, the Lagrange multipliers. The stationary point of (8) is given

by the first order optimality conditions{
dL (Uf ,Uc,λ )

d{Uf }
}

= {F int
f }−{F ext

f }= {0},{
dL (Uf ,Uc,λ )

d{Uc}
}

= {F int
c }−{F ext

c }+{λ}T d{Rmpc
c }

d{Uc} = {0},{
dL (Uf ,Uc,λ )

d{λ}
}

= {Rmpc
c }= {0}.

(9)

The resulting system of equations (9), can then be solved using Newton’s method to obtain the following update

formula⎡⎢⎢⎢⎣
d{F int

f }
d{Uf }

d{F int
f }

d{Uc} {0}
d{F int

c }
d{Uf }

d{F int
c }

d{Uc} +{λ}T d2{Rmpc
c }

d{Uc}2

(
d{Rmpc

c }
d{Uc}

)T

{0} d{Rmpc
c }

d{Uc} {0}

⎤⎥⎥⎥⎦
⎧⎨⎩

�{Uf }
�{Uc}
�{λ}

⎫⎬⎭= −

⎧⎪⎨⎪⎩
{R f }

{Rc}+{λ}T d{Rmpc
c }

d{Uc}
{Rmpc

c }

⎫⎪⎬⎪⎭ , (10)

which needs to be solved at each iterate until convergence.

Note the presence of the second derivative
d2{Rmpc

c }
d{Uc}2 of the MPC relations in (10). Similarly, we can compute

the second derivative of the ith constraint equation w.r.t. all {Uc} and multiply the result by the ith Lagrange

multiplier. This process is then repeated for all the constraint equations to finally obtain the symmetric matrix[
{λ}T d2{Rmpc

c }
d{Uc}2

]
.

However, the second derivative is ofte omitted in the consistent tangent contribution that results in an inexact

consistent tangent. In this study inexact consistent tangent is taken to imply the omission of
[
{λ}T d2{Rmpc

c }
d{Uc}2

]
in the

consistent tangent, whereas the exact consistent tangent includes this term.

The sensitivity analysis for the design of an MPC can be computed using the direct sensitivity or adjoint

sensitivity approach. Consider the sensitivity analysis for the unconstrained objective function f ({U}({x})){
d f

d{x}
}
=

{
d f

d{U}
}[

d{U}
d{x}

]
. (11)
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As usual in implicit sensitivity calculations,
[

d{U}
d{x}
]

can be computed from the consistent tangent computed during

the Newton step of the primary analysis and the explicit dependency of the non-linear equations w.r.t. the design

variables {x}. For the design of MPCs, only the MPC equations depend explicitly on {x}. Hence, right-hand side

vectors of the explicit dependency of the residual equations with respect to {x} is then given by multiple right-hand

sides stored in a right-hand side matrix

−

⎡⎢⎢⎣
[0][

{λ}T d
dx

(
d{Rmpc

c }
d{Uc}

)][
d{Rmpc

c }
d{x}

]
⎤⎥⎥⎦ , (12)

with each column associated with a design variable.

In computing these sensitivities we consider the exact and inexact consistent tangent from the primary analysis

to compute the exact and inexact gradients used in the design optimization of the MPCs.

5. Numerical example
We demonstrate the optimal design of MPCs on a slender beam with a nonlinear tip path that is modelled using a

MPC, as depicted in Figure 1. The left edge is clamped. The aim is to find the required frictionless tip path defined

by a MPC constraint that best predicts a prescribed load path of the centroid at which the load is applied.

Figure 1: A slender beam with a predefined nonlinear tip path parameterized by a quadratic MPC relation.

The slender beam has a length of 40 mm, height of 1mm and a thickness of 10 mm. The slender beam is

modeled using non-linear elastic finite elements in plane strain, with an applied vertical load at the centroid of

the beam. The load depicted in Figure 1 indicates the positive direction. The plane strain linear elastic material

properties are Young’s modulus of 200 GPa and Poisson’s ration of 0.3. The load path is specified by the centroid

position for five load cases. The five load cases are −1, . . . ,−5 kN and the required centroid positions tabulated

in Table 2. The non-linear geometrical problem is solved using load control. The x- and y-displacements are

respectively indicated under the column headings ({U}xc and {U}yc). The optimal MPC solution is depicted in

Figure 2. Also depicted is the deformed structure under the five load cases, in addition to the requested centroid

positions for each load case.

The nonlinear tip path modeled by a MPC is parameterised by the following simple quadratic relation

y = a(x−b)2 − c, (13)

with a, b and c the design variables for the MPC design optimisation problem.

To allow us to assess the quality of the MPC design optimization solutions, we choose the parameters a = 0.05,

b = 30 and c = 5 to compute the desired tip displacements for the five load cases given in Table 2. Hence, the

optimal solution for this simple problem is known. We formulate the MPC design optimization problem as a

least squares minimization problem of the error between the desired and actual centroid displacements. To ensure

the points weighted properly, we normalize the centroid displacements by the solution given in Table 2 when

computing the least squares error.

3
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Figure 2: The optimal MPC design indicated by the dashed line. The desired centroid positions for each load case

is indicated by the star markers together with the deformed structure for each load case. The undeformed structure

is depicted in cyan.

Table 1: Desired tip displacement for five prescribed loadings.

Loading (kN) {U}xc (mm) {U}yc (mm)

-1 -0.352054942516627 -3.498394714046134

-2 -1.474966653993082 -7.072093243279817

-3 -2.868280374657851 -9.677838609719000

-4 -4.086135653307218 -11.353803264917335

-5 -5.051015315558891 -12.449137211538474

We consider two optimization algorithms that employ a cubic line search strategy. Firstly, the steepest descent

(SD) algorithm and secondly the well-known Quasi-Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS) algo-

rithm. For each algorithm we supply the exact analytical gradient using the exact consistent tangent indicated by

SD-EG and BFGS-EG. In addition we also have the algorithms indicated by SD-IG and BFGS-IG for which the

inexact gradients are supplied. The inaccuracies result solely from using the incomplete consistent tangent from

the primary analysis in the sensitivity analysis. Lastly, to quantify the effective computational savings we indicate

the SD-FD and BFGS-FD algorithms to only use numerically computed finite difference gradients.

All algorithms start from the initial guess {x0}= [0.1, 25, 10]. The four convergence criteria used in this study

are

1. ‖{Δx}‖ ≤ 10−6,

2. Δ f ≤ 10−6,

3. ‖{∇ f}‖ ≤ 10−6,

4. the maximum number of function evaluations is 300.

As an initial investigation we compute the exact ∇ fexact and inexact ∇ finexact gradients at the starting point for

the objective function, as well as the complex-step ∇ fcs computed sensitivities using a complex step size of 10−20

[14]. For this problem, the inexact consistent tangent contribution is surprisingly inaccurate when compared to the

exact and complex-step computed sensitivities. Since our MPC relation is quadratic, the second order consistent

tangent contribution that is neglected is 2a multiplied by the Lagrange multiplier. The Lagrange multiplier scales

with the reaction force required to enforce the MPC, and consequently amplifies this neglected contribution.

Table 2: Desired tip displacement for five prescribed loadings.

∇ f ∇ fexact ∇ finexact ∇ fcs
∂ f
∂x1

20.020650821600508 29.629165450470268 20.020650813878873
∂ f
∂x2

-0.220751984034818 -0.399390566601492 -0.220751983922336
∂ f
∂x3

0.096695873252482 0.060859843096620 0.096695873297742
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The results for all six algorithms are summarized in Table 3. The steepest descent algorithms all terminated

prematurely before reaching a stationary point. The SD-EG and SD-FD terminated due to the maximum number

of function values being reached. The SD-IG terminated the computed descent direction failed to indicate descent.

We note that convergence is very slow for steepest descent directions. Although not explored in this study, this

indicates that appropriate scaling might play a significant role to improve the results. However, both the SD-EG

and SD-FD is continuously improving the solution as opposed to terminating like SD-IG. Here, it is clear that

the inexact gradient is insufficient to solve this problem using conventional gradient based algorithms. The BFGS

algorithms using exact gradients be it analytical (BFGS-EG) or numerical (BFGS-FD) converged to the optimum.

In turn, BFGS-IG terminated since the computed descent direction failed to indicate descent. The computational

benefit of using analytical gradients as opposed to numerically computed finite differences is also evident, even if

the problem has only three design variables.

Table 3: Optimization results.

Parameter SD-EG SD-IG SD-FD BFGS-EG BFGS-IG BFGS-FD

Iterations 75 4 19 41 3 41

Function Evaluations 300 39 300 46 19 184

‖{x}∗ −{x}target‖ 7.063 7.070 7.067 3.557×10−7 7.070 1.685×10−6

‖∇ f ({x}∗)‖ 0.254 4.473 0.255 2.902×10−8 1.508 2.173×10−6

f ∗ 0.331 0.334 0.332 9.184×10−16 0.336 3.029×10−13

The convergence histories for the steepest descent algorithms are depicted in Figures 3 (a)-(c), and the BFGS

algorithms in Figures 4 (a)-(c). Figures 3 (a) and 4(a) indicate the function value histories. Figures 3 (b) and 4 (b)

indicate the step size norm at the various iterations. Figures 3(c) and 4 (c) indicate the gradient norm history.

From Figure 3(a), the steady improvement by the steepest descent algorithms and dramatic improvement by

the BFGS algorithms is evident in Figure 4(a), when the exact gradient is made available.

(a) (b) (c)

Figure 3: (a) Function value, (b) step size norm and (c) gradient norm history for the SD-FD, SD-IG and SD-EG

algorithms.

5. Conclusions
We demonstrated that the inexact consistent tangent contribution from the primary analysis is not reliable to com-

pute design sensitivities for MPC design. The inexact gradients were not able to compute descent directions and

consequently the conventional gradient based algorithms terminated. The second order contribution often omitted

for the primary analysis cannot be omitted when using the consistent tangent from the primary analysis for the sen-

sitivity analysis to design MPCs. It is essential that the exact consistent tangent contribution be used to compute

reliable design sensitivities, which requires the second derivative of the MPC constraint relation to be computed.

6. References

[1] S. Kok and D.N. Wilke, Understanding linear and non-linear multi-point constraints in finite element analysis,

9th South African Conference on Computational and Applied Mechanics, Somerset West, 14 - 16 January

2014.

[2] R. Gallagher, Finite element analysis: Fundamentals, John Wiley & Sons, Ltd, 1975.

5

516

Leo
Rectangle



(a) (b) (c)

Figure 4: (a) Function value, (b) step size norm and (c) gradient norm history for the BFGS-FD, BFGS-IG and

BFGS-EG algorithms.

[3] J. Curiskis and S. Valliappan, A solution algorithm for linear constraint equations in finite element analysis,

Computers & Structures, 8, 117 - 124, 1978.

[4] J. F. Abel and M. S. Shephard, An algorithm for multipoint constraints in finite element analysis, International
Journal for Numerical Methods in Engineering, 14, 464- 467, 1979.

[5] J. Barlow, Constraint relationships in linear and nonlinear finite element analyses, International Journal for
Numerical Methods in Engineering, 18, 521 - 533, 1982.

[6] M. S. Shephard, Linear multipoint constraints applied via transformation as part of a direct stiffness assembly

process, International Journal for Numerical Methods in Engineering, 20, 2107 - 2112, 1984.

[7] O. S. Narayanaswamy, Processing nonlinear multipoint constraints in the finite element method, International
Journal for Numerical Methods in Engineering 21, 1283 - 1288, 1985.
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1. Abstract  
The distributed Genetic Algorithm (GA) for PC cluster with multi-core-CPUs is proposed as a time reducing 
method for determining the schemes of retrofitting existing buildings with Buckling restrained Brace (BRB). Non-
dominated Sorting Genetic Algorithm-II (NSGA-II), one of the derivative evolutionary algorithm in heuristic 
method, was applied since the optimization problem have a multi-objective function. Two problem case was 
selected for validating performance of the distributed GA. The first case is seismic retrofitting of a two-dimensional 
steel frame structure with nonlinear static analysis, and the other one is seismic retrofitting of a three-dimensional 
reinforced concrete frame structure with nonlinear dynamic analysis. The objectives in both problems are 
minimization of cost for retrofitting and damage of retrofitted frame structure. To reduce the time for searching 
optimal solutions, the cluster computer consists of off-the-shelf Personal Computer (PC) with central processing 
unit (CPU) of quad-core processor was used. The PCs of the cluster were connected to local area network (LAN) 
through network switch have gigabits bandwidth. As a result, this study confirmed the possibility of using the 
cluster computer composed with multi-core-CPUs as High Performance Computing (HPC) for seismic retrofitting 
optimization. 

2. Keywords: seismic retrofitting, buckling restrained braces (BRBs), design optimization, genetic algorithms 
(GA), personal computer cluster, multi-core-CPUs 

3. Introduction 
Buckling restrained braces (BRB), a kind of Hysteretic dampers (HD), is one of effective method for preventing 
the damage of main frame structure [1]. There are many research and application cases for using BRB for 
improving seismic capacity of the target building [2-6]. Conventional optimization algoritoms are not suitable for 
BRB retrofitting design optimization since the relation between changing of design variables and structural 
performance of the retrofitted building is discontinuous and nondifferentiable [7].  
Although Genetic Algorithm (GA) can overcome the limits of conventional optimization algorithms, development 
of BRB retrofitting design optimization using GA have to manage the possible excessive computation time of 
repeated nonlinear structural analysis in iteration process of GA. For this reason, many researchers has try to apply 
personal computer (PC) cluster to structural optimization [8-15]. 
In this study, to improve the efficiency of existing retrofitting methods using BRB, the distributed GA-based 
optimal seismic retrofit design using BRBs for conjugating cluster of commercial PCs with multi-core CPU is 
suggested. The PC with i7-2600 quad-core processor [16] are connected to local area network (LAN) through 
switching network [17] have communication speed of Gbits per second. 
The distributed GA is considering the communication configuration of PC cluster with multi-core-CPUs. 
Performance of The distributed GA was evaluated by applying to 2-dimensional retrofitting design optimization 
with nonlinear static structural anlaysis and 3-dimensional retrofitting design optimization with nonlinear dynamic 
structural anlaysis. 

4. Formulation of retrofit design optimization problem 

4.1 Design variables 
In this study, circular hollow sections [18, 19]  and rectangular section contained cross shaped steel core [18] are 
considered as BRB section. Material of the BRB are same as of Sarno and Elanshai’s case. The section 
configuration of BRB installed at spans in target building is determined by width, depth, and thickness of steel 
core.

4.2 Objective functions 

4.2.1 Objective function for 2D frames with nonlinear static analysis 
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Section area of steel core in BRB is dominant factor of total retrofitting cost while the area determine the capacity 
of BRB. Thus, first objective function fi, which is minimizing total volume of steel core in the installed BRBs, is 
calculated in Equation 1 as presented below. 

Minimize 1
1

2x
B

i i
i

Objective f Al      Equation 1 

Ai and li are cross-sectional area and length of BRB installed at ith span. B is available spans to installed BRB. The 
volume is doubled because the BRB is installed as X shape at a span. Second objective function 2 2Df  suggested 
Wen and Kang [20] is minimizing expecting lifetime seismic damage cost, and calculated in Equation 2 as below.  

Minimize 2 2
1

1x
k

t
D i i

i
Objective f e C P     Equation 2 

 is annual occurance probability.  is lognormal distribution parameters in the seismic hazard distribution, t is 
expected lifetime of retrofitted building. k is the number of limit states as seismic damage. Ci and Pi are life-cycle 
cost and probability of a single hazard of ith damage state. Pi is calculated based on the interstory drift ratio ,
as defined in Equations 3 and 4. 

1i i iP P P       Equation 3 

1 ln 1i t iP P
t

      Equation 4 

i is interstory drift ratio, t iP is occurance probability of ith damage state through a period (0, t). In this 
study, seismic level have occurance probability of 50%, 10%, 2% during 50 years is considered for t iP

[21]. 

4.2.2 Objective function for 3D frames with nonlinear dynamic analysis 
In 3D frame optimization case, objective function for minimizing total volume of BRB is same as the Equation 1. 
On the other hand, to avoid excessive computation time, second objective function 3 2Df  is the form of minimizing 
dissipated seismic energy at the main frame structure retrofitted by BRB [7, 22] , as defined in Equation 5. 

Minimize 
3 2

1

1 1

1 1
1 1

2 2

X
M

D i i i i
i

M N
i i i i

i i i i
i t

f V d M dt

V t V t M t M t
d t d t t t

             Equation 5 

Vi(t) and Mi(t) are shear force and moment of jth element at time step t. di(t)and i(t) are deformation and rotation 
of jth element at time step t. M is the number of elemnt of the main frame, N is the number of points of inputed 
ground motion data. 

4.3. Constrained conditions 
To secure structural performance capacity of the retrofitted building, maximum interstory drift is regulated to be 
limited in allowable interstory drift ratio [21, 23, 24]. The condition about inter story-drift ratio is represented in 
Equation 7. 

max / 1.0ac        Equation 6 

max  is maximum interstory drift ratio in analysis, a  is allowable interstory drift ratio. The allowable interstory 
drift ratio 2% is meaning structural performance level of life safety of braced steel frames and concrete frame in 
Table C1-3 FEMA-356 [25], and is middle value of heavy damage state range [26].  

4.4. Distributed GA on multi-core PC cluster 
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The CPU of PC in the PC cluster is Intel Core i7 2600K which have 4 core processor of 3.4GHz clock rate [16]. 
The PC cluster consists of 16 of PC, which is meaning 16 of quad-core CPUs, 64 of core processor. The scheduler 
for parallelizaion of retrofitting design optimization algorithm is function of toolbox of MATLAB Distributed 
Computing Server (MDCS) [27]. The core processor as a master node, is also switched to a slave node, 
communicate with other core processor which is slave node through a network switch. It means that core 
processors in a PC have to share a LAN card of the PC, because the LAN card is only communication route of the 
PC. As a result, more frequent communication between master node and slave nodes casue more serious bottle-
neck effect in the algorithm. In this study, considering the configuration of the PC cluster and GA which is containg 
nonlinear struatural analysis, the distributed GA is parallelized as candidate solutions level to minimize the number 
of communication times. 

5. Performance of Distributed NSGA-II 
Performance of the distributed NSGA-II was evaluated by the standard of global convergnace, computation time 
efficiency, and quality of optimal solutions while enlarging the number of core processors in the PC cluster as 1, 
2, 4, 8, 16, 32, 64 (1/4, 1/2, 1, 2, 4, 8, 16 of quad-core CPUs). The optimization was repeated at each cases of the 
number of core processors because GA has probability. 
Pareto-front lines from the repeated optimization trials were assessment to evaluate global convergence test. 
Computation time efficiency was mesearued by the speedup of elapsed computation time of generation part in GA. 
Ideal speedup Sideal was calculated by Amdahl’s Law [28]. Improvement in structural quality was assessed by 
comparing the objective function values of candidate solutions to the values of not optimized case. 

5.1. 2-dimensional steel frame structure case with nonlinear static analysis 
The BRBs retrofitting design for existing steel moment resisting frames suggested by Sarno and Elnashai was 
selected as target building of 2-dimensional frame structure case [19].  

Figure 1: Scheme of 2D braced frame of Sarno and Elnashai 

In this study, for considering most severe optimization case while securing the symmetry of the retrofitted building, 
the section area of BRB can be varied independently of the location of span, or story. Pushover analysis performed 
at seismic level of occurance propability 2% during 50 year. The analysis followed analysis procedure of FEMA 
356.  
Global convergence was confirmed by comparing all of Pareto-front solutions from repeated optimization trials to 
objective function value of Sarno and Elnashai’s retrofitting case. At the same time, improvement of seismic 
capacity of the candidate solutions also evaluated by the Pareto-front solutions. 
When using 64 of core processor (16 of quad-core CPUs), the distributed NSGA-II is 27.55 times faster than serial 
version. The efficiency of actual speedup related to ideal speedup are better than 83% except the case of using 32 
of core processors (8 of quad-core CPUs), the efficiency of 79.07%. Actual speedup was decreased while used 
computation resources was increased. However, the tendency of the ratio of actual speedup to ideal speedup is not 
according size of computation recources. 
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4

5.2. 3-dimensional irregular reinforced concrete frame structure with nonlinear dynamic analysis case 
BRB retrofitting optimization of SPEAR building was performed. The SPEAR building is 3-story reinforced 
concrete frame building has irregular plane, presented in figure as bellow. 

Figure 2: Configuration of SPEAR building before being optimized 

The SPEAR building represents older construction in Greece and elsewhere in the Mediterranean region without 
engineered earthquake resistance since the SPEAR building was designed considering only gravity load only [29, 
30]. 
In this study, the post-test model modified by Strantan and Fajfar was employed as analysis modeling of SPEAR 
building in BRB retrofitting design optimization. More specific information about the SPEAR building can be 
found in research of Fajfar [30, 31]. Nonlinear dynamic analysis is perfomed by using seismic input signal used 
in the research of Dolšek and Fajfar [32], presented in Figure 11. 

Figure 3: The time-history graph of bi-directional ground motion data normalized to PGA=0.15g 

Global convergence was confirmed by comparing all of Pareto-front solutions from repeated optimization trials. 
Improvement of seismic capacity of the candidate solutions also evaluated by the Pareto-front solutions. Actual 
speedup was decreased while the size of computation resources was increased. However, the tendency of the ratio 
of actual speedup to ideal speedup is not according size of computation recources. 
Elapsed time of parallelized part of 3-d irregular reinforced concrete frame structure case is increased from 98.52% 
to 99.85% since structural analysis of the case took 6 times as longer as computation time of 2-D case. The enlarged 
the ratio of parallelized part results improved parallelization efficiency. When using 64 of core processor (16 of 
quad-core CPUs), the distributed NSGA-II is 48.36 times faster than serial version. The efficiency of actual 
speedup related to ideal speedup are better than 80%. The tendency of the ratio of actual speedup to ideal speedup 
is not according size of computation recources as the tendency of 2-D case. 

6. Conclusion                                                                                                                                                                                           

In this study, the distributed NSGA-II for multi-core PC cluster to overcome excessive copmputation time for BRB 
retrofitting design optimization was suggested and assessed the performance by applying to optimization problems. 
The distributed NSGA-II employed master-slave parallel model and performed on the PC cluster with 16 of quad-
core CPUs. Performance of the algorithm assessed by the standard of global convergence, computation time 
efficiency, and quality of optimal solutions while applying the optimization problems. 
Global convergence and improved quality of optimal solutions are confirmed by Pareto-front solutions from 
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5

repeated optimization trials of retrofitting problems. The fluctuation of actual speedup ratio have no certain relation 
with the number of core processors, but appeared similar tendancy at the both of optimization cases. 
The ratio of actual speedup to ideal speedup of all optimization trials have minimum efficiency of 79.07%. 
Maximum actual speedups are 27.55 in 2-D and 48.36 in 3-D optimization case. 
The decrease of the ration of actual speedup was diminished in 3-D optimization case than 2-D optimization case. 
Moreover, thare was phenomenon that the ratio of actual speedup to the ideal speedup is increased while using 
more core processors. In conclusion, the results of optimization trials show that stable and effective performance 
of the distributed NSGA-II with multi-core PC cluster 

7. Acknowledgements 
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea 
government (Ministry of Education, Science and Technology, MEST) (No. 2011-0018360). 

8. References 
[1] Huang, Y., et al., Seismic performance of moment resistant steel frame with hysteretic damper. Behaviour of 

Steel Structures in Seismic Areas: STESSA: p. 403-409.2000. 
[2] Kim, J. and H. Choi, Behavior and design of structures with buckling-restrained braces. Engineering 

Structures, 26(6): p. 693-706.2004. 
[3] Xie, Q., State of the art of buckling-restrained braces in Asia. Journal of Constructional Steel Research, 61(6): 

p. 727-748.2005. 
[4] Fahnestock, L.A., J.M. Ricles, and R. Sause, Experimental evaluation of a large-scale buckling-restrained 

braced frame. Journal of Structural Engineering, 133(9): p. 1205-1214.2007. 
[5] Sabelli, R., S. Mahin, and C. Chang, Seismic demands on steel braced frame buildings with buckling-

restrained braces. Engineering Structures, 25(5): p. 655-666.2003. 
[6] Tremblay, R., et al., Seismic testing and performance of buckling-restrained bracing systems. Canadian 

Journal of Civil Engineering, 33(2): p. 183-198.2006. 
[7] Farhat, F., S. Nakamura, and K. Takahashi, Application of genetic algorithm to optimization of buckling 

restrained braces for seismic upgrading of existing structures. Computers and Structures, 87(1-2): p. 110-
119.2009. 

[8] Dixon, M. and M. Zubair. Calibration of stochastic volatility models on a multi-core CPU cluster. in 6th 
Workshop on High Performance Computational Finance, WHPCF 2013 - Held in Conjunction with the 
International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2013. of 
Conference. Denver, CO. Year. 

[9] Park, H.S., et al., Distributed hybrid genetic algorithms for structural optimization on a PC cluster. Journal 
of Structural Engineering, 132(12): p. 1890-1897.2006. 

[10] Park, H.S. and C.W. Sung, Distributed structural analysis of large-scale structures on a cluster of personal 
computers. Computer-Aided Civil and Infrastructure Engineering, 17(6): p. 409-422.2002. 

[11] Park, H.S. and C.W. Sung, Optimization of steel structures using distributed simulated annealing algorithm 
on a cluster of personal computers. Computers and Structures, 80(14-15): p. 1305-1316.2002. 

[12] Kennedy, G.J. and J.R.R.A. Martins, A parallel aerostructural optimization framework for aircraft design 
studies. Structural and Multidisciplinary Optimization.2014. 

[13] Okamoto, Y., et al., Topology optimization of rotor core combined with identification of current phase angle 
in IPM motor using multistep genetic algorithm. IEEE Transactions on Magnetics, 50(2).2014. 

[14] Adeli, H. and S. Kumar, Distributed genetic algorithm for structural optimization. Journal of Aerospace 
Engineering, 8(3): p. 156-163.1995. 

[15] Munir, S., R.R. Hussain, and A.B.M.S. Islam, Parallel framework for earthquake induced response 
computation of the SDOF structure. Journal of Civil Engineering and Management, 20(4): p. 477-484.2014. 

[16] Intel, Intel® 64 and IA-32 Architectures Optimization Reference Manual. 2014. 
[17] NETGEAR, ProSafe® 24- and 48-port GSM72xxPS Stackable Gigabit PoE L2+ Managed Switches Data 

Sheet, NETGEAR, Editor., NETGEAR: San Jose. p. Manual. 2015. 
[18] Güneyisi, E.M., Seismic reliability of steel moment resisting framed buildings retrofitted with buckling 

restrained braces. Earthquake Engineering and Structural Dynamics, 41(5): p. 853-874.2012. 
[19] Di Sarno, L. and A.S. Elnashai, Bracing systems for seismic retrofitting of steel frames. Journal of 

Constructional Steel Research, 65(2): p. 452-465.2009. 
[20] Wen, Y.K. and Y.J. Kang, Minimum building life-cycle cost design criteria. II: Applications. Journal of 

structural engineering New York, N.Y., 127(3): p. 338-346.2001. 
[21] Liu, M., S.A. Burns, and Y.K. Wen, Optimal seismic design of steel frame buildings based on life cycle cost 

considerations. Earthquake Engineering and Structural Dynamics, 32(9): p. 1313-1332.2003. 
[22] Choi, H. and J. Kim, Energy-based seismic design of buckling-restrained braced frames using hysteretic 

522

Leo
Rectangle



6

energy spectrum. Engineering Structures, 28(2): p. 304-311.2006. 
[23] Fragiadakis, M. and M. Papadrakakis, Performance-based optimum seismic design of reinforced concrete 

structures. Earthquake Engineering and Structural Dynamics, 37(6): p. 825-844.2008. 
[24] Zou, X.K. and C.M. Chan, Optimal seismic performance-based design of reinforced concrete buildings using 

nonlinear pushover analysis. Engineering Structures, 27(8): p. 1289-1302.2005. 
[25] FEMA 356, Prestandard and Commentary for The Seismic Rehabilitation of Buildings, F.E.M. Agency, 

Editor., The American Society of Civil Engineers: Washington, DC. 2000. 
[26] Park, Y.-J., A.H.S. Ang, and Y.K. Wen, SEISMIC DAMAGE ANALYSIS OF REINFORCED CONCRETE 

BUILDINGS. Journal of Structural Engineering, 111(4): p. 740-757.1985. 
[27] MATHWORKS. MATLAB Distributed Computing Server.  [cited 2015 2015-1-13]; Available from: 

http://kr.mathworks.com/products/distriben/?refresh=true.2015. 
[28] Amdahl, G.M., Validity of the single processor approach to achieving large scale computing capabilities, in 

Proceedings of the April 18-20, 1967, spring joint computer conference. ACM: Atlantic City, New Jersey. p. 
483-485. 1967. 

[29] Dolek, M. and P. Fajfar, Mathematical modelling of an infilled RC frame structure based on the results of 
pseudo-dynamic tests. Earthquake Engineering and Structural Dynamics, 31(6): p. 1215-1230.2002. 

[30] Stratan, A. and P. Fajfar, Influence of modelling assumptions and analysis procedure on the seismic 
evaluation of reinforced concrete GLD frames, in IKPIR Report. Institute of Structural Engineering, 
Earthquake Engineering and Construction IT: Ljubljana. 2002. 

[31] Fajfar, P.D., M.;Maruši , D.;Stratan, A.;, Pre- and post-test mathematical modelling of a plan-asymmetric 
reinforced concrete frame building. Earthquake Engineering and Structural Dynamics, 35(11): p. 1359-
1379.2006. 

[32] Dolšek, M. and P. Fajfar, Post-test analyses of the SPEAR test building, in University of Ljubljana, www. 
ikpir. com/projects/spear. 2005. 

523

Leo
Rectangle



11th World Congress on Structural and Multidisciplinary Optimisation
07th -12th, June 2015, Sydney Australia

Enhanced second-order reliability method and stochastic sensitivity analysis using
importance sampling

Jongmin Lim1, Byungchai Lee1, Ikjin Lee1*

1 Korea Advanced Institute of Science and Technology, Daejeon, Korea, ikjin.lee@kaist.ac.kr

1. Abstract 
The enhanced second-order reliability method (eSORM) is proposed in this study in order to improve accuracy in 
estimating a probability of failure. Conventional SORM additionally approximates an already approximated 
quadratic performance function to a parabolic surface, indicating that those methods are based on an incomplete 
second-order Taylor expansion of the performance function. This additional approximation means a loss of 
accuracy in estimating the probability of failure. The proposed SORM utilizes the importance sampling to 
calculate the probability of failure of a complete second-order Taylor expansion of the performance function 
without the parabolic approximation, so it shows better accuracy compared to the conventional SORM methods. 
The proposed SORM method also utilizes an approximated Hessian of the performance function by using the 
symmetric rank-one update in Quasi-Newton method, which means that additional function calls are not required 
except the computation used for MPP search. In addition to the improvement of the accuracy, stochastic sensitivity 
analysis is performed in the proposed method by applying the importance sampling to the quadratically 
approximated performance function. Therefore, the second-order sensitivity of the probability of failure as well as 
the first-order one can be easily computed in the proposed method without additional function calls. 
2. Keywords: Reliability analysis, Second-order reliability method, Stochastic sensitivity analysis, Importance sampling, Approximated Hessian
3. Introduction
In a reliability analysis, it is quite difficult to estimate the probability of failure defined as a multi-dimensional 
integration over a nonlinear domain in a real engineering problem especially including finite element analysis.
Hence, reliability methods based on function approximation are commonly used such as first-order reliability 
method (FORM) [1], second-order reliability method (SORM) [2-5], and dimension reduction method (DRM) 
[6-8]. Those methods approximate the performance function at the most probable point (MPP) which has the 
highest probability density on a limit-state surface and can be obtained by searching the minimum distance from 
the origin to the limit-state surface in the standard normal space (U-space). FORM which linearizes the 
performance function at MPP is the most commonly used reliability method due to its numerical efficiency. 
FORM shows reasonable accuracy when the performance function is almost linear or mildly nonlinear. However, 
FORM might give erroneous reliability estimation if the performance function is highly nonlinear. More accurate 
reliability estimation can be performed using SORM even for a highly nonlinear system since curvature of the 
performance function near MPP is considered in SORM by calculating second-order derivatives of the 
performance function. In spite of the fact that SORM is obviously more accurate than FORM, SORM is limitedly 
used in engineering problems due to the calculation of the second-order derivatives of the performance function, 
which might require huge computational cost. 
After the second-order Taylor series of the performance function is constructed at MPP using the first and 
second-order derivatives of the performance function, the approximated function is once more approximated to a 
parabolic surface, indicating that the incomplete Taylor series is used in conventional SORM methods [9]. 
Furthermore, to obtain analytical formulation to calculate the probability of failure, an additional approximation 
such as an asymptotic approximation is introduced in the conventional SORM method. These two approximations 
mean a loss of accuracy in estimating the probability of failure.
To calculate the probability of failure more accurately without approximations additional to the quadratic 
approximation, the enhanced SORM (eSORM) method is proposed in this study. The proposed eSORM utilizes 
the importance sampling to calculate the probability of failure of the complete second-order Taylor expansion of 
the performance function without the parabolic approximation. Thus, it shows better accuracy compared to the 
conventional SORM methods. Sampling methods [10-12] such as the Monte Carlo Simulation (MCS) and the 
importance sampling estimate readily the probability of failure using the stochastic sampling because the complex 
analytical formulation is not required in the sampling method. In addition to the calculation of the probability of 
failure, stochastic sensitivity analysis is also readily performed without additional function calls in the sampling 
method [13]. However, the computational demand for the sampling method is generally prohibitive if an 

1

524

Leo
Rectangle



engineering problem including virtual simulation such as finite element analysis is considered. Since the proposed 
eSORM applies the importance sampling not to the original performance function but to quadratically 
approximated function, the required computational cost except for the Hessian calculation is negligible. The 
proposed eSORM method also utilizes an approximated Hessian of the performance function by using the 
symmetric rank-one update in Quasi-Newton method, which means that additional function calls are not required 
except the computation used for MPP search [14]. In addition to the improvement of the accuracy, the stochastic 
sensitivity analysis is performed in the proposed method by applying the stochastic sensitivity analysis of the 
sampling method to the quadratically approximated performance function. The second-order sensitivity of the 
probability of failure as well as the first-order one can be easily computed in the proposed method without 
additional functional calls. 

4. Enhanced second-order reliability method (eSORM)
4.1. FORM and SORM
The probability of failure can be defined as a multi-dimensional integral as [15]

( ) 0
[ ( ) 0] ( )f G

P P G f dXX
X x x (1)

where [ ]P is a probability function, iX is a random variable and ix is a realization of iX . ( )fX x is a joint 
probability density function of X , and ( )G X is a performance function such that ( ) 0G X is defined as failure 
and ( ) 0G X is defined as a limit-state equation. Due to difficulties in computing the multi-dimensional integral 
in Eq. (1), FORM linearizes the performance function ( )G X at a most probable point (MPP) *u in U-space 
obtained by the transformation [16] as

* *( ) ( ) ( ) ( )TG g g gX U u U u (2)

FORM is the most commonly used reliability analysis method due to the computational efficiency, and it shows 
reasonable accuracy in calculating the probability of failure for linear and mildly nonlinear performance functions. 
However, the error incurred by the linearization becomes considerable when the performance function is highly 
nonlinear. For this reason, SORM approximates the performance function quadratically given as [9]

* * * *1( ) ( ) ( ) ( ) ( )
2

T T
Qg g gU u U u U u H U u (3)

where H is the Hessian matrix evaluated at MPP in U-space. Equation (3) is transformed to V-space and is 
rewritten as 

2
2

1

( )
2

2
Q T T

N N N NN N

g
V V A V

g g g
V H HV AV RV A V (4)

where 1 2 1{ , ,..., }T
NV V VV , 1

12

T
N

N NNg A
A AR HRA

A
and V-space is transformed using the orthogonal 

transformation u Rv . R is an N N orthogonal rotation matrix whose Nth column is g
g

, and computed 

using Gram-Schmidt orthogonalization such that R is written as 1 |R R where 1
T R 0 . In order to obtain 

the closed-form formula of the probability of failure, second-order approximated function in Eq. (4) is further 
approximated to a parabolic surface by neglecting all cross terms between  V and NV as follows

( )Q T
N

g
V

g
V

V AV (5)

Based on the parabolic approximation in Eq. (5), Breitung [3] proposed a simple formula for the probability of 
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failure with additional approximations such as an asymptotic approximation, which is given by

1
2

1( ) 2SORM
f NP I A

(6)

In SORM, errors due to the approximations can be categorized as follows [9]
Type 1: Error due to approximating the performance function by the second-order Taylor expansion.
Type 2: Error due to further approximating the second-order approximated function to the parabolic surface.
Type 3: Error due to the additional approximations to obtain the closed-form formula for the probability of 

failure.
The error of type 1 cannot be eliminated unless higher-order Taylor expansion is constructed. The parabolic 
approximation in the error of type 2 means that the conventional SORM methods have been based on an 
incomplete second-order Taylor expansion, and the approximation in type 3 leads to the additional loss of accuracy 
in estimating the probability of failure.

4.2 The proposed eSORM
In order to improve accuracy in estimating probability of failure in SORM, the enhanced second-order reliability 
method (eSORM) is proposed in this study by utilizing the stochastic sampling method. Since eSORM calculates 
the probability of failure based on the complete second-order Taylor expansion of a performance function, its 
accuracy is considerably improved compared to the conventional SORM methods. The approximated Hessian of 
the performance function is used in this study, indicating that additional function calls are not required except the 
computation used for MPP search [14]. Furthermore, the second-order sensitivity of the probability of failure as 
well as the first-order sensitivity can be readily computed in the proposed eSORM.
By introducing an indicator function for failure region, the probability of failure in Eq. (1) can be rewritten as its 
expectation as [17]

nrv
( ) ( ) ( )

f ffP I f d E IXR
x x x X (7)

where nrv means the number of random variables and ( )
f

I x is the indicator function which is defined as

1,
( )

0,f

fI
otherwise
x

x (8)

where f is the failure region which is defined as ( ) 0G X . In order to calculate the probability of failure in Eq. 

(7) using the stochastic sampling method, numerous function calls are required which is computationally very 
expensive and almost impossible if the computer simulation is included. Hence, instead of the original 
performance function, the quadratically approximated performance function defines the failure region in Eq. (8) in 
the proposed method as follows

ˆ

ˆ1,( )
0,f

fI
otherwise
xx (9)

In Eq. (9), the failure region ˆ
f is defined using the second-order Taylor expansion of the performance function 

as 
ˆ : ( ) 0f QGx x (10)

where ( )QG x is the quadratic performance function approximated in the original space (X-space) at MPP. Since a
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reference point of the second-order Taylor expansion is MPP in SORM, the approximation is accurate near MPP 
and is the most accurate at MPP. Hence, the importance sampling method selecting MPP as a sampling center is 
performed to calculate the probability of failure about the quadratic performance function ( )QG x in this study as

nrv ˆ ˆ
( ) ( )

( ) ( ) ( )
( ) ( )f f

f
f fP I h d E I
h h
X X

R

x xx x x X
x x

(11)

where ( )h x is an instrumental density function for the importance sampling. 
The proposed eSORM is based on the complete second-order Taylor expansion without the parabolic 
approximation, indicating that the type 2 error can be readily eliminated. The importance sampling is performed 
using the approximated performance function, not the original one in eSORM. Therefore, the computational cost 
to calculate the probability of failure after constructing the approximated function is negligible even though 
sufficient number of samples are evaluated. Considering that accurate calculation of probability of failure is 
possible in the sampling method with sufficient samples, the type 3 error incurred during obtaining the closed-form 
formula for the probability of failure in the conventional SORM is also easily removed. In this way, the proposed 
eSORM contains only the type 1 error and its accuracy is thus significantly improved even though the total 
computational cost of eSORM is the same as one of the conventional SORM.
Even though SORM usually shows great accuracy in estimating probability of failure, the calculation of the 
Hessian of a performance function aggravates the numerical burden of SORM. When SORM is used within RBDO, 
this problem intensifies due to the repeated reliability assessment. Hence, the proposed eSORM utilize
approximated SORM [14] recently proposed in order to resolve the heavy computational burden in SORM by 
using the quasi-Newton approach to approximate the Hessian. Since the approximated Hessian is used instead of 
calculating the true Hessian, the additional function evaluation except for the MPP search is not required in order 
to construct the second-order Taylor expansion of the performance function.

4.3. The proposed stochastic sensitivity analysis
This study presents the sensitivity analysis of eSORM, so that eSORM is readily utilized to obtain the accurate 
reliability-based optimum in RBDO. Since the proposed eSORM is based on the stochastic sampling method, the 
stochastic sensitivity analysis using eSORM can be performed efficiently and simply using the stochastic 
sensitivity analysis of the stochastic sampling method. In the stochastic sampling method, the sensitivity of the 
probability of failure with respect to the mean of random variables is given by [17]

ln ( ) ln ( )
( ) ( ) ( )

nrv f f

f

j j j

P f fI f d E IX X
X

R

x xx x x x (12)

where ln ( )

j

fX x is known as the first-order score function which can be analytically obtained. If the random 

variables are correlated, the score function can be evaluated using a copula function. In a similar fashion with Eq. 
(11), Eq. (12) can be re-written using the instrumental density function and the failure region defined using the 
second-order Taylor expansion of the performance function in Eq. (10) as 

ˆ ˆ
ln ( ) ( ) ln ( ) ( )

( ) ( ) ( )
( ) ( )nrv f f

f

j j j

P f f f fI h d E I
h h

X X X X
R

x x x xx x x x
x x

(13)

In Eq. (13), the instrumental density function ( )h x is independent with the design variable j .
The second-order sensitivity of the probability of failure in eSORM can be readily calculated in a similar way as 

2 2

ˆ

2

ˆ

ln ( ) ln ( ) ln ( ) ( )
( ) ( )

( )

ln ( ) ln ( ) ln ( ) ( )
       = ( )

( )

nrv f

f

f

i j i j j i

i j j i

P f f f fI h d
h

f f f fE I
h

X X X X
R

X X X X

x x x xx x x
x

x x x xx
x

(14)

4

527

Leo
Rectangle



where 
2 ln ( )

i j

fX x is the second-order score function which can be also analytically computed. Since the joint 

probability density function is known, calculation of the higher-order score function is very straightforward even 
for other parameters such as variance of the random variables [18]. The first and second-order sensitivity of the 
probability of failure in Eqs. (13) and (14) can be efficiently computed since the failure region ˆ

f is defined as the 
approximated performance function. 

4.4. Numerical example - Reliability analysis for two dimensional performance function
Let’s consider a two dimensional mathematical example given by [19]

1 2( ) exp 0.8 1.2 exp 0.7 0.6 5 /10g X XX (15)

where 2
1 ~ (4,0.8 )X N and 2

2 ~ (4,0.8 )X N .

Figure 1: Limit-state equations in FORM, SORM and ASORM

Table 1: The results of reliability analysis and stochastic sensitivity analysis in the 2-D example

 FORM SORM
(Breitung [3]) Proposed SORM MCS 

fP 0.240% 0.162% 0.153% 0.158% 
1/fP -0.00627 - -0.00410 -0.00424 
2/fP -0.00695 - -0.00455 -0.00466 

2
1 1/fP - - 0.00916 0.00960 

2
1 2/fP - - 0.0118 0.0121 

2
2 2/fP - - 0.0116 0.0119 

F.E. 8a 8a + Hessian 8a 107 
a The number of function evaluation and sensitivity analysis for MPP search

Figure 1 illustrates the original and approximated performance functions at MPP in X-space. The approximated 
performance function of ASORM is obtained using the Hessian approximated by SR1 update. Since the original 
performance function has a large curvature near MPP, the linearly approximated function does not sufficiently 
describe the nonlinearity of the original function. As illustrated in Fig. 1, since the functions in SORM and 
ASORM locally approximate the original function near MPP quite well, the accurate reliability can be estimated 
by applying the importance sample selecting MPP as a sampling center to the quadratically approximated function. 
Table 1 shows results of the reliability analysis. In order to obtain the reference solution, Monte Carlo simulation 
(MCS) with sample size of 107 is performed. Due to the high nonlinearity as illustrated in Fig. 1, FORM shows 
significant error in estimating the probability of failure as well as the stochastic sensitivity. While SORM proposed 
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by Breitung reduces the error of the probability of failure by calculating the Hessian of the performance function, it 
is quite difficult to calculate the stochastic sensitivity due to the absence of research on the stochastic sensitivity in 
SORM. The proposed eSORM evaluates accurate probability of failure by using the approximated Hessian. 
Furthermore, second-order sensitivity as well as first-order one is accurately calculated. In spite of the 
improvement in terms of accuracy, additional function calls are not required after MPP search since the proposed 
method uses the approximated Hessian utilizing the previous derivative information.

5. Conclusions
An accurate and efficient reliability analysis method is proposed in this paper. By utilizing the importance 
sampling to estimate the probability of failure and its sensitivities, the proposed eSORM can achieve better 
accuracy than conventional SORM methods since the complete second-order Taylor expansion of a performance 
function is used. In the proposed eSORM, SR1 update is also utilized using derivatives data obtained during MPP 
search in order to approximate the Hessian of the performance function. In this way, eSORM requires computation 
only used in MPP search, indicating that the proposed method shows the same efficiency with FORM. 
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1. Abstract
In electronic industries, packaging designs for protection are very important because electronic products are easily 
damaged in distribution. While distributing products, drop impacts are mainly issues. To protect electronic 
products, buffer materials like Expandable Poly-Styrene (EPS), and Expandable Poly-Propylene (EPP) are used 
in packaging. Therefore, packaging designers are effort to develop packaging design for improvement of product 
protection as well as reduction of the packaging size, and weight. These conditions should be considered as an 
objective functions or design constraints when optimizing a packaging design. However, it is difficult to apply 
gradient-based optimization methods to impact optimization problems because of the large nonlinearity of the 
problems which should be considered in the time domain. Although the capability of the computer has been 
developed and numerical algorithms have been advanced, drop impact optimization is still quite difficult owing to 
high non-linearity and numerical cost. The equivalent static loads method for non-linear static response structural 
optimization (ESLSO) has been developed for such nonlinear dynamic response structural optimization. equivalent 
static loads (ESLs) are linear static loads which generate the same displacement in the linear static analysis as 
those of the nonlinear dynamic analysis at a certain time step. Nonlinear analysis and linear static response 
optimization using ESLs are carried out sequentially until the convergence criteria are satisfied.  A new ESLSO 
method is proposed for TV packaging shape optimization and is verified using a practical example. Design 
optimization of TV packaging is carried out to minimize weight packaging. The glass panel in TV is the most 
important part and design constraints are composed with it. The shape and size of EPS packaging are optimized. 
The weight is minimized and the size is optimized while the glass panel is protected in drop impact. The drop test 
of a TV packaging is analysed by LS-DYNA, and NASTRAN is used for optimization. 

2. Keywords: Structural optimization, equivalent static loads (ESLs), Shape optimization 

3. Introduction 
Fragile electronic products, especially television have to be designed to operate reliably enough after shipping to 
consumer. Therefore, the research and evaluation is performed by the actual product to experiment in order to 
reduce the risk of product damage [1]. Also, researches considering the stress of the impact acceleration and the 
cushion of the product are performed using a high cost of computational simulation-based experimental design 
[2]. Recently, the development cycle of new products is becoming shorter. And prototype products design should 
be verified faster. However, making prototype products for performing experiments are very cost burden. Because 
this trends, computer simulations are used instead of direct experiment. Nevertheless, the simulation also requires 
both considerable time and effort to simulate the instability of the product. Therefore, it is necessary to shorten the 
overall time required for development by shortening the time required for the simulation. The products are packed 
in packaging material to prevent damage like deformation and crack during transporting to consumer. The shape 
and form of the packing material varies widely depending on the type of product. Most of TV packaging design is 
a typical area for performing design engineers rely on the know-how and intuition. To verify the TV packaging 
design, it should be performed the standard tests. The drop test is a typical standard test. TV drop simulation is 
performed based on the nonlinear dynamic response analysis. And time required for a nonlinear dynamic response 
analysis is very long. Design of Experiments also commonly used when performing an optimal design through a 
non-linear dynamic response analysis. For optimal design problem of a large number of design variables using a 
Design of Experiments is a necessary nonlinear dynamic response analysis and increases the number of very large 
and inefficient. Therefore, the development of new techniques is required in order to reduce optimal packaging 
design time. In this research, optimization of TV-packing is performed using ESLSO.  The finite element model 
of an actual TV-set from LG Electronics Inc. is utilized as a reference. Nonlinear dynamic analysis is carried out 
using LS-DYNA 971 [3], linear static response structural optimization is conducted by using NASTRAN [4]. The 
final design is compared with the reference model and verified by testing prototype. 
4. TV packaging and drop test 
4.1. TV packaging 
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The TV package is consist of cushion and paper box to protect the product. The cushion is usually made with EPS 
or EPP that materials are good in the efficiency for the compression. However, it is hard to simulate accurately 
because there is a severe non-linearity by its density and compression strain rate of the material. So, accurate 
physical properties should be obtained through experiments. In this research, the stress strain curves of the EPS 
material are obtained by material experiment for accurate computer simulation.
The Universal Transverse Machine (UTM) in Figure 1 a) is difficult to test in fast compression strain. So, dynamic 
drop tester in Figure 1 b) is performed to obtain stress-strain curve in high strain rate. 

4.2. Drop test 
There are various standard tests for verifying the distribution of TV products. Serious damage to the product in the 
distribution is derived mainly from the impact on the front of the product. Front drop test is performed to verify 

the design of packaging and to determine proper operation. The height of the drop varies by weight of the product. 
In this research, the front drop height of TV is 1 meter. 

5. Equivalent static loads method for nonlinear dynamic response structural optimization 
The process of calculating ESLs is described in detail.  Eq.(1) is the governing equation of nonlinear dynamic 
response analysis.

N N N( , ( )) ( ) ( , ( )) ( ) ( ) ( 0, , )t t t t t t l+ = =M b z z K b z z f (1)
where nRb  is the design variable vector, n is the number of design variables, M  is the mass matrix, N ( )tz  is 

Figure 1: Material experiments: a) static UTM, b) dynamic drop tester, c) strain-stress curve for EPS 

a) b) c) 

Figure 2: Frontal drop test: a) drop height, b) drop test machine 

a) b)

Frontal drop  
height :1m

Nonlinear 
dynamic 
analysis 

Static 
response 

optimization 

Analysis domain Design domain 

Update 
design 

variables 

Equivlaent 
static loads 

Figure. 3 Schematic flow of equivalent static loads method 
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the acceleration vector, K  is the stiffness matrix, N ( )tz  is the displacement vector, and ( )tf  the is dynamic load 
vector, subscript N  means that it is from nonlinear analysis, t  is time and l  is the number of time steps.  
The ESLs vector eq ( )sf  is calculated as the product of linear stiffness matrix L ( )K b  and the displacement vector

N ( )tz .

eq L N( ) ( ) ( ); 1,...,s t s l= =f K b z  (2)
The overall process is as follows: 

Step 1. Set the initial design variables (cycle number: 0k = , design variables: ( ) (0)k =b b ).
Step 2. Perform nonlinear dynamic response analysis with ( )kb .
Step 3. Calculate the ESLs using Eq.(2). 
Step 4. Solve the linear static response structural optimization problem with ESLs. 
Step 5. When 0k = , go to Step 6.  When 0k > , if the convergence criterion is satisfied then terminate the 

process.  Otherwise, go to Step 6. 
Step 6. Update the design variables, set 1k k= + and go to Step 2.

6. TV Packaging optimization using equivalent static loads 
6.1. The finite element model of TV 
In this research, we use commercially available finite element model of the television from LG and perform the 
optimal design. For optimal efficiency of the design, we modify the front packing in the form of a rectangular 
shape. From now on, we call the modified model to the 'reference model'. This reference model Figure. 3 is 
composed of 504,438 elements and 471,079 nodes. The four types of packaging materials protect the TV, and the 
outside is packaged in a box. Non-linear dynamic response analysis using the LS-DYNA performed the front drop 
simulation. NASTRAN was used as the structural optimization solver. The algorithm used in structural 
optimization is a method of feasible directions (MFD). 

6.2. Shape optimization of TV packaging 
Figure 34 shows the 6 design variables and displacement constraints.  The objective function is the mass of the 
packing, and shape optimization is carried out.  The displacement constraints are defined using the distance from 
the fixer A to the fixer B. The fixer A and B are structures for holding TV panel from set. The detachment of the 
panel is defined as the relative distance between the two structures. Using the displacement constraints, the 
detachment of the panel is constrained.  The lower bound for the constraint is 0 mm. 

Design formulation is as follows: 
 Find   (2) 
 to minimize  (3) 
 subject to  (4) 
    
where ib is the i th design variable that is perturbation vector of the packing shape, and  are the relative 
displacements of the fixer A and B. On the upper panel, there are 12 attached points between the panel and the set. 
And on the side panel there are 16 attached points. Total attached points are 28. 

Figure 2: The finite element model of TV : a) Front view, b) Side view 

Side packing 

Top packing 
a) b)

Modified front packing

Bottom packing 
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Figure  shows the history of optimization.  The process converges to the optimum solution in the 6st cycle.  The 
mass is reduced by 11% from 617g to 553g while the displacement constraints are satisfied. 

6.3. Verification test of the results 
In order to verify the optimum design results, drop test was performed by pilot sample. As a result of the test, the 
pilot sample was working properly without damage. 

7. Conclusions 
 Nonlinear dynamic response structural optimization of high-fidelity finite element model seems to be almost 
impossible in conventional gradient based optimization due to high nonlinearity and time-dependent behavior.  In 
this research, TV package optimization with the frontal drop test is carried out using ESLM. Practical examples 
are solved by the proposed method.
TV package optimization is carried out to determine 6 design variables.  The optimum shape is derived by 

Figure 5: History of objective function and constraint violation of drop test 

Figure 4: Design variables and constraints : 
a) Perturbation vectors of shape optimization. b) Displacement constraints 
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Fix structure 
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Figure 6: Verification test of the results : a) Pilot package, b) Drop test 
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performing 6 nonlinear dynamic analyses.  The displacement constraint is satisfied and the mass is reduced by 
11%. Verification test by pilot samples is performed and the pilot sample is working properly. As a result of 
verification test, using ESLM for optimizing design of TV package is efficient. 

Cycle
No. DV1 DV2 DV3 DV4 DV5 DV6 

Initial 257.5 418.0 122.2 120.0 233.0 210.0 

Optimum 220.55 370.3 99.11 108.5 220.4 191.1 
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Abstract  
Procedures for sensitivity analysis of the static responses of a plate or shell structure, i.e., the nodal displacement 
and mean compliance, with respect to the position of an external applied load are developed in this work mainly 
because these responses are highly affected by the application point of the load imposed. Based on the essential 
ideas of the finite element analysis, an external concentrated load is first transformed into the equivalent nodal 
forces such that the influence of its move or shift is represented completely by the value variation of the associated 
nodal forces. As a result, the first-order derivatives of an external load to its location change can be performed 
appropriately by the aid of the shape functions of a plate element. Subsequently, the relevant sensitivities of the 
structural responses are formulated readily with the discrete methodology upon the finite element formulation. 
Finally, a numerical example is provided to demonstrate the validity of the sensitivity formulations presented, and 
the numerical results show the high accuracy of the response sensitivity calculations. 
Keywords: sensitivity analysis; external applied load location; nodal displacement; compliance; 

1. Introduction 
In the preliminary design stage of an engineering structure, there always exist some uncertainties associated not 
only with the structural design parameters, but also with a part or all of the external loads. That is, the loads 
imposed to the structure may often experience modifications in their values, directions and/or positions during the 
design process in order to testify the resulting design to comply with some strict regulations in various 
circumstances [1]. Over the past several decades, the mechanical analysis and optimization of a plate- or shell-type 
structure with design dependent or independent loadings were undertaken extensively in many aspects. Most 
commonly, the application position of an external load is fixed in [2, 3]. However, it is also noticed that even a 
small move or shift of external load may bring about a significant influence on both the performance of the 
structure and then the structure final design. This fact makes it highly desirable for developing an efficient 
technique capable of estimating variations of the structural performances due to a small motion of an applied load, 
and such a sensitivity analysis can quantitatively afford an explicit and quick solution to the problem.  
As is widely known, the sensitivity analysis is extremely useful in the scope of design optimization processes, 
especially in the gradient-based optimization algorithms, where the design sensitivity can be used as a guide to 
implement the structural modification. In effect, the design sensitivity analysis has become a major computational 
cost in most structural optimization solutions [4]. As a result, a simple and precise formulation for an adequate 
sensitivity calculation has always been an active topic in the fields of the structural optimization design.  
This paper is aimed to extend the previous study by the present author [5] for the related sensitivity analysis of the 
structural responses into the plate/shell flexural situation. In this work, the sensitivity formulations of the structural 
displacement and mean compliance are conducted, respectively, with respect to the position variations of an 
external concentrated load. The sensitivity analysis is still carried out with use of the finite element (FE) analysis 
mainly because the corresponding responses are usually obtained on the same strategy. First, the equivalent nodal 
forces of the external applied load are constructed by the adequate interpolation functions of the plate element. Due 
primarily to this direct transformation, the effect of the external load shift is fully represented by the value variation 
of the equivalent nodal forces. Next, the explicit formulations of the first-order derivatives of the nodal force 
vector to change of the application point of the external 
load are derived fairly with the aid of the essential 
features of the plate element. Later, with the above 
derivations the explicit formulations of the sensitivity 
derivatives of the nodal displacements and the 
compliance are developed immediately to the 
movement of the external load. As the structural 
analysis resorts most regularly to the numerical 
execution with FE methodology, such a derivation of 
the design sensitivity has an advantage of compatibility 
with the numerical estimations of the structural 
responses upon the same discrete model, and most 
importantly, can be applied in conjunction with an 
existing commercial FE analysis package. Finally, the 
sensitivity calculations of the responses will be 
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illustrated and the resultant accuracy be demonstrated with a typical numerical example. 

2. Derivative of an External Load 
Consider an isotropic, thin rectangular plate (or shallow shell) element of thickness h subjected to a concentrated 
or point load F at an interior point P(x, y) in the element region. Figure 1 shows a typical rectangular plate element 
with 5 degrees of freedom (DOFs) at each of the corners, and the corresponding nodal forces are shown in the 
parentheses. The element or local coordinate system is chosen such that the x-y plane coincides with the midplane 
of the plate. The external applied force may have three components Fx, Fy and Fz parallel, respectively, to each of 
the coordinate axes. Herein, the classical Kirchhoff hypothesis for thin plates applies for describing the transverse 
deflection. Based on the FE theory, the midplane displacements inside the element can be approximated as explicit 
functions of the element nodal displacements:  

edN
w
v
u

}]{[                                                                                                                       (1) 

where u and v are the in-plane displacement components in the x-y coordinate system, respectively, and w is the 
lateral displacement component along the z-axis at any point on the plate element midplane (i.e., z=0). {d}e is a 
vector of 20 entries denoting the generalized element nodal displacements: 

TTTTTe ddddd ]}{}{}{}{[}{ 4321                                                                       (2) 
in which, the superscript T denotes matrix transpose. {di} represents the DOFs at each corner node i (i=1, 2, 3, 4) , 
see Figure 1, 
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where ui, vi and wi are the nodal displacements along each of the local axes at a node. xi and yi denote the 
associated rotations about the x- and y-axis, respectively. In the small deflection theory of thin plates, the 
transverse displacement w is uncoupled from the in-plane displacements u and v. Consequently, these 
displacements can be interpolated separately as is already known [6]. The matrix of shape functions of the plate 
element in Eq. (1) is 

][][][][][ 4321 NNNNN                                                                         (4a) 
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is the matrix of shape functions to each of the four nodes. The usual shape functions read commonly as [7]: 
4/)1)(1( iiiN                                                                                   (5) 

For the in-plane components ui and vi identically, and  
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for the transverse components wi, xi and yi, respectively. In the above expressions, 
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For a concentrated force F acting at a point P(x, y) within an element, the equivalent nodal forces acting on the 
same element is defined by the virtual work principle of the external load [6], 

z

y

x
T

yx
e

F
F
F

Nf ),(][}{                                                                                                (7) 

Upon this simple mathematical transformation, a concentrated or point force F, positioned at P(x, y), is now 
replaced entirely by the equivalent nodal force vector {f }e of size 20, of which the component values depend only 
upon the coordinates of the application point P. In other words, the outcomes induced by continuous movement of 
the external load F can now be represented completely by those resulting from the magnitude variation of the 
equivalent coupled nodal forces {f }e. Therefore, the derivative research of the structural responses to the motion of 
the external force F itself turns, from now on, into the derivative analyses with respect to the relevant changes of 
the equivalent nodal force vector {f }e. Moreover, the derivative of the equivalent nodal force due primarily to 
modification of the acting point of the external load can be performed with ease,  
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3. Derivatives of Nodal Displacements of a Structure
Suppose a general plate structure is modeled with an adequate FE mesh, the overall equations of the force 
equilibrium in terms of the nodal displacements are represented as follows: 

)}({}{}{][ sFPuK                                                                                                    (9) 
where [K] is the system stiffness matrix, {u} is a vector of the unknown nodal displacements, which is dependent 
on both the magnitude and position of the external loads. On the right hand of the equation, the external loads 
applied on the structure are separated into two parts: {P} is the load invariable during the design process, whereas 
{F(s)} is a vector of the nodal forces which is a function of the application position variable s. Taking partial 
derivatives of Eq. (9) with respect to a location variable s of the external applied load yields:  

s
sF

s
uK )}({}{][                                                                                    (10) 

here it has been supposed that the plate structure itself is essentially independent of the external applied loads. 
Notably, the procedure for the displacement sensitivity solution {u}/ s can be carried out by solving Eq. (10) 
caused by {F(s)}/ s, which is rather similar to the solution of the displacement {u} under the external loads, see 
Eq. (3). In view of this similarity, {F(s)}/ s is generally considered as a pseudo or fictitious load for each of the 
position variables [5].With the relevant result attained in Eq. (8), by assembly of the related element results, it is 
then a trivial task to computed the first-order sensitivity of the nodal displacement vector of a plate structure,  

s
sFK

s
u )}({][}{ 1                                                                                                         (11) 

4. Compliance Sensitivity Formulation 
In the past years, the topology optimization problems of a plate structure with consideration of the overall stiffness 
have been investigated exhaustively, where the structure is generally designed to be stiff enough to carry a given 
set of the external loads properly [2, 3, 8]. Usually the mean compliance, i.e., the total work done by the external 
loads under a particular configuration, is posed as the objective function. Thus, it is recognized that the compliance 
is actually a highly load-dependent measurement of the structural stiffness in this capacity. Consequently, the 
sensitivity analysis of the compliance to the external applied force is of particular interest in practical cases since a 
small movement of the external load may remarkably alter the system compliance obtained.  
The mean compliance C of a plate structure is defined as half the scalar product of the applied forces and the 
corresponding displacements at equilibrium, and is given in the FE format:  

)}({}{][)}({}{
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1 1 sFPKsFPusFPC TT                             (12) 

Differentiating the above expression with respect to the location variable s yields 
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Obviously, the compliance sensitivity can be computed as long as the displacements and the derivative of the 
external applied load, or the pseudo load, are obtainable. With this sensitivity result, it is capable to make a primary 
estimate of the structural compliance value after variation of the load position by the linear Taylor series 
expansion,  

s
s
CCC                                                                                                                    (14) 

5. Illustrative Example 
In this section, the numerical results of the 
structural responses are solved using the 
FE analyzer ANSYS program. Then, the 
corresponding sensitivities are evaluated 
with the program coded in Matlab 
providing several digits of accuracy to 
verify the reliability and accuracy of the 
sensitivity formulation presented.  
A quarter cylinder shell of the thickness 
h=2 mm is simply supported at its four 
corners while it bears a concentrated 
vertical point force F=3 kN at the 
structural center. Figure 2 displays the 
geometry, dimensions and external load. 
The structural projection onto the x-y 
plane is a square. At the same time, the 
gravity load is also involved in the 
analysis (the gravitational constant g= 9.8 
m/s2). The cylinder is discretized with a 
sufficiently fine mesh of the finite 
elements 18 × 18. Assume the Young’s 
modulus is E=210 GPa, Poisson ratio =0.3 and the mass density =2800 kg/m3. First, the displacement values and 
the related sensitivities at the center points of the free edges, Point A and B, are computed to the position move of 
the vertical load in the x- and y-axis, respectively, and indicated in Table 1. 

Table 1: Displacements at points A and B and the corresponding sensitivities to the position of the 
external vertical forces applied at the center of the cylinder shell  

Displacements Sensitivity to position of the vertical force in the axis 
Point component value x y

u (mm) 0 4.87261E-5 0 
v (mm) -4.67423E-1 7.38329E-7 -1.09879E-2 
w (mm) 5.68054E-1 -1.25806E-6 1.47863E-2 

x (rad) -1.36695E-2 1.54653E-5 4.77687E-1 
y (rad) 0 -9.91461E-2 0 

A 

z (rad) 0 -9.08507E-2 0 
u (mm) -9.19519E-3 1.03708E-3 -1.07670E-6 
v (mm) 0 0 -1.64534E-2 
w (mm) -3.69736E-1 -8.65907E-3 3.24734E-6 

x (rad) 0 0 -1.15354 

y (rad) 2.60914E-4 1.22743E-1 -1.70148E-4 

B 

z (rad) 0 0 -3.95777E-3 

First of all, it can be seen that the displacement terms u, y and z at Point A and the corresponding sensitivities to 
the y-motion of the concentrated load are all zeroes. So are the terms v, x and z at Point B to its x-motion. This is 
true due essentially to the symmetry of the structure. It is therefore understood that these displacements are very 
blunt to the position disturbances of the applied force in the related directions. However, it is found that the 
sensitivity to the companion axial move is not null, and the results are comparatively very notable. Secondly, the 

1

F

y  

x

2
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B 

r =100

141.4

141.4

Figure 2: A quarter cylinder simply supported at corners is subject 
to a vertical concentrated force F at the center point 
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related sensitivities are much smaller for the major displacement terms v, w and x at Point A (in gray) to the 
x-motion of the concentrated load than to its y-motion. A similar observation can also be made about the 
sensitivities of the displacement terms u, w and y at Point B (in gray) to the y-motion of the vertical load than to its 
x-motion. This is just the case as is expected.  

Table 2: Displacements at points A and B before and after an imaginary move of the 
external vertical force individually in the x- or y-directions by an element size  

Displacements with the external force moved by an element size  
in the positive direction of different axes 

linear estimation solution by FEM 
Point 

component 
x y x y

u (mm) 3.82829E-4 0 3.47619E-4 0 
v (mm) -4.67417E-1 -5.63189E-1 -4.64374E-1 -5.43768E-1 
w (mm) 5.68044E-1 6.96925E-1 5.62859E-1 6.68839E-1 

x (rad) -1.36694E-2 -9.50617E-3 -1.36056E-2 -9.30330E-3 

y (rad) -7.78966E-4 0 -7.72402E-4 0 

A 

z (rad) -7.13790E-4 0 -7.07776E-4 0 
u (mm) -1.04714E-3 -9.20457E-3 -7.93013E-4 -8.24312E-3 
v (mm) 0 -1.43401E-1 0 -1.41692E-1 
w (mm) -4.37768E-1 -3.69708E-1 -4.41272E-1 -3.49618E-1 

x (rad) 0 -1.00539E-2 0 -9.91328E-3 

y (rad) 1.22528E-3 2.59431E-4 1.30799E-3 3.99758E-4 

B 

z (rad) 0 -3.44943E-5 0 -3.38898E-5 

Based on the displacement sensitivities shown in Table 1, it is quite simple to predict the nodal displacement terms 
with a conceived motion of the concentrated force F in x- or y-direction. The new displacements }{d  after a 
position perturbation of the concentrated load by a small step can be estimated in the linear Taylor series  

s
s
ddd }{}{}{                                                                                               (15) 

Table 2 lists the deflections at Point A and B with the position of the vertical concentrated force disturbed by an 
element size individually along the axes. In contrast, the corresponding solutions with the FE method are given 
simultaneously for comparison. By a close examination, it is found that the displacements estimated linearly on the 
sensitivity analysis are in good agreement with the FE solution for the major displacement terms. 

Table 3: Structural mean compliances and the related sensitivities to the position of the 
external vertical load applied at the center of the cylinder shell 

First-order sensitivity  
in different directions 

Compliance with the concentrated load moved  
by an element size in the positive direction Compliance 

(J) axis value estimation by FEM 

x 4.92985E-2 1.06814 1.07465 1.06775 
y 1.94058E-1 1.06944 1.10675 

The structural mean compliance and the associated first-order sensitivities to the position of the vertical load are 
illustrated in Table 3. It is shown evidently from the sensitivities that the structural compliance will increase if the 
vertical force moves away from the center. Therefore, it can be known explicitly that the center of the cylinder in 
the present example is the most appropriate location for the vertical load under the particular consideration of the 
structural stiffness. Moreover, it is observable from Table 3 that the compliance is much more sensible to the 
y-direction move than to its x-direction move of the vertical load. This is very important for the analysis of the 
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uncertain external forces in practice.  

6. Conclusions 
In the preliminary design of a practical structure, the external applied loads may change their application locations 
in order to testify that the structural design is appropriate to support or withstand the loads in various conditions. 
The ability to quickly evaluate the response changes of a structure to the location variation of an external load is of 
great importance to the structural designers/analysts. This paper is really an extension of the previous work by the 
author for 2D plane stress conditions [5]. By means of the discrete method in combination with the features of the 
plate/shell element, the derivative of an external load is first obtained. Then, the sensitivity expressions of the 
structural responses, such as the nodal displacement and mean compliance, are developed readily for a bending 
plate structure. Subsequently, a typical example is presented to validate the sensitivity formulations, and the 
numerical results show that the proposed process can provide the response sensitivities with an excellent accuracy.  
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1. Abstract
It is an attractive field to apply structural optimisation on bus body to enhance its performances. Since chassis is 
the most complex part of the bus body and bears most of loads, this paper focuses on the simultaneous topology 
and sizing optimisation of an integral bus chassis by treating it as a discrete variable optimisation problem. The 
objective is to reduce the mass. The torsional stiffness, the foundational frequency and the max Von Mises stress 
under full-loaded bending case are constrained. Meanwhile, some essential functional and manufacturing 
requirements are considered. Firstly, the finite element analysis models of the original bus were created and 
validated by experiments. Then, a special architecture of cooperative coevolutionary genetic algorithm with 
independent ground structures (CCGA-IGS) is proposed to improve the flexibility of the solution method and 
decrease the complexity of the optimisation problem: two different ground structures are defined for topology 
optimisation and sizing optimisation, and then the topological variables and sizing variables are divided into two 
subpopulations which evolve in two different GA systems but interact with each other in each iteration.  Moreover, 
a strategy is presented to automatically reload the uniformly distributed loads when the topology of the chassis is 
changed.  The weight of the optimal design is decreased as much as 246.45 kg with all the constraints satisfied.  
2. Keywords: integral bus chassis; topology optimisation; sizing optimisation; cooperative coevolutionary genetic 
algorithm; independent ground structures 

3. Introduction 
Significant progress has been made in theoretical research on structural optimisation of discrete structures, in 
which application of the theory mostly focuses on ideal simple structures [1, 2]. Theoretical research shows that 
performances of discrete structures can be improved remarkably with the use of structural optimisation. Recently, 
much attention has been paid to the application of structural optimisation on practical engineering products, but 
practical research is still much slower than theoretical research [3]. Typically, structural optimisation consists of 
topology optimisation, sizing optimisation and shape optimisation, among which sizing optimisation is the most 
widely employed technique in optimisation of bus body frames. Gauchia, et al. [4] conducted sizing optimisation
on a real bus structure for lightweight without spoiling vehicle safety. Su, et al. [2] performed the multi-objective 
sizing optimisation on an integrated bus body frame to minimize the weight and maximize the torsional stiffness 
with the constraints of strength and rollover safety.
This paper concentrates on simultaneous topology and sizing optimisation of an integral bus chassis. It is a 
complex problem to solve. The challenges of solving the problem come from several reasons. First, large number 
of  discrete variables are involved which would deteriorate the performance of the optimisation algorithm [5]. 
Second, design constraints are diverse including performance constraints, manufacturing constraints, functional 
constraints and so on. Third, since a bus undergoes various loadings during lifetime, multiple conditions need to be 
handled, such as linear static analysis, eigenvalue extraction, etc. 
Decomposing a complex problem into smaller sub-problems is an effective way to solve problem with large 
number of variables [6]. A cooperative coevolutionary genetic algorithm (CCGA) proposed by Potter and De Jong 
[7]  is introduced in this paper. In CCGA, variables are assigned into subpopulations that evolve concurrently. 
Meanwhile, individuals in different subpopulations collaborate with one another for evaluations in each iteration. 
Cooperative coevolutionary evolutionary algorithms (CCEAs) have achieved successful application in many 
fields [8, 9], but there is no one versatile architecture suitable for all problems so far. This paper aims to propose a 
CCGA architecture for simultaneous topology and sizing optimisation of bus body frame chassis.  
Due to the stochastic nature of GA, structures that cannot be easily manufactured or cannot satisfy functional 
requirements are easily generated in structural optimisation. Therefore, it is quite necessary to include 
manufacturing and functional constraints. However, those constraints are usually difficult to be expressed in 
rigorous mathematical equations. In order to handle those constraints, actions are taken before the optimisation by 
appropriately defining the design spaces and grouping variables. In order to define design spaces and constraints 
more flexibly for topology and sizing optimisation, a strategy called independent ground structures (IGS) is 
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presented, where different ground structures are constructed for topology optimisation and sizing optimisation 
independently. IGS strategy is integrated into the CCGA architecture, and a method named CCGA-IGS is 
presented, which was implemented on the bus chassis frame.  

4. Original Finite Element Model and Validation
The integral bus used in this paper is a 12-meter-long intercity bus with luggage compartments and toilet, and has 
a maximum 47-passenger capacity. The performances of the bus are implicit functions of design variables, and 
finite element analysis method is adopted. 

4.1. Original Finite Element Models 
The FE model of the original bus body frame is created with beam elements as shown in Figure 1(a), which is used 
for modal and torsional stiffness analyses. For strength analysis, the FE models of the suspension system, the 
wheels and full loads are created and assembled with the FE model of the bus body frame, as shown in Figure 1(b).  

(a) The FE model of the bus body frame                              (b) The FE model for strength analysis 

Figure 1: The FE models 

Because free vibration of the bus body frame is concerned in this paper, the free-free boundary is used for modal 
analysis. In the analysis of the torsional stiffness, the boundary constraints are defined as follows: the nodes in the 
centers of front-right and front-left air spring supports are forced to move 5 mm in opposite z-direction while the 
rear axle is fixed. The result of finite element analysis provides the reaction forces of the nodes with enforced 
displacement, and then the torsional stiffness is obtained according to Eq. (1) 

2

180 2 360
FL FLK

d d
L

= =
(1)

Where K  is the torsional stiffness of the bus body frame, F is the reaction force, L is the distance between the 
nodes with enforced displacement, and d is the enforced displacement. Here, L=1266 mm and d=5 mm. 
In the strength analysis, the max Von Mises stress under full-loaded case is taken into consideration. The boundary 
condition for strength analysis is that all rigid body displacements of the bus are removed via fixing the 
translational degrees of freedom of the nodes of the wheels which are connected with the ground. 
The material of the bus body frame is Q345C whose Elasticity modulus is 206 GPA, Poisson ratio is 0.3, density is 
7.86×103 kg m-3 and Yield limit is 510 MPA. 

4.2. Validation 
Modal test and static bending test were carried out to validate the accuracy of the FE models. In the modal test, the 
bus body frame was supported by inner tubes whose natural frequency is less than 2 Hz. The comparison of the 
first seven natural frequencies between the test and the simulation is listed in Table 1, which shows that the 
difference between the test and the simulation is small. The maximum difference occurs at the second natural 
frequency, with a difference of 9.60%. 

Table 1: Comparison of the natural frequencies between the test and the simulation 

Mode No. Test / Hz Simulation / Hz error Mode No. Test / Hz Simulation / Hz error 
1-first torsion 8.38 7.73 -7.76% 2 9.25 10.14 9.60% 

3 11.88 12.37 4.16% 4 14.25 13.64 -4.31% 
5 15.75 15.27 -3.07% 6 17.00 16.81 -1.11% 

7-first bend 17.94 17.74 -1.08%     

In static bending experiment, the front and rear axles were supported and sand pails that totally weigh 1320kg and 
840 kg were evenly put on the passenger floors and compartment floors respectively. It should be noted that the 
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loading case in the test was different from the case used in the optimisation mentioned in Section 4.1. The Von 
Mises stress of four points on the bus body frame were obtained. For comparison, the loading case used in the test 
is also loaded on the FE model. The comparison is offered in Table 2. The maximum difference between the test 
and the simulation is 11.75% at the second point.
In conclusion, the FE models created above is adequate for the optimisation. 

Table 2: Comparison of the stress between the test and the simulation 

Test Point 1# 2# 3# 4# 
Test / MPA 45.24 27.83 30.49 31.31 

Simulation / MPA 44.85 31.1 27.9 32.45 
error -0.86% 11.75% -8.49% 3.65% 

5. CCGA-IGS architecture 

5.1. Independent ground structures (IGS) 
The chassis frame is a very complex structure on which multiple loads are applied, including the power system, the 
transmission system, the steering system, and the passenger seats etc. As an engineering product, the layout of the 
chassis frame is required to satisfy the predefined functions. For example, beams should be arranged suitably for 
the installation of the aforementioned loads, and specific spaces should be reserved for the luggage compartments 
and toilet. Consequently, the chassis frame should be designed not only to improve the performances of the bus but 
also to meet the functional requirements.  
Ground structure approach is widely employed in simultaneous topology and sizing optimisation of discrete 
structure. The ground structure determines the design space of the optimisation. Therefore, defining proper ground
structure is a key point to satisfy the functional requirements. Generally, topology optimisation and sizing 
optimisation share one ground structure. Nevertheless, in order to satisfy the functional requirements on 
engineering products, not all beams should engage in the topology optimisation. Likewise, sizing optimisation 
should not be performed on these beams given specially shaped cross-sections for installation. Hence, an 
independent ground structures strategy is presented, where different ground structures are defined for topology and 
sizing optimisation. 
First of all, based on the original chassis, 88 diagonal beams are added to the area of passenger seat floor and 
luggage compartment floor to form a whole structure as shown in Figure 2 (a). To be specific, in the whole 
structure, it must be guaranteed that no beams go across the spaces for luggage compartment etc.
Then, part of beams in the whole structure participate in the topology or sizing optimisation. Topology 
optimisation changes the layout of the structure significantly. In order to avoid the change of the overall 
architecture of the chassis frame, 90 diagonal beams, 41 longitudinal beams, 42 cross beams and 7 vertical beams
are selected from the region of the passenger seat floor and luggage compartment floor to form the topological 
ground structure (TGS) as shown in Figure 2(b), in which beams in the TGS are in red color. Besides those beams 
with specially shaped cross-sections, all beams in the whole structure are chosen to compose the sizing ground 
structure (SGS) which are outlined in red in Figure 2(c).  
Essential functional constraints are satisfied via constructing proper whole structure and ground structures before 
the optimisation. With the introduction of IGS, it is more flexible to choose suitable design spaces for topology 
optimisation and sizing optimisation. 

         (a) Whole structure              (b) Topological ground structure (TGS)  (c) Sizing ground structure (SGS) 

Figure 2: Whole structure and ground structures of the chassis frame 

5.2. CCGA 
The FE model of the chassis frame is created with thousands of beam elements. Each beam in the TGS has a 
topological variable, and each beam in the SGS has a sizing variable. The number of design variables in the 
simultaneous topology and sizing optimisation is very large. Therefore, a cooperative coevolutionary genetic 
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algorithm (CCGA) is introduced to divide the complex search space into smaller spaces.
Decomposition and collaboration are two key features for CCGA architecture. Decomposition describes how to 
divide the variables into subpopulations. The design variables in this research are decomposed in a natural way, in 
which the topological variables and sizing variables are assigned into two subpopulations which evolve 
independently and concurrently. Meanwhile, the interaction between the two subpopulations happens during 
iterations, which is the process of collaboration. In order to evaluate an individual in one subpopulation, it is 
necessary to select a representative from the other subpopulations to form a complete solution. The best individual 
in the other subpopulation is chosen as the representative in this paper. 
With CCGA, topological variables and sizing variables evolve in two different GA systems. Hence, it is possible to 
choose different optimisation parameters according to the features of topology optimisation and sizing 
optimisation. 
IGS is employed in the preparation stage, while CCGA is utilized in the process of optimisation. Both provide 
topology optimisation and sizing optimisation with independence. Therefore, it is natural to integrated IGS and 
CCGA together.  

6. Implementation 

6.1. Formulation 
The objective is to minimize the mass of the bus body frame.  The performances of the bus body frame including 
the torsional stiffness, the foundational frequency and the max Von Mises stress under full-loaded bending case are 
constrained to be no worse than the original bus body frame. Symmetry and consistency constraints are two types 
of manufacturing constraints included in this research. Symmetry constraint, which requires the 
topology/cross-section of beam elements in the TGS/SGS to be symmetric about a line or a plane, is helpful to 
reduce the number of variables, lower the manufacturing cost and improve the aesthetic feature. Consistency 
constraint divides the beam elements in the TGS/SGS into groups, and the topological/sizing variables of those 
beam elements in a group are supposed to have the same value. Consistency constraint is taken into consideration 
for two reasons: first, during FE modelling, a beam is usually modelled with several elements, so consistency 
constraint is applied on these elements to make sure that the beam is deleted or retained entirely and the 
cross-section is consistent along the beam; second, relative beams in the structure are required to be consistent for 
the same purpose as the symmetry constraint. The formulation of simultaneous topology and sizing optimisation of 
the bus chassis is as follows: 

( )
( )

0

0
1 1

0
max max

min
s.t. / 1 0

/ 1 0

/ 1 0
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, ,

{0,1},
,

i j

i j
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i
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K K

f f

t t i j SymT ConT

x x i j SymS ConS
t i T
x X i S

=

=

   

(2)

Where m, K  and f1 are the mass, the torsional stiffness and the fundamental frequency of the bus body frame with 
the new chassis frame respectively, and K0  and f 0

1  are the torsional stiffness and the fundamental frequency of the 
original bus body frame; max and 0

max are the max Von Mises stress under full-loaded bending case of new and 
original bus body frame respectively; ti and xi are the topological variable and the sizing variable of the ith beam 
respectively; SymT and SymS represent the sets of members required to be symmetric in the TGS and the SGS 
respectively. ConT and ConS represent the sets of members required to be consistent in the TGS and the SGS 
respectively; T and S correspond to the sets of members in the TGS and the SGS respectively; the cross-sections of 
the beams must be selected from an available set, and X is the set of property IDs corresponding to the available 
cross-sections. Table 3 shows the available square and rectangular cross-sections in this research. 

Table 3: The set of available cross-sections 

Property IDs (PID) 1 2 3 4 5 6 7 8 9 10 
Width (W) / mm 20 20 20 30 30 30 40 40 40 50 
Height (H) / mm 20 30 40 30 40 50 40 50 60 50 

Thickness (T) / mm 2 2 2 2 2 2 2 2 2 2 

6.2. Optimisation parameters 

544

Leo
Rectangle



5

After grouping, there are 112 topological variables and 70 sizing variables. A topological variable can be 1 or 0, 
and a sizing variable can be 1 to 10. Therefore, the design spaces for topology optimisation and sizing optimisation 
are 5.19 1033 and 1 1070, respectively. Due to the great distinction between the design spaces, the population 
sizes for topological subpopulation and sizing subpopulation are set differently, which are 150 and 250 
respectively. The probabilities of the crossover and the mutation are 0.8 and 0.05 respectively. The tournament 
selection is utilized, and the tournament size is 2. The optimisation is terminated when the generation reaches 250. 

6.3. Automatic reloading
Many beams of the chassis frame bear uniformly distributed loads such as passenger seats, luggage and so on. 
Generally, beams with loads cannot be deleted during optimisation. However, the design space of topology 
optimisation would be very limited if those beams are kept mandatorily. In order to tackle this conflict, the 
uniformly distributed loads are reloaded according to the new topology of the chassis frame. Unlike concentrated 
load applied on a specific node, the uniformly distributed loads are beared by a region of beams. When some 
beams in the region are removed, the loads are reloaded automatically on the retained beams so that the removed 
beams do not bear any loads and the total loads applied uniformly on the retained beams remain unchanged.  

7. Results 
The performances of the original bus and the optimal bus are listed in Table 4; compared with the original bus, the 
mass reduces by 246.45 kg (8.42% of the original bus), while other performances are not worse. Figure 3 depicts 
the topology of the optimal chassis, in which retained beams in the TGS are marked in red including 25 diagonal 
beams, 5 longitudinal beams, 22 cross beams and 7 vertical beams. For comparison, the topologies of the region F1 
and F2 (see Figure 3) in the optimal chassis and the original chassis are given in Figure 4(a) - (d) respectively. 
Compared with the original chassis with 2 diagonal beams, 41 longitudinal beams, 40 cross beams and 7 vertical 
beams in the TGS, diagonal beams are preferred, longitudinal beams are reduced significantly and close to half of 
the cross beams are removed from the TGS of the optimal chassis.  
Figure 5(a) - (i) illustrate the cross-sections selected by the beams, in which the beams with the cross-sections 
indicated in the captions are marked in red. Referring to the figures, relatively small cross-sections (PID 1-3) are 
mainly employed in the diagonal beams in perpendicular direction and the longitudinal beams; medium-sized 
cross-sections (PID 4-6) are principally selected by the small span diagonal beams in the region of floors and the 
vertical beams; large cross-sections (PID 7-9) are less adopted, which are chiefly used in long span diagonal beams 
in the region of floors and reinforced beams in the installation area of the rear axle. 

 Table 4: The performances of the original bus and the optimal bus 

Model Mass  
/ kg 

Torsional stiffness  
/ kNm•(o) -1

Fundamental frequency  
/ Hz 

Max Von Mises stress 
 / MPA 

Original bus 2926.34 39.88 7.67 158 
Optimal bus 2679.89 39.89 7.70 158 

Figure 3: Topology of the optimal chassis 

(a) Top view of F1 in the optimal 
chassis

(b) Top view of F2 in the 
optimal chassis 

(c) Top view of F1 in the original 
chassis

(d) Top view of F2 in the 
original chassis 

Figure 4:  Topologies of F1 and F2 
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 (a) W20 H20 T2 (PID=1)          (b) W20 H30 T2 (PID=2)           (c) W20 H40 T2 (PID=3) 

(d) W30 H30 T2 (PID=4)           (e) W30 H40 T2 (PID=5)            (f) W30 H50 T2 (PID=6) 

(g) W40 H40 T2 (PID=7) (h) W40×H50×T2 (PID=8) (i) W40 H60 T2 (PID=9)

Figure 5: Cross-sections of the optimal chassis 

8. Conclusion 
An architecture of CCGA-IGS was put forward for simultaneous topology and sizing optimisation of an integral 
bus chassis. In the preparation stage, additional beams were added to the original chassis to form a whole structure, 
and then different set of beams were chosen from the whole structure to construct ground structures for topology 
optimisation and sizing optimisation respectively, namely the process of the IGS strategy. The pre-defined 
functional requirements are guaranteed in this stage. Variables were grouped according to symmetry and 
consistency constraints to decrease the number of variables and satisfy the manufacturing constraints. Then, in 
order to overcome the hindrance of large number of design variables, CCGA was introduced to solve the problem, 
in which topological variables and sizing variables were divided into two subpopulations that evolved in two 
different GA systems. During the optimisation, the uniformly distributed loads on the chassis frame were reloaded 
in accordance with the topology of the newly generated chassis. 
The bus body frame with the optimal chassis is significantly lighter than the original bus body frame, while the 
torsional stiffness, the foundational frequency and the max Von Mises stress are not worse. Meanwhile, the 
optimal chassis satisfies the functional and manufacturing requirements considered in this paper.  
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1. Abstract
Conventional wind turbine blades have been designed using fatigue life predictions based on a fixed wind load 

distribution that does not fully capture uncertainty of the wind load. This could result in early fatigue failure of 
blades and eventually increase the maintenance cost of wind turbines. To produce reliable as well as economical 
wind turbine blades, this paper studies reliability-based design optimization (RBDO) of a wind turbine blade using 
a novel wind load uncertainty model. In the wind load uncertainty model, annual wind load variation has been 
extended over a large spatiotemporal range using 249 groups of wind data. The probability of fatigue failure during 
20-year service life is estimated using the uncertainty model in the RBDO process and is reduced to meet a desired 
target probability of failure. Meanwhile, the cost of composite materials used in the blade is minimized by 
optimizing the composite laminate thicknesses of the blade. In order to obtain the RBDO optimum design 
efficiently, deterministic design optimization (DDO) of a 5-MW wind turbine blade is first carried out using the 
mean wind load obtained from the uncertainty model. At the DDO optimum design, fatigue hotspots for RBDO are 
identified among the laminate section points. For efficient sampling-based RBDO process to handle dynamic wind 
load uncertainty, instead of generating surrogate models of the overall output performance measure, which is 
20-year fatigue life, a number of surrogate models of the 10-minute fatigue damages D10 at the hotspots are 
accurately created using the dynamic Kriging (DKG) method. Using these surrogate models and the wind load 
uncertainty model, probability of failure of 20-year fatigue life at these hotspots and their design sensitivities are 
calculated at given design points. Using the sampling-based method, RBDO of the 5-MW wind turbine blade is 
carried out starting at the DDO optimum design to meet the target probability of failure of 2.275%. 
2. Keywords: Wind Turbine Blade, Reliability-Based Design Optimization, Fatigue Life, Wind Load Uncertainty 

3. Introduction 
As an expensive component in large wind turbine systems, designing reliable wind turbine blades for 20-year 

fatigue life is one of the most important factor in wind turbine design. A cost-effective design of the blades reduces 
the initial investment, and a reliable design reduces maintenance cost of the wind turbine systems. This paper 
proposes reliability-based design optimization (RBDO) process and methods for optimizing reliable wind turbine 
blades considering dynamic wind load uncertainty.  

It is challenging to accurately predict the fatigue damage/life of wind turbine blades due to various 
uncertainties from material properties, manufacturing process, and external loads. Among those uncertainties, 
dynamic wind load uncertainty is the most significant source of uncertainty affecting the fatigue reliability of wind 
turbine blades. Hence, better understanding of the dynamic wind load uncertainty is critical for the reliable 
optimum design of wind turbine blades.  

Reliability analysis of wind turbine blades considering wind load uncertainty has been studied [1-6]. 
Probabilistic models for mean wind speed have been applied to characterize the annual wind load variation [1-10]. 
Measured fatigue loadings, e.g., stress and bending moment, were applied to wind turbine fatigue and reliability 
analysis [3,4]. Traditional reliability analysis of wind turbines involves a specific distribution, e.g., Weibull 
distribution or Rayleigh distribution, of mean wind speed to account for the frequency of fatigue damage under 
different wind loads. However, by applying a fixed Weibull distribution, only deterministic fatigue life can be 
obtained because the assumed Weibull distribution is invariant in different years. The fixed Weibull distribution 
based either on wind turbine standards [11,12] or measured wind data over one year at a specific location cannot 
truly render the wind load uncertainty over a larger spatiotemporal range, for instance at different locations and in 
different years. Tarp-Johansen [5] has studied the statistical uncertainty of two parameters of the Weibull 
distribution for mean wind speed based on one-year measurements over a period of 52 years.  

Besides the mean wind speed, the fluctuations in the wind speed about the short-term mean naturally have a 
significant impact on the design loadings, as they are the source of extreme gust loads and a large part of the blade 
fatigue loading [13,14]. The distribution of turbulence intensity has been involved in the reliability analysis of 
wind turbine blades [1,6]. Another simple way to consider the wind load uncertainty is by using partial safety 
factors [11,12,15-17]. However, the spatial and temporal wind load variation cannot be represented accurately 
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using partial safety factors. In this paper, the reliability analysis of wind turbine blades applies a wind load 
uncertainty model, which considers both annual wind load variation and wind load variation in a large 
spatiotemporal range. 

Reliability-based design of wind turbine blades against fatigue failure has been studied by Ronold et al. [1], 
whose probabilistic model was applied to reliability analysis of a site-specific wind turbine of a prescribed make.
Toft and Sørensen [18] presented a probabilistic framework for design of wind turbine blades, which requires tests 
with the basic composite materials and full-scale blades during the design process. Reliability-based design of 
wind turbines against failure under extreme condition has also been studied [19,20]. However, very few research 
has well addressed RBDO of wind turbine blades for fatigue life under wind load uncertainty. This paper presents 
RBDO of wind turbine blades for fatigue life using the developed wind load uncertainty model, by which the 
obtained RBDO optimum design satisfies a reliability requirement considering realistic uncertain wind load during 
the designed 20-year lifespan. 

4. Fatigue Analysis of Composite Wind Turbine Blades 
4.1. Parametric blade modelling 

A parametric composite wind turbine blade model has been developed for fatigue analysis, deterministic 
design optimization (DDO), reliability analysis and RBDO. The aerodynamic properties of the blade model, e.g., 
airfoil type, chord length, and twist angle, are the same with the 5-MW NREL reference wind turbine blade [21]. 
However, material properties and laminate schedules are different from the NREL blade. The current blade is 
composed of seven parts, which are the root, forward shear web, aft shear web, leading edge, spar cap, trailing 
edge, and tip, as shown in Fig. 1. Each part consists of a different number of panels. In total, there are 71 panels in 
the seven parts. The forward shear web, aft shear web, leading edge, and trailing edge consist of sandwich panels, 
in which composite laminates are laid at both the top and bottom surfaces and a foam core is laid in the middle. 
Other parts are made of composite laminates. Composite laminates QQ1 and P2B are selected from the 
SNL/MSU/DOE Composite Material Fatigue Database [22]. The laminate thicknesses of QQ1 and P2B in panels 
are changing in DDO and RBDO because they are connected to the design variables for DDO and RBDO. 

4.2. Fatigue analysis procedure 
A comprehensive fatigue analysis procedure has been developed to calculate 10-minute fatigue damage D10

given blade design variable vector d, 10-minute mean wind speed V10, and 10-minute turbulence intensity I10. The 
design variable vector d controls the thicknesses of composite laminates used in the wind turbine blade. The 
fatigue analysis procedure is briefly explained as follows. 

Given the V10 and I10 at hub height, a 10-minute wind field realization is first simulated using TurbSim [23]. 
The simulated wind field is then used to calculate resultant aerodynamic lift force, drag force, and moment force at 
the aerodynamic centre of each blade section by AeroDyn [24]. In order to avoid stress concentration using 
resultant aerodynamic forces, detailed wind pressure obtained from XFOIL [25] is modified to match the 
aerodynamic forces calculated by AeroDyn. Then, the modified wind pressure could be applied on the blade 
surface to carry out FEA using Abaqus [26]. Detailed explanation of obtaining the modified wind pressure is 
provided in the previous work [27]. At the same time, gravity load and centrifugal load have been considered in the 
stress analysis. The non-proportional multi-axial complex stresses at section points, which indicate locations 
through laminate thickness in the wind turbine blade, is extracted out for fatigue damage calculation. A multi-axial 
fatigue damage index [28] is used to calculate the fatigue damage considering longitudinal stress 11, transverse 
stress 22, and shear stress 12 in principal material coordinates. The 95% lower bounds of the probabilistic S-N 
curves and constant life diagrams (CLDs) are applied when calculating the number of allowable cycles at a certain 
stress level. Finally, the 10-minute fatigue damage at a section point is accumulated by Miner’s rule.  

In summary, the 10-minute fatigue damage D10 at a section point in the blade can be determined by design 
variable vector d, 10-minute mean wind speed V10, and 10-minute turbulence intensity I10 as 

( )10 10 10 10, ,D D V I= d   (1) 

Figure 1: Seven Parts of the Composite Wind Turbine Blade 
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5. Dynamic Wind Load Uncertainty Model 
The developed wind load uncertainty model involves both the annual wind load variation and the wind load 

variation in a large spatiotemporal range. The annual wind load variation represents variation of 10-minute mean 
wind speed V10 and 10-minute turbulence intensity I10 in a year using a joint probability density function (PDF) of 
V10 and I10. However, it is not appropriate to obtain the joint PDF of V10 and I10 directly from their marginal PDFs 
due to the correlation between V10 and I10. It is found that V10 and I10 have statistical correlation. Moreover, there is 
also a mathematical correlation between V10 and I10 because I10 is calculated by 10 / V10, where 10 is 10-minute 
standard deviation of wind speed. To exclude the mathematical correlation in the joint PDF, the joint PDF of V10
and 10 is obtained first and then transferred to the joint PDF of V10 and I10.

Based on the 249 groups of wind data, the marginal PDFs of V10 and 10 have been identified to be Weibull 
distribution and Gamma distribution, respectively, using the Maximum Likelihood Estimate (MLE) method [29]. 
The statistical correlation between V10 and 10 is represented using Gumbel copula, which is also the maximum 
likely copula type [30]. Because the transformation from the random vector (V10, 10) to the random vector (V10,
I10) is a one-to-one transformation with the Jacobian of the transformation J = v10, the joint PDF of V10 and I10 could 
be derived using the joint PDF of V10 and 10 as 

( ) ( ) ( )10 10 10 10 10 10 10 10, , ,VI V Vf v i f v J f v v i v= =   (2) 

where fVI and fV  are the joint PDFs for (V10, I10) and (V10, 10), respectively; v10, i10 and 10 are realizations of V10,
I10, and 10, respectively; and 10 = v10·i10. Using the identified copula for V10 and 10, the joint PDF of V10 and 10
can be expressed as [30] 

( ) ( ) ( ) ( )10 10 10 10 10 10 10 10, ,V V Vf v c v f v f=   (3) 

where cV  is the copula density function for V10 and 10, and fV10 and f 10 are the marginal PDFs of V10 and 10,
respectively. Using Eqs. (2) and (3), the joint PDF of V10 and I10 can be expressed as 

( ) ( ) ( ) ( )10 10 10 10 10 10 10 10 10 10 10, ,VI V Vf v i c v v i f v f v i v=   (4) 

The marginal PDFs of Weibull distribution for V10 and Gamma distribution for 10 take the forms 

( )
1

10 10
10 10 ; , exp

k k

V
v vkf v C k

C C C
=   (5) 

( )
( )

1 10
10 10 10

1; , expa
af a b

bb a
=   (6) 

respectively, where C and k are the scale parameter and shape parameter for the Weibull distribution, respectively; 
a and b are the shape parameter and scale parameter for the Gamma distribution, respectively; and (a) is the 
gamma function of a. The Gumbel copula density function cV  for V10 and 10 is expressed as [30] 

( )
( ) ( ) ( ) ( )1 1 1/ 1/ 2 1/ln ln 1 exp

, ;V

u v w w w
c u v

uv

+
=   (7) 

where u and v are marginal cumulative distribution functions (CDFs) of V10 and 10, respectively; w is equal to 

( ) ( )ln lnu v+ ; and  is the copula parameter, which can be calculated from Kendall’s tau  as [30] 

( )1/ 1=   (8) 

Based on Eqs. (4) - (8), the derived joint PDF of V10 and I10 is determined by parameters C, k, a, b, and . Using 
the 249 groups of wind data, 249 different sets of (C, k, a, b, ) have been calculated. Each set of (C, k, a, b, )
contains annual wind load variation. The calculated 249 sets of (C, k, a, b, ) indicate that there is a wind load 
variation in the large spatiotemporal range, i.e., in different years and at different locations. Therefore, the dynamic 
wind load variation in the large spatiotemporal range can be represented by providing the distributions of (C, k, a,
b, ). These distributions are identified by the MLE method using the 249 sets of (C, k, a, b, ). The identified 
distribution types of C, k, a, b, and  are log-logistic, normal, generalized extreme value, Weibull, and extreme 
value distributions, respectively. The specific parameters for PDFs of C, k, a, b, and  are obtained as well from the 
249 sets, assuming that C, k, a, b, and  are statistically independent. Due to space limitations, these PDFs are 
omitted from presentation here.  
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6. Reliability Analysis under Dynamic Wind Load Uncertainty  
6.1. Twenty-year Fatigue Damage Calculation 

Applying the 10-minute fatigue damage D10 in Eq. (1) and the derived joint PDF of V10 and I10 in Eq. (4), the 
one-year fatigue damage D1year can be calculated as 

( ) ( ) ( )1 10 10 10 10 10 10 10, , , , , 52560 , ; , , , , , , d dupp upp

low low

V I

year VIV I
D C k a b f v i C k a b D v i v i=d d   (9) 

where “52560” indicates the number of 10-minute periods in one year; Vlow and Vupp are the lower and upper 
bounds of V10, respectively; and Ilow and Iupp are the lower and upper bounds of I10, respectively. The one-year 
fatigue damage in Eq. (9) cannot be explicitly expressed as a function of d, C, k, a, b, and , due to the complexity 
of the joint PDF and 10-minute fatigue damage calculation. Thus, in practical damage calculation, the double 
integration in Eq. (9) is numerically calculated using the Riemann integral as 

( ) ( ) ( ), ,
1 10 10 10 10 10

1 1
, , , , , 52560 , ; , , , , , ,

m n
i j i j i j i j

year VI
i j

D C k a b P v i C k a b D v i
= =

d d   (10) 

where m and n are the number of selected V10 and I10, respectively. The probability of the V10 and I10 in (i, j) cell can 
be calculated as 

( ) ( ),
10 10 10 10 10 10, ; , , , , , ; , , , ,i j i j i j

VI VIP v i C k a b f v i C k a b v i=   (11) 

where v10 and i10 are the size of the (i, j) cell in directions of V10 and I10, respectively. ( 10
iv , 10

ji ) is the center point 
of the (i, j) cell. In this paper, a large range of V10 and I10 has been considered to examine the fatigue damage 
considering all possible wind conditions, i.e., combination of V10 and I10. The lower bound and upper bound of V10
are set to be the cut-in wind speed of 3 m/s and cut-out wind speed of 25 m/s, respectively [21]. The lower bound 
and upper bound of I10 are set to be 0.02 and 1, respectively. The 10-minute fatigue analyses are run over the range 
of V10 between 3 m/s and 25 m/s in 2 m/s increments, and the range of I10 between 0.02 and 1 in 0.02 increments. 
Therefore, the number of realizations of V10 and I10 are m = 12 (i =1,…,12) and n = 50 (j =1,…,50), respectively, in 
Eq. (10). At each wind condition, a wind load probability ,i j

VIP is calculated using Eq. (11), and a 10-minute fatigue 
damage ,

10
i jD is calculated using the developed fatigue analysis procedure in Section 4.2. In this way, a 12-by-50 

wind load probability table for ,i j
VIP  and a 12-by-50 10-minute fatigue damage table for ,

10
i jD can be constructed. 

Considering the wind load variation in a 20-year range, a 20-year fatigue damage at a given design d can be 
calculated as

( ) ( )

( ) ( )

20

20 1
1

20 12 50
, ,

10 10 10 10 10
1 1 1

, , , , , , , , , ,

                                   =52560 , ; , , , , , ,

t t t t t t
year year

t

i j i j t t t t t i j i j
VI

t i j

D D C k a b

P v i C k a b D v i

=

= = =

=d C k a b d

d
   (12) 

where random vectors C, k, a, b, and  contain 20 sets of (C, k, a, b, ) as C = [C1, C2,…, C20], k = [k1, k2,…, k20],
a = [a1, a2,…, a20], b = [b1, b2,…, b20], and  = [ 1, 2,…, 20]. The realizations of random vectors can be randomly 
drawn from the obtained PDFs of C, k, a, b, and  in Section 5. 

6.2. Reliability Analysis Using Monte Carlo Simulation 
In this paper, the probability of fatigue failure is calculated using a sampling-based reliability method that uses 

Monte Carlo simulation (MCS). Using Eq. (12) and MCS, the probability of fatigue failure is calculated as 

( ) ( )( ) ( )
( )

( ) ( ) ( )

20
20 1

1

Fatigue Life  20 years 1

1                                            

year

N F F

year D

NMCS
i

i

P P D f d

I f d I
NMCS

>

=

< = > =

=

YY

Y

Y y y

y y y y
   (13) 

where Y =[X, C, k, a, b, ], and y(i) is the ith realization of Y. It is worth noting that the realization y(i) is randomly 
generated based on the PDF of a random design vector X and the PDFs of random parameters (C, k, a, b, ) in the 
wind load uncertainty model. In reliability analysis, the realizations of X replace the design variable vector d in 
order to consider the design uncertainty. The mean of the random design vector X is the design variable vector d in
RBDO. Each realization y(i) includes 20 sets of (C, k, a, b, ), which represent the wind load variation in 20 years. 
NMCS is the number of realizations for MCS. F is the failure domain such that D20year(Y) > 1, and 

F
I is an 

550

Leo
Rectangle



5

indicator function defined as 

( )
1,         for 
0,        otherwiseF

FI =
y

y    (14) 

7. Reliability-Based Design Optimization under Dynamic Wind Load Uncertainty  
7.1. Random Design Variables 

In RBDO, the uncertainty of composite laminate thickness due to the manufacturing process has been 
considered. The coefficient of variation (CoV) of thicknesses of QQ1 and P2B laminate are referred from the 
SNL/MSU/DOE Composite Material Fatigue Database [22]. There are seven random design variables that control 
laminate thicknesses in seven parts accordingly. A linear relationship is used to link an RBDO design variable to 
laminate thicknesses in panels of a part. The linear relationship between each RBDO design variable and the linked 
laminate thicknesses is based on the DDO optimum design, as the normalized DDO optimum design variables are 
used as the initial design variables of RBDO. Due to space limitations, the DDO procedure and results are omitted 
in this paper. The properties of random design variables for RBDO are listed in Table 1, where dL, dO, and dU are 
the normalized lower bound, mean, and upper bound of the random design variables, respectively. The CoV of a 
random design variable is equal to that of thickness of the corresponding composite laminate and is fixed in the 
RBDO process. 

Table 1: Properties of Random Design Variables

Random Design 
Variable Distribution dL dO dU CoV Corresponding Part Composite 

Laminate
d1 Normal 0.7811 1 3.1243 0.0323 Root QQ1 
d2 Normal 0.6820 1 2.2741 0.0323 Forward Shear Web QQ1 
d3 Normal 1.0000 1 1.9133 0.0323 Aft Shear Web QQ1 
d4 Normal 0.6014 1 2.4057 0.0323 Tip QQ1 
d5 Normal 0.8974 1 3.5897 0.0323 Leading Edge QQ1 
d6 Normal 0.4823 1 1.9291 0.0323 Trailing Edge QQ1 
d7 Normal 0.4626 1 1.3878 0.0203 Spar Cap P2B 

7.2. Objective Function 
The normalized total cost of composite materials that are used in the blade is set as the objective function, 

which is expressed as 

( )
6

0 0 07
70 0

7

4.18 1000 11.70 1000i
i

i i

d dC m m Cost
d d

= × × + × ×d    (15) 

where 0
im (unit: ton) is the initial mass of the ith part; 0

id  is the normalized initial design variable corresponding to 
the ith part; normalized di is the current design corresponding to the ith part; i= 1, 2, …, 7; and Cost0 is the initial 
cost. According to TPI Composites, the material costs of QQ1 and P2B are taken to be $4.18/kg and $11.70/kg, 
respectively [31]. It is worth noting that the cost of the carbon/glass-hybrid-fiber-reinforced laminate P2B is 2.799 
times more expensive than that of QQ1, which is a glass-fiber-reinforced laminate. The objective function in Eq. 
(15) is minimized in the RBDO process. 

7.3. Probabilistic Constraints 
The probabilistic constraint is that the probability of fatigue failure in Eq. (13) at a hotspot should be smaller 

than a target probability of failure tar
FP =2.275%. Hotspots are the section points in seven parts (corresponding to 

seven design variables) that show maximum fatigue damage at the RBDO initial design. For the current RBDO 
problem, there are seven probabilistic constraints corresponding to seven hotspots, which are identified at the 
DDO optimum design. The probabilistic constraints are expressed as  

( )( ) tar
20 1 2.275%,       1,...,7

j

j
year FP D P j> = =Y    (16) 

In order to efficiently calculate 20-year fatigue damage in Eq. (12), accurate global surrogate models for 
10-minute fatigue damage D10 with respect to design variables have been created using the dynamic Kriging 
(DKG) method [32]. Because each RBDO constraint requires 600 D10’s corresponding to 12-by-50 different wind 
conditions (see Section 6.1), there are 4,200 D10 surrogate models for seven RBDO constraints. The design of 
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experiments (DoE) samples for creating surrogate models are sequentially sampled. In total, 1,000 DoE samples 
are used for creating all 4,200 D10 surrogate models. After the accurate surrogate models are created, the design 
sensitivities of the probabilistic constraints are calculated using MCS and score function [33].  

The ratio between true 20-year fatigue damage using the 10-minute fatigue analysis procedure and predicted 
20-year fatigue damage using D10 surrogate models is calculated. The same MCS of 20 sets of (C, k, a, b, ) are 
used for the two types of 20-year fatigue damage. The ratios are calculated at another 1000 design points randomly 
drawn in the design domain. Table 2 shows the minimum ratio, mean ratio, maximum ratio, standard deviation of 
ratios, and number of ratios between 0.99 and 1.01 among 1000 ratios for each RBDO constraint. Because the 
numbers of ratios between 0.99 and 1.01 are larger than 950 (95%), the surrogate models are treated as accurate 
surrogate models for RBDO.  

Table 2: Accuracy Check for Surrogate Models  

RBDO
Constraint

Minimum 
Ratio Mean Ratio Maximum 

Ratio 
Standard Deviation 

of Ratios 
Number of Ratios 

Between 0.99 and 1.01 
1 0.9939 1.0001 1.0099 0.0013 1000 
2 0.9850 1.0002 1.0137 0.0030 990 
3 0.9617 1.0001 1.0480 0.0051 963 
4 0.9929 0.9998 1.0083 0.0019 1000 
5 0.9851 0.9999 1.0260 0.0048 957 
6 0.9771 0.9998 1.0347 0.0049 957 
7 0.9638 1.0002 1.0276 0.0030 994 

7.4. RBDO Formulation and Procedure 
The RBDO problem can be formulated as 

( )( ) tar
20

7 107

minimize      Cost( )

subject to      1 2.275%,       1,...,7

                     ,     and 
j

j
year F

L U

P D P j> = =

d

Y

d d d d X

   (17) 

where Y is the 107-dimensional random vector including seven random design variables and 20 sets of (C, k, a, b,
); d is the 7-dimensional design variable vector; Cost(d) is the normalized cost as shown in Eq. (15); and 20

j
yearD  is 

the 20-year fatigue damage for the jth probabilistic constraint ( )( ) tar
20 1

j

j
year FP D P>Y . The flowchart of the 

RBDO procedure including global surrogate model generation is given in Fig. 2. 

Figure 2: Flowchart of the RBDO Procedure Including Global Surrogate Model Generation 

552

Leo
Rectangle



7

8. Results and Discussion 
The RBDO procedure is successfully converged using 13 iterations. At each iteration, 200,000 MCS of 20 sets 

of (C, k, a, b, ) are used to calculate the probabilities of failure and design sensitivities of the probabilistic 
constraints. The probability of failure was reduced from 56.902% at the RBDO initial design (DDO optimum 
design) to 2.369% at the RBDO optimum design. The histories of the normalized cost and maximum probability of 
failure among seven RBDO constraints are shown in Figure 3. Table 3 compares the RBDO initial design, RBDO 
optimum design, true cost, and weight. It is observed that through the RBDO process the cost is reduced by 8% 
while the weight is increased by 13.3%. The reason is that more cheap but heavy composite material, QQ1, is 
applied at the RBDO optimum design than that applied at the RBDO initial design. Meanwhile, a less expensive 
composite material, P2B, is chosen at the RBDO optimum design.  

Figure 3: Histories of the Normalized Cost and Maximum Probability of Failure among Seven RBDO Constraints 

Table 3: Comparison of the RBDO Initial Design and RBDO Optimum Design 

d1 d2 d3 d4 d5 d6 d7 Cost ($) Weight 
(ton)

RBDO Initial 
Design 1 1 1 1 1 1 1 101331 17.7473 

RBDO Optimum 
Design 1.1885 2.1922 1.9132 0.6987 0.9968 1.3262 0.5413 93224 20.1080 

9. Conclusions 
The RBDO of wind turbine blades for fatigue life under wind load uncertainty is investigated in this paper. The 

wind load uncertainty model could provide realistic uncertain wind load through the designed 20-year lifespan. A 
reliability analysis method for wind turbine blades under the wind load uncertainty model has been developed. 
Based on the reliability analysis method, RBDO has been carried out to obtain fatigue reliable design for a 20-year 
lifespan considering wind load uncertainty. The obtained RBDO optimum design minimizes the material cost and 
reduces the probability of failure to 2.369% based on the current surrogate models. This research demonstrates that 
applying RBDO methods to wind turbine blades could provide safer and more economical designs considering 
wind load uncertainty.  
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1. Abstract
Rising complexity of the automotive industry results in enormously increasing of disciplines. It becomes highly 
important to find the best compromise among these disciplines in the automotive design process. The coupling 
strategy among different disciplines and the algorithms employed to solve optimization problems are two core 
aspects defined by the architecture of multidisciplinary design optimization (MDO). In this paper, a MDO 
architecture is investigated to decide the best compromise among multiple working conditions (frontal impact, 
frontal offset impact, lateral impact, rear impact, auto-body stiffness and mode cases) with respect to auto-body 
lightweight design. Since the selection of optimization algorithms has a significant influence on the optimization 
time and the final solution, particle swarm optimization (PSO) algorithm is modified and promoted to 
accommodate different load cases. The established MDO architecture is applied to a lightweight design 
application of an auto-body, and the results verify its effectiveness and validity. 
2. Keywords: Multidisciplinary design optimization; Particle swarm optimization; Collaborative optimization; 
Auto-body lightweight design; Kriging modeling technique. 

3. Introduction 
Because of rising complexity of industrial development, the number of disciplines to be concerned in automotive 
design has been increased enormously. The different disciplines, such as multiple crash cases, NVH and so on, 
often have conflicting objectives. So appropriate design strategies which provide an opportunity to integrate each 
discipline and conduct compromise searching process are required instead of solving each discipline separately 
[1]. Hence, multidisciplinary design optimization (MDO) has been investigated and introduced to achieve the best 
compromise solution. 

MDO aims to utilize the couplings among different disciplines to search the global optimal design [2], and 
has been applied in many engineering systems, such as bridges [3], buildings [4,5], automobiles [6,7], ships [8,9] 
and so on. The coupling strategy of different disciplines and the algorithms employed to solve an optimization 
problem are two core aspects defined by the MDO architecture which significantly influence the solution time and 
optimal searching efficiency [10]. With respect to the auto-body design process, the traditional gradient-based 
methods or local search strategies are unsuitable for solving multidisciplinary optimization due to the multimodal 
character of the objective and the numerical noise encountered in the crash cases [1]. So global optimization 
algorithms should be introduced into the MDO optimization procedure. Particle swarm optimization (PSO), 
proposed by Kennedy and Eberhart [11], is a global optimization algorithm. Its principle is derived from the 
cooperative behavior appeared among species like birds, fishes etc. Because of its simplicity of implementation 
and strong capacity to quickly find a reasonably satisfactory solution, the PSO algorithm is becoming very popular 
and has been widely used. However, PSO suffers from premature convergence problem because of the quick loss 
of diversity in the solution search. In this research, the basic PSO is modified by OLHD  technique and a reset 
operator to enhance the diversity among particles. 

In this paper, multiple working conditions (frontal impact, frontal offset impact, lateral impact, rear impact, 
auto-body stiffness and mode cases) are taken into consideration. Krging modeling technique is employed to 
surrogate the time consuming finite element simulation. A MDO architecture based on Collaborative Optimization 
(CO) method is established so that each sub-system can control its own design variables and is only bounded by its 
own corresponding constraints. Then, with the purpose of improving the efficiency and accuracy of the 
optimization problem, PSO optimizer is applied and modified according to the property of each discipline. The rest 
of this paper is organized as follows: in Section 4, the technical base is described. In Section 5, the MDO 
architecture for the auto-body design is presented in detail. The lightweight design process of a car model is 
depicted in Section 6 and Section 7 is the conclusions of our work. 
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4. Technical base 

4.1. Collaborative Optimization 
Collaborative optimization (CO), initially developed by Braun [12], is a discipline feasible constraint method 
whose architecture is designed to improve disciplinary autonomy while satisfying interdisciplinary compatibility. 
The problem is decomposed into disciplinary sub problems sketched in Figure 1. Each sub-discipline controls its 
own design variables and is bounded by its own specific constraints. Interdisciplinary compatibility is the 
objective of each sub-discipline optimizer. At the system-level, an optimizer is employed to coordinate the whole 
process and optimizes the overall objective.  

Figure 1: Collaborative optimization 

4.2. Particle swarm optimization 
The PSO method maintains a population of candidate solutions located in the design space of the fitness/cost 
function. Each potential solution is called particle and the entire population of candidate solutions is called swarm. 
Fitness function values of all the particles are computed in the current positions. Each particle abides two rules, 
trying to return to its previous best location as well as pursuing the best position of its group. The positions of 
particles are updated iteratively based on the algorithm. Based on the rules, the particle swarm moves like a group. 
The overall behavior prompts all particles to go forward the optimal solutions of the fitness/cost function. 

In the standard Particle swarm optimization, consuming a problem with D-dimensions, a potential solution is 
expressed as the velocity and position of a particle. Vector i

kx stands for the position of the thi  particle while 

vector i
kv  is the velocity. i

kp  represents the best previously visited position of each particle and g
kp  is the global 

best position found by particle swarm. The whole swarm is controlled by equations (1) and (2). 
1 1 1 2 2( ) ( )i i i i g i

k k k k k kr rv v c p x c p x+ = + +                                                    (1) 

1 1
i i i
k k kx x v+ ++= (2)

max
max min min

max

( )( ) ( )iter iteriter
iter

= × +                                                        (3) 

Equation (1) is the velocity update equation. Its first part is the initial velocity with inertia factor  which 
provides momentum for particles to move across the design space [13]. Shi and Eberhart have proposed a linearly 
varying inertia weight which had a significant improvement in the performance of standard PSO [14], shown as 
equation (3), in which iter  represents the current generation and 

maxiter  is the maximum generation. The second 
part of equation (1) is the cognition component represents the personal behavior of a particle and encourages each 
particle to move toward its own best previous position. The third part is called the social component which stands 
for cooperation behavior among particles [15]. The social component always pulls the particles moving forward 
the global best position. 1c is named as cognitive scaling parameter and 2c  is the social scaling parameter [16]. 1r
and 2r are two uniformly distributed random numbers within the range [0,1].

4.3. Metamodels construction 
Metamodeling techniques are widely used to construct surrogate models, since simulation of automotive finite 
element models are computationally expensive [17,18]. The Kriging model [19] is employed in this research. The 
stochastic process is used in Kriging model for predicting the values of unknown points. Sample points are 
interpolated to estimate the trend of the stochastic process by Gaussian random function. The model has been 
proved applicable to represent the multimodal and nonlinear functions. The accuracy of the metamodels with 
respect to finite element models is essential for response prediction. The generally used 2R  is verified in this 
research. The objective-oriented sequential sampling method is implemented to improve the precision of the 
constructed metamodels [20]. 
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5. MDO architecture for the auto-body lightweight design 
In this research, six load cases are employed (frontal impact, frontal offset impact, lateral impact, rear impact, 
auto-body stiffness and auto-body mode conditions shown in Figure 2) to conduct lightweight design of autobody. 
This Section has two parts. The first describes the modified PSO algorithm and the established MDO architecture 
is presented in the second part. 

5.1. Modified PSO algorithm 
In order to ensure a full coverage of the design space, the OLHD technique [21] is used to generate the first 
generation of particle swarm instead of the uniformly random distributed method (labeled as PSO optimizer 
version 2). In order to make a distinct comparison, particles are generated in two-dimensional space by the 
traditional method and OLHD technique, shown in Figure 3. It is clearly found that the distribution of particles 
generated by OLHD technique in Figure 3(b) is more reasonable than the random method in Figure 3(a).  

From the observation of the mathematical experiments, the convergence rate of the PSO optimizer version 2 
is slightly lower than the basic PSO in the beginning of the optimization procedure because of the scattering 
distribution of initial particles, but the former always finds a better solution at last. So the optimization ability of 
the basic PSO is successfully improved by OLHD technique.  

Figure 2: Load cases considered in MDO 
       (a) OLHD Samples                   (b) Random Samples 

Figure 3 Comparison of initial particles in two-dimension 

Through experiments with numerical benchmarks, it has been observed that PSO quickly finds a relatively 
good local solution but sometimes stagnates in the local optimum for a considerable number of generations 
without any improvement. An adaptive reset operator worked on velocity is employed to enhance the global 
optimization ability of PSO (labeled as PSO optimizer version 1). When the optimization procedure is trapped into 
stagnation for several generations, the velocity of particles will be reset equation (5)  

max max
max min min

max max

( ) ( )( )*current current
reset rand

iter iter iter iterV rw V rw rw rw rw
iter iter

= = = +， ，                    (4) 

randV  is randomly generated velocity matrix of particles under predefined range [-
maxV , maxV ].  is a generation 

correlation coefficient which is linearly decreased along with generation. 
maxiter  is the max generation and 

currentiter  is the current generation. rw  is a velocity correlation coefficient, and its concept is derived from the 

inertia weight factor  of the standard PSO. Its boundary is the predefined [ minrw , maxrw ]. Following the 

searching process, the left generation number ( max currentiter iter ) is decreased and the value of  is diminished, 
so that the algorithm convergence property can be guaranteed by shrinking the amplitude of resetV , while rw
improves the distribution of reset particles in consideration of the global and local search ability. The particles are 
scattered away from the stagnation position by equation (5) after the adaptive reset operator activated. 

p stagnation resetP P V= +  (5) 

From the history of mathematical experiments, the reset operator will be activated when the stagnation 
judgment criterion and the predefined probability satisfied. It is obvious that the reset operator is active during the 
middle of the optimization history when the standard versions are fallen into stagnation. So the reset operator 
effectively assists the algorithm jumping out from stagnation and finding a better optimization solution. The 
amplitude of the reset process is decreased following the left generation diminished observed at the later stage of 
the optimization program, so that the convergence of the optimization program can be guaranteed. Compared with 
the modified PSO version 2, the convergence rate of this version is relatively lower, but it is more suitable for 
high-nonlinear and multimodal optimization problems benefitted from the diversity enhanced mechanism.  

5.2. The MDO architecture 
The flowchart of the auto-body optimization process is presented in Figure 4. 

1 The high-fidelity finite element models are established at the first step. 
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2 Based on design of experiment methodology [21], implement a certain number of finite element analyses to 
provide data basis for metamodel technique. 

3 Construct metamodels by Krging technique and validate the precision of each surrogate model 
4 Sequential sampling method based on the expected improvement criterion[20] is applied to improve the 

accuracy of each metamodel. 
5 MDO procedure is launched after all the surrogate models have been prepared. The architecture of MDO is 

illustrated in Figure 5. In system-level, the objective is mass. The optimization constraints are derived from the 
interdisciplinary compatibility constraints and auto-body stiffness and mode cases. In consideration of the 
computational efficiency, the basic version of PSO is employed to search the optimal solution. There exist three 
sub-systems, frontal, lateral and rear impact. The frontal and frontal offset impact crash cases are included in the 
frontal impact system. According to the high non-linear property of the crash cases [1], the PSO optimizer version 
1 abovementioned is adopted to search the optimum. The second sub-system solves the lateral impact case and the 
PSO optimizer version 2 mentioned in part one is used to conduct the optimization process. The third discipline is 
the rear impact case and the PSO optimizer version 2 is employed as the optimization algorithm.  

6 Validate the optimization solution using finite element analysis and output the verified results. 

Figure 4: The flowchart of auto-body design Figure 5: The MDO architecture 

6. The Lightweight design of an auto-body 
A B-class vehicle model is introduced in this paper illustrated in Figure 6. Strict meshing criteria are used to 
achieve the quality requirements so that the simulation accuracy can be promoted. The average mesh size is 10mm, 
while 1005019 shell elements and 22575 solid elements are contained in the full-size model. The finite element 
model has been verified and is available for further study [22,23]. The auto-body frame FE model are presented in 
Figure 7 and crash cases simulation in Figure 8. 

Multi-load cases and constraints are presented in Table 1. The variable is the thickness of each component. 
Due to limited space, the detailed variables list is not included in this paper. For auto-body stiffness and mode 
cases, 90 variables are considered. Its performance indicators are served as the constraints in system optimizer so 
that the coupling variables can be significantly decreased to ensure the searching convergence. Because of the 
similar performance indicators, the frontal and frontal offset crash cases are integrated in one sub-system. The 
objective is the interdisciplinary compatibility and the PSO optimizer version 1 is conducted for optimal searching. 
500 generations are preseted for sufficiently optimal searching. The lateral impact contains 15 variables and the 
PSO optimizer version 2 is employed. 300 generations are used for the optimization process. There are 8 variables 
in rear impact case, so the optimization searching is relatively simpler than the other two sub-systems. 100 
generations are predefined with the PSO optimizer version 2. In the system-level, the basic PSO optimizer is 
employed and 100 generations are preseted for improving computational efficiency. The particle number is set to 
20 for all the problems. 

Figure 6: Full size FE model Figure 7: Auto-body frame FE model 
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(a) Frontal impact (b) Frontal offset impact 

(c) Lateral impact (d) Rear impact 

Figure 8 Crash cases simulation 
In order to verify the efficiency and effectiveness of the modified PSO optimizer, a comparison MDO case is 

built with all the sub-systems optimized by basic PSO version. The predefined parameters are invariable. Because 
of the randomness of the results achieved by PSO, 30 repeated trials are conducted in these two MDO architecture. 
The best optimization result of the MDO with the modified PSO optimizer is 418.36kg, while  the comparison case 
is 435.17kg. It is obvious that the modified PSO optimizer is efficient and effective to achieve a better optimization 
solution.

The original mass of the auto-body structure is 450kg. Round the thickness values of all the variables 
acquired from the MDO optimization procedure, and verify the feasibility by finite element analysis. The structure 
mass of the auto-body is 423.86kg after the lightweight design process and all the performance indicators are 
satisfied. So the auto-body lightweight design program based on MDO architecture and the modified PSO 
optimizer successfully achieve an outcome of 5.80% mass reduction.  

Table 1 Load cases description 

Load cases Design variables Performance indicators Constraints 

Auto-body stiffness 90
Bending stiffness 11000N/mm 
Torsion stiffness 12000Nm/° 

Auto-body mode First-order torsion mode 34Hz

Crash 
cases

Frontal
impact 12

Left B-Pillar acceleration 40g
Left Toe-board intrusion 80mm 
Right Toe-board intrusion 80mm 

Frontal
offset
impact

21

Left B-Pillar acceleration 40g
A-Pillar deformation 80mm 
Left Toe-board intrusion 80mm 
Right Toe-board intrusion 80mm

Lateral
impact 15

Lower rib deflection 32mm
B-Pillar intrusion velocity 9m/s 
Door deformation velocity 9m/s 
Abdomen load 1.5kN
Pubic symphysis force 4kN

Rear
impact 8

Left contact force of Hydrogen bottle 50kN
Middle contact force of Hydrogen bottle 50kN
Right contact force of Hydrogen bottle 50kN

7. Conclusions 
In this paper, MDO architecture for auto-body lightweight design is established and the modified PSO optimizer is 
incorporated into the optimization procedure. From the experimental results, the following conclusions can be 
summarized: 

1 The MDO architecture based on Collaborative Optimization guarantees the disciplinary autonomy while 
satisfying interdisciplinary compatibility, so that the sub-system can be operated flexibly. For the auto-body 
lightweight design problem, different optimization algorithms can be chosen according to the character of each 
sub-system  
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2 The optimization ability of basic PSO is successfully improved by OLHD technique and the velocity reset 
operator. The MDO comparison results demonstrate that the modified PSO version is more suitable for the 
auto-body lightweight design.

In the future work, more load cases will be considered to incorporate into the MDO architecture while the 
problem convergence property is assured. More efficient PSO versions will be investigated to accommodate 
different requirements from multiple load cases.  
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1. Abstract
A novel numerical-experimental methodology for the identification of elastic moduli of orthotropic structures is

proposed. Special attention is given to the elastic moduli of laminated electrical steel sheets, which are widely

used for the magnetic cores of electric motors and generators. The elastic moduli are determined specifically for

use with finite element vibration analyses, such that the dynamic characteristics of such structures can properly be

predicted by using the identified elastic moduli. The identification problem is formulated as an inverse problem

with nonlinear least squares fit between the measured and computed modal frequencies. The problem is sequen-

tially solved with increasing number of modes that are carefully yet automatically selected based on the analytic

sensitivity of the modal frequencies on the elastic moduli. Using the results of numerical experiments, it is shown

that the optimal solution obtained by the proposed method converges to the accurate elastic moduli as the number

of modes increases. Furthermore, it is also shown that the method not only converges faster but also is numeri-

cally more stable than conventional methods. Finally, the method is applied to the experimentally-obtained modal

frequencies of the laminated electrical steel sheets, and successfully identifies the elastic moduli where the finite

element modal analysis can reproduce accurate modal frequencies.

2. Keywords: Inverse problem, Nonlinear least squares, Orthotropic material, Electrical steel sheets, Laminated

plates.

3. Introduction
There is a growing demand to model and predict the dynamic characteristics of the electric machines, as electri-

fied vehicles such as hybrid-electric vehicles and electric vehicles become prevalent. One of the most important

yet challenging tasks is the accurate modeling of the modal characteristics of the electric machines. Without the

accurate modal characteristics, even if the magnetic force excitation is accurately predicted, it is impossible to ac-

curately capture the forced response of the electric machines [1]. In particular, we shall pay special attention to the

modal characteristics of the laminated electrical steel sheets, which are widely used as the magnetic cores of the

electric machines. The elastic behavior of the laminated electrical steel is represented by orthotropic constitutive

relationship between stress and strain. In this paper, a novel elastic moduli identification method for orthotropic

structures is proposed, which is based on the nonlinear least squares (LS) parameter identification procedure using

measured mode shapes and frequencies, in conjunction with finite element (FE) model updating technique. The

proposed method incorporates the LS procedure with successive increments of the number of modal frequencies

and initial condition updates, which enables fast and accurate convergence of the identification procedure.

This paper is organized as follows. Mathematical formulation of the nonlienar LS problem is described in Section

4. In Section 5, the validity of the proposed approach is confirmed by numerical experiments. In Section 6, the

methods are applied to the measured mode shapes and frequencies of the laminated electrical steel sheets, and the

effectiveness of the proposed methods is discussed. Conclusions are provided in Section 7.

4. Mathematical formulation
4.1 Nonlinear least squares minimization

Let us suppose that the space occupied by the vibrating body of interest is denoted as Ω ⊂ R
3, and the body of

interest consists of a material with orthotropic constitutive relationship. Assuming that a set of n modal frequencies

of the body has been extracted from the results of modal testing, they are denoted as f̃k, k = 1, . . . ,n. With the

measured modal frequencies, we try to identify the set of nine independent engineering elastic moduli of the

orthotropic material, which is denoted here as p= [E1,E2,E3,G12,G23,G13,ν12,ν23,ν13]
T. Denoting numerically-

obtained modal frequencies with p as fk(p), k = 1, . . . ,n, we solve the following minization problem:

minimize
p

Ln(p) :=
1

2
‖rn(p)‖2, (1)

1
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where ‖‖ denotes the 2-norm of a vector, rn(p) = fn(p)− f̃n(p), fn(p) = [ f1(p), f2(p), . . . , fn(p)]
T, and f̃n =

[ f̃1, f̃2, . . . , f̃n]
T. For the minimization algorithm, we assume general-purpose, gradient-based nonlinear minimiza-

tion algorithm, such as Gauss-Newton methods and quasi-Newton methods. Fundamentally, we seek the stationary

point of the function where the first order derivative of Ln(p) with respect to p vanishes, i.e.,

∇pLn(p) = 0, (2)

where ∇p denotes the vector differential operator with respect to p. It means that the derivative of the eigenfre-

quencies with respect to p needs to be evaluated because

∇pLn(p) = JT
n (p)rn(p), (3)

where Jn(p) is the Jacobian matrix whose ith row and jth column element is denoted as

[Jn(p)]i j =
∂ fi(p)

∂ p j
, i = 1, . . . ,n, j = 1, . . . ,9. (4)

The i− j component of the Jacobian matrix can be written as:

[Jn(p)]i j =− 1

8π2 fi(p)

∫
Ω
ε̃(φi) · C̃ ·

(
∂ S̃
∂ p j

)
· C̃ · ε̃(φi)dΩ. (5)

C̃ = S̃−1 =

⎡⎢⎢⎢⎢⎢⎢⎣
1/E1 −ν21/E2 −ν31/E3 0 0 0

−ν12/E1 1/E2 −ν32/E3 0 0 0

−ν13/E1 −ν23/E2 1/E3 0 0 0

0 0 0 1/G12 0 0

0 0 0 0 1/G23 0

0 0 0 0 0 1/G13

⎤⎥⎥⎥⎥⎥⎥⎦

−1

, (6)

where φi denotes the ith mode shape, ε̃ denotes the Voigt notation of the Cauchy’s strain tensor, C̃ and S̃ denote

the stiffness and the compliance matrices, respectively.

4.2 Successive augmentation of the least squares problem and initial condition updates

There are three key factors that greatly affect the results of the minimization problem: the number of modes, the

initial conditions, and the types of modes used in the objective function. In this paper, we propose guidelines to

deal with these factors to improve the accuracy of the solutions of the LS problem.

• Number of modes and initial conditions

In general, it is possible to improve the solution of the LS problem by using more measurement data than the

number of paramters to be determined. In our case, if the number of modes exceeds the number of the elastic

moduli, it becomes an over-determined problem, and the LS solution is expected to be improved. Namely, we

augment the LS problem by adding more residuals to be minimized.

The initial condition for the minimization problem is another important factor, considering that this minimization

problem is an ill-posed problem [2]. That is, a “good” initial condition that is close enough to the optimal solution

should be selected a priori, before starting the minimization. Even though it is not always possible to choose a good

initial condition, a simple alteration to the algorithm would alleviate this difficulty. Namely, during the successive

augmentations of the LS problem, the initial values p0 for the minimization of Lk(p) are updated to the converged

solution of Lk−1(p).
• Mode selection algorithm

When forming Eq. (1), it is not obvious which vibration modes should be used for the accurate determination of

the elastic moduli. Therefore, we try to construct the mode selection criteria for Eq. (1) based on the following

arguments. The Taylor expansion of the function Lk(p) around a specific point p̄ up to second order gives the

following quadratic function:

L̃k(p) := Lk(p̄)+ [∇pLk(p̄)]
T [p− p̄]+

1

2
[p− p̄]T∇2

pLk(p)[p− p̄]. (7)

where ∇2
pLk(p) is the Hessian matrix that can also be written as

∇2
pLk(p) = JT

k Jk +
(∇2

pfk
)T

rk. (8)
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Figure 1: Numerical model with orthotropic material model

If we employed the exact Newton method, the algorithm would attempt to solve the minimization of Eq. (1) by

successively finding the stationary point of the quadratic function L̃k(p) at each iteration, i.e., ∇pL̃k(p) = 0. It

means that the increment Δp at each iteration would be determined by solving the following linear equations:[
JT

k Jk +
(∇2

pfk
)T

rk

]
Δp=−∇pLk(p). (9)

When the iteration reaches near the stationary point, rk ≈ 0 and ∇2
prk can also be assumed to be very small.

Therefore, if ‖rk‖2 is very small, or L̃k(p) is evaluated near the stationary point, the Eq. (9) reduces to the

following relationship: (
JT

k Jk
)

Δp≈−∇pLk(p). (10)

One may notice that Eq. (10) implies that the accuracy of the increment Δp is influenced by the nature of the matrix

JT
k Jk. That is, if the condition number of the matrix JT

k Jk, or equivalently that of Jk(p) is large, then the solution

we obtain by solving Eq. (10) can be inaccurate. It means that it is important to keep the condition number of JT
k Jk

as small as possible, for the accurate and stable determination of the increment Δp. Therefore, we propose that the

mode sequence at each minimization be selected, such that the condition number of Jk is the smallest among the

possible set of modes. Denoting the minimizer of Lk(p) as p̂k, Lk+1(p) is updated such that:

Lk+1(p) = Lk(p)+
1

2

(
f�(p)− f̃�

)2
, (11)

where the mode index � is found such that:

κ ([Jk(p̂k),∇p f�(p̂k)]) = minimum, (12)

where κ denotes the condition number, or the ratio between the maximum and the minimum singular values of the

matrix. A more qualitative statement of this argument is that the algorithm chooses the modes so that the columns

of Jk become as linearly-independent as possible.

5. Numerical validation: rectangular thick plate with orthotropic material model
In this section, the nonlinear LS problem presented in the previous section is examined using a numerical example.

For the FE modal analyses as well as the evaluation of the eigenvalue sensitivity, COMSOL Multiphysics®was

used. The BFGS algorithm [3] was employed for the minimization of Eq. (1), and implemented in the Matlab®

environment. The numerical model is presented in Fig. 1, where L1 = 0.2[m], L2 = 0.2[m], and L3 = 0.05[m].

The material model is an artificial orthotropic material with E1=150GPa, E2=180GPa, E3=100GPa, G12=60GPa,

G23=70GPa, G13=80GPa, ν12=0.1, ν23=0.2, and ν13=0.3. The analysis procedure is stated as follows. First, the

modal analysis was conducted by an FEA, and the eigenvalues and the associated eigenvectors were exctracted.

These eigenfrequencies are herein treated as the "measured" modal frequencies from a (numerical) experiment,

and used as f̃k, k = 1, . . . ,20. Second, the eigenvectors were sampled at the evenly-spaced points on the top surface

of the model as shown in Fig. 1. This simulates the vibration measurement of the mode shapes with a limited

number of measurement locations. The Eq. (1) was then minimized using the “measured” data.

To demonstrate the advantage of the proposed algorithm, the minimization without the initial condition updates

and the mode selection was also conducted, and the results are compared with those obtained by the proposed
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Figure 2: Convergence histories of the parameters (without initial condition updates and mode selection)
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Figure 3: Convergence histories of the parameters (with initial condition updates and mode selection)

algorithm. The initial values of p for both algorithms were assumed to be the elastic moduli for an isotropic mate-

rial, where E1=200GPa, E2=200GPa, E3=200GPa, G12=76.9GPa, G23=76.9GPa, G13=76.9GPa, ν12=0.3, ν23=0.3,

and ν13=0.3. The convergence histories of the elastic moduli without and with the initial condition updates and

mode selection algorithm are shown respectively in Figs. 2 and 3. The dashed-lines in the figures show the target

values for each modulus. As can be seen in Figs. 2 and 3, the converged solutions are improved as the number

of modes increases for both cases. However, as seen in Fig. 2, the convergence histories fluctuates as the number

of modes changes, and the algorithm even fails to identify the target values for ν23, and ν13. On the contrary, the

proposed method successfully determines all the elastic moduli with only 14 modes. Another advantage of the

proposed approach with the mode selection is that the convergence histories of the parameters are smoother than

those without the initial condition updates and the mode selection. Thus, we can almost be sure that the converged

solutions we obtain from the minimizations can be improved by adding more modes.

6. Application to laminated electrical steel sheets
In this section, we discuss the application of the proposed method to the identification of the elastic moduli of

the laminated electrical steel sheets. The photograph of the test specimen is shown in Fig. 4. The test specimen

consists of electrical steel sheets with nominal thickness of 0.35mm, which are bonded together by adhesive layers,

where L1 = 0.199m, L2 = 0.199m, and L3 = 0.0518m. The total number of the sheets is 146, and the total mass

of the test specimen is 15.8kg. Using the specimen, modal testing was conducted. The mode shapes with the asso-

ciated mode frequencies are shown in Fig. 5. For the first five modes, the mode shapes show typical out-of-plane

bending vibration modes of plates. The 6th and the 7th modes, however, show slightly distorted higher-order vi-

bration shapes that do not typically appear in low frequency ranges of the vibration modes of plates. This appears

to be caused by the inhomogeneity of the microscopic adhesive layers between the electrical steel sheets. The 8th

through the 12th modes are the typical in-plane bending vibration modes of plates.

Using the modes obtained by the experimental modal analysis, the proposed elastic moduli identification method

was applied, and the elastic moduli of the test specimen were determined. The initial values of the elastic moduli

were E1=180GPa, E2=180GPa, E3=100GPa, G12=76.9GPa, G23=7.69GPa, G13=7.69GPa, ν12=0.3, ν23=0.3, and

ν13=0.3. It is noted that preliminary studies revealed that starting the algorithm with the initial values that were

used in the numerical validation would result in very slow convergence. Therefore, the initial values were chosen

such that the model is “softer” in the direction of lamination (x3), i.e., E3 < {E1,E2} and {G23,G13} < G12. The

Poisson’s ratios were simply set to the typical values used for isotropic steel.
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Figure 4: Photograph of the test specimen: laminated electrical steel sheets

(a) f̃1 =2,886Hz (b) f̃2 =4,224Hz (c) f̃3 =4,808Hz (d) f̃4 =5,264Hz (e) f̃5 =5,815Hz (f) f̃6 =7,805Hz

(g) f̃7 =8,041Hz (h) f̃8 =10,368Hz (i) f̃9 =10,443Hz (j) f̃10 =10,698Hz (k) f̃11 =12,603Hz (l)f̃12 =14,691Hz

Figure 5: Measured mode shapes and associated modal frequencies

The minimization histories of the elastic moduli with respect to the number of modes are shown in Fig. 6. The

converged elastic moduli with n = 12 were E1=204GPa, E2=198GPa, E3=99.8GPa, G12=81.2GPa, G23=11.7GPa,

G13=13.6GPa, ν12=0.30, ν23=0.29, and ν13=0.31. The errors between the measured frequencies and those com-

puted with the initial values p0, and the converged solution with the proposed method are shown in Fig. 7. As

we can see in Fig. 7, all frequency errors decrease when the converged solution is used. Indeed, the average error

computed with the initial value p0 is 11.75%, whereas that computed with the converged solution by the proposed

method decreases down to 1.72%. This shows the validity of the proposed method.

Conclusions
In this paper, we proposed an elastic moduli identification method for orthotropic media based on nonlinear LS fit

between the measured and the computed modal frequencies, with accelerated convergence and improved accuracy.

In Section 4, the nonlinear LS problem was formulated, and a novel analysis procedure has been proposed, which
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Figure 6: Convergence histories of the parameters for laminated electrical steel sheets
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Figure 7: Errors in the predicted natural frequencies

(a) f1 =2,814Hz (b) f2 =4,201Hz (c) f3 =4,706Hz (d) f4 =5,467Hz (e) f5 =5,582Hz (f) f6 =7,863Hz
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Figure 8: Computed mode shapes and associated modal frequencies

improves the LS solutions by successive increments of the number of modal frequencies and initial condition up-

dates. In Section 5, the minimization method was applied to a numerical example, and its validity was confirmed.

In Section 6, the method was applied to the identification of the elastic moduli of the laminated electrical steel

sheets, and it successfully determined the elastic moduli where the average frequency error is minimized.
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1. Abstract 
The main purpose of this study is to develop an accurate methodology for the most probable point (MPP)-based 
dimension reduction method (DRM) by proposing a proper orthogonal transformation to calculate a probability of 
failure more accurately. In this study, dependency of an axis direction is shown in the univariate DRM, indicating 
that the probability of failure can be differently calculated according to a different orthogonal transformation. In 
order to obtain a proper axis direction for DRM, the Hessian of a performance function is utilized in this study. By 
performing orthogonal transformation using eigenvectors of the Hessian matrix, axes of Gaussian quadrature 
points for numerical integration are selected along the principal eigenvector directions of the Hessian. In this way, 
the error incurred by the univariate dimension reduction is minimized, so the probability of failure can be 
calculated more accurately. Numerical examples verify the accuracy of the proposed method by comparing with 
existing MPP-based DRM. 
2. Keywords: Dimension Reduction Method (DRM), Most Probable Point (MPP), First-Order Reliability 
Method (FORM), Hessian Matrix, Eigenvector 

3. Introduction 
Nowadays engineers are facing new and emerging challenges which include intensive use of computational 
simulations and application of new technologies into complex systems. Due to this, the requirements of high 
quality and reliability, and the reliable decision-making under uncertainty are essential. To overcome these things, 
reliability analysis has been advanced gradually. As a result, reliability analysis has been widely and successfully 
applied to various engineering applications.  

There are various reliability analysis methods and the most popular methods are analytical methods and 
sampling methods. Analytical methods are called most probable point(MPP)-based methods which include First-
Order Reliability Method(FORM) [1,2], Second-Order Reliability Method(SORM) [3-5] and Dimension 
Reduction Method(DRM) [6-10]. When calculating the probability of failure by FORM and SORM, a performance 
function is approximated by the first or second-order Taylor series expansion at MPP. Through a linear 
approximation, the probability of failure could be simply calculated in FORM. However, if the performance 
function is highly nonlinear and/or multidimensional, the result of FORM could be erroneous. SORM is definitely 
more accurate than FORM because it approximates the performance function in a quadratic form. But SORM also 
includes errors [5] caused by a few approximations. MPP-based DRM [8-10] has been recently proposed to 
approximate a multidimensional function using the sum of lower dimensional functions. MPP-based DRM is much 
more accurate than FORM and users can control its accuracy by changing the number of quadrature (or integration) 
points. In the MPP-based DRM, probability of failure calculation is related to axis directions because the 
quadrature points are located along the axes. 

The main objective of this study is to improve the accuracy of the MPP-based DRM using eigenvectors of the 
Hessian matrix. The probability of failure calculation in the MPP-based DRM changes according to the axes 
because locations of quadrature points depend on the axes. To obtain more accurate calculation, the quadrature 
points should be located in proper position. In other words, the proper axes should be obtained through an 
appropriate transformation from the original space. Therefore it is a main issue to find an orthonormal rotation 
matrix which arranges axes in the proper position in the proposed method. To apply the proposed method, an MPP 
should be found first after transforming all random variables in the original X-space to the standard normal U-
space through the Rosenblatt transformation [12]. After finding MPP, the existing method (i.e., MPP-based DRM)  
uses Gram-Schmidt orthogonalization to obtain the rotation matrix but the proposed method has additional process 
which uses eigenvectors of the Hessian matrix at MPP in U-space. With the rotation matrix which is obtained by 
using eigenvectors of the Hessian matrix, the quadrature points are arranged in proper position and the probability 
of failure calculation becomes more accurate. 

The paper is organized as follows. Section 4 covers basic concepts of reliability analysis. Section 5 covers the 
detail process of the proposed method. In Section 6, numerical examples are tested to demonstrate that the proposed 
MPP-based DRM can calculate the probability of failure of a performance function more accurately than the 
existing MPP-based DRM. 

568

Leo
Rectangle



2

4. Basic concepts and review for previous method 

4.1 FORM and SORM 
FORM has been extensively used for a reliability analysis which includes calculation of probability of failure, 
denoted as FP  which is defined using a multidimensional integral [1, 11] 

( ) 0
[ ( ) 0] ( )F G

P P G f d
>

> = XX
X x x                              (1) 

where ( )G X  is the performance function such that ( ) 0G >X  is defined as failure. T

1 2= { , , , }NX X XX  is an 

N-dimensional random vector where the upper case iX  means that they are random variables, and ( )fX x  is a 
joint PDF of X.

For calculation of the probability of failure in Eq. (1), FORM linearizes ( )G X at MPP in U-space obtained by 
the Rosenblatt transformation [12] and first-order Taylor approximation such that 

* T *( ) ( ) ( ) ( ) ( )LG g g g g= = +X U U u U u                          (2) 

where *u is the MPP in U-space which means the minimum distance point on the limit state function from the 
origin. MPP can be found by solving the following optimization problem to 

minimize

subject to ( ) 0g

         

         =

u

u
                                (3) 

g  is the gradient vector of the performance function calculated at the MPP in U-space. A reliability index, 

denoted as , is defined as the distance from the origin to *u  [2]. With a linearized performance function and the 
reliability index , FORM approximates the probability of failure in Eq. (1) as 

FORM ( )FP                                     (4) 

where ( )•  is the standard normal cumulative distribution function (CDF).  
Using a normalized MPP vector , quadratic approximation of the performance function in U-space and 

rotational transformation, the probability of failure can be approximated by SORM as [3, 4, 9] 

1

2
SORM

11

( )
( ) 2

( )
NF NP I A                           (5) 

where
T

1N

N1 NN
2 g

= =
A A R HR

A
   A A

 , H is the Hessian matrix of the performance function at MPP, and R is the 

orthonormal rotation matrix used in =U RV .

4.2 MPP-based DRM 
DRM is a method to approximate the multi-dimensional integration of the performance function using a function 
with reduced dimension. There are several types of DRM according to the level of dimension reduction. In MPP-
based DRM which uses a univariate DRM, any N-dimensional performance function ( )G X  can be reduced to 
summation of one-dimensional functions as [8, 9] 

* * * * *

1 1 1
1

ˆ( ) ( ) ( , , , , , , ) ( 1) ( )
N

i i i N
i

G G G x x X x x N G
+

=

X X x                 (6) 

where * * * * T

1 2{ , , , }Nx x x=x  is the MPP obtained by Eq. (3). To calculate the probability of failure using the 
MPP-based DRM, transformation to rotated standard normal V-space is required. To rotate U-space into V-space,
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it is necessary to construct an N N orthonormal matrix R whose Nth column is the normalized MPP vector , i.e., 
where N (N-1) matrix  satisfies  and N is the number of random variables. In V-

space, the probability of failure can be expressed as 

( ) 0
[ ( ) 0] ( )dF G

P P G f
>

> = vV
V v v (7)

where ( ) ( ( )G G=V X V)  is obtained from the Rosenblatt transformation and rotational transformation. The 
probability of failure is calculated using the constrain shift such that [10] 

*( ) ( ) ( )sG G Gv v v                                (8) 

where ( )sG v  is a shifted performance function and * T{0, , 0, }=v  is the MPP in V-space. In a general N-

dimensional space, ( )sG v is expressed as [10] 

*

1

ˆ( ) ( ) ( ) ( 1) ( )
N

i i
i

s s s sG G G v N G
=

v v v

* * * * * *

1 2 1 2 1 2( , , , ) ( , , , ) ( , , , )N N N

s s sG v v v G v v v G v v v= + + +

1 2( , 0, , ) (0, , ) (0, 0, , )N

s s sG v G v G v= + + +                      (9) 

Using the first-order Taylor series expansion at the MPP, the last univariate component in Eq. (9) is linearly 
approximated as 

* *

1 1

( ) ( )
(0, , ) ( ) ( ) ,N N N

N N

s G G
G v v b v b

v v
= =

=     =
v v v v

v v
                (10)

This linear approximation along Nv -axis is also used for the probability of failure calculation in SORM [3, 4]. 
Using the above equations and the linear approximation, the probability of failure in the MPP-based DRM is 
calculated as [9, 10, 13, 14] 

1

11
DRM 1

F 2

( )
( )

( )

j
N n i i

jji

N

sG v
w

b
P

==
+

(11)

where j

iv  are quadrature points, jw  are weights, and n is the number of quadrature points and weights. Table 1 

shows values of the quadrature points and weights.

Table 1. Gaussian quadrature points and weights 

n Quadrature points Weights 

1 0.0 1.0 
3 0.166667
 0.0 0.666667 

5

0.0

0.011257
0.222076
0.533333
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5. MPP-based DRM using the eigenvectors of the Hessian matrix 
The objective of the MPP-based DRM using eigenvectors of the Hessian matrix is to improve the accuracy of 
DRM. Dependency of an axis direction is shown in the univariate DRM, indicating that the probability of failure 
would be calculated differently according to a different orthogonal transformation. In order to obtain a proper axis 
direction for DRM, eigenvectors of the Hessian matrix of a performance function at MPP is used when 
transforming U-space to V-space. This method consists of 2 steps to obtain the rotation matrix that has the Hessian 
information before calculating the probability of failure by the MPP-based DRM 

Step 1. Transforming U-space to H-space using eigenvectors of the Hessian 

First, it is required to find eigenvectors of the Hessian matrix of a performance function g( )U  at MPP. 
Eigenvectors are arranged in column vectors of the first rotation matrix . Using the orthonormal transformation 

, U-space is transformed to the standard normal H-space. Through this process, all axes are arranged in 
eigenvector directions of the Hessian of g( )U  and thus cross-term effects can be minimized.  

Step 2. Transforming H-space to V-space

To apply the MPP-based DRM, Nth axis direction should be aligned to the -direction which is the normalized 
MPP vector in U-space. To obtain this axis, it is necessary to obtain an  orthonormal matrix whose Nth

column is the normalized MPP vector in H-space given by  

                                    (12) 

i.e.,  where matrix  satisfies  and N is the number of random variables. 
 is determined by the Gram-Schmidt orthogonalization. The Gram-Schmidt process takes linearly independent 

set  which consists of the normalized MPP vector(  and standard basis vector( )
and it generates an orthogonal set . Normalized  vector set comprises an orthonormal matrix 

. Using the orthonormal transformation , H-space is rotated to the standard normal V-space. Figure 
1 shows 3-D limit state function contours in each space obtained from the proposed method.

     
(a)                             (b)                            (c) 

Fig. 1. 3-D limit-state function contour in (a) U-space; (b) H-space; (c) V-space

Through these 2 steps, 2 orthonormal transformations are combined into . Substituting  with 
, U-space is rotated(transformed) to V-space by . Finally, the orthonormal rotation matrix  is obtained 

which has the Hessian information of g( )U  and the Nth column of  is the normalized MPP vector . Using 
, V-space axes have the Hessian information and quadrature points required to calculate the probability of 

failure are aligned in the V-space axes direction. For this reason, accuracy of the proposed MPP-based DRM is 
further improved. Figure 2 shows the position of the quadrature points of the limit state function contour in 

 plane depending on whether the eigenvector direction is used or not.  
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(a)                                    (b) 

Fig. 2.  plane contour : (a) MPP-based DRM; (b) Proposed DRM 

6. Numerical example 
Accuracy improvement of the MPP-based DRM using eigenvectors of the Hessian matrix is verified by comparing 
it with the existing MPP-based DRM. To compare 2 methods, consider a 3-dimensionl high-order function given
by  

4 3 2

1 1 2 3 1 2 2 3( ) 12G X X X X X X X= + + + +X                         (11) 

where the random variable iX ( i = 1, 2, 3) follows the standard normal distribution. For the comparison, Monte 

Carlo Simulation (MCS) [15] result is considered as the true value of the probability of failure. To calculate the 
probability of failure, 3 quadrature points along each axis are used. The calculation of the probability of failure in 
the proposed DRM has less error compared to MCS result than existing DRM as shown in Table 2. The effect of 
the proposed method is shown visibly in Fig. 3 which includes the location of quadrature points and the contours 
of the performance function in  plane which are obtained by the proposed method and existing method, 
respectively. The contours show that the proposed DRM minimizes the cross-term effect of the performance 
function. 

(a)                                 (b) 

Fig. 3.  plane contour in 3-D example : (a) MPP-based DRM; (b) Proposed DRM 

Table 2. Probability of failure calculation by two methods for 3-D example 

MPP-based DRM 
(3pts)

Proposed DRM 
(3pts)

MCS 
( samples) 

FP  (%) 4.14 6.50 7.90 

Error (%) 47.59 17.7 - 
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7. Conclusion 
To improve the accuracy of the existing MPP-based DRM, it is proposed to use eigenvectors of the Hessian matrix 
when transforming to the rotated standard normal V-space. To verify the accuracy improvement in calculation of 
the probability of failure, a 3-D example with high order is tested and the results show that using the proposed 
MPP-based DRM is more accurate than the existing method. More research on the proposed MPP-based DRM 
and application to Reliability Based Design Optimization (RBDO) problems are ongoing. 
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1. Abstract
Several Reliability-Based Design Optimization (RBDO) algorithms have been developed to solve engineering 
optimization problems under design uncertainties. Some existing methods transform the random design space to 
standard normal design space to estimate the reliability assessment for the evaluation of the failure probability. 
When the random variable is arbitrarily distributed and cannot be properly fitted to any known form of probability 
density function, the existing RBDO methods, however, cannot perform reliability analysis either in the original 
design space or in the standard normal space. This paper proposes a novel method, Ensemble of Gradient-based 
Transformed Reliability Analyses (EGTRA), to evaluate the failure probability of arbitrarily distributed random 
variables in the original design space. The arbitrary distribution of the random variable is approximated by a 
merger of multiple Gaussian kernel functions. Each Gaussian kernel function is transformed to a single-variate 
coordinate that is directed toward the gradient of the constraint function. The failure probability is then estimated 
by the ensemble of each kernel reliability analysis. This paper further derives a linearly approximated probabilistic 
constraint at the design point with allowable reliability level in the original design space using the aforementioned 
fundamentals and techniques. Numerical examples with generated random distributions show EGTRA is capable 
of solving the RBDO problems with arbitrarily distributed uncertainties in the original design space. 
2. Keywords: gradient-based transformation; Gaussian kernel density estimation; reliability-based design 
optimization; arbitrarily distributed design uncertainty. 

3. Introduction 
In engineering design, traditional deterministic optimization has been successfully applied to improve quality, 
processes and reduced costs. However, uncertainties have to be considered to make designs more confident and 
reliable. These traditional deterministic approaches for optimization of components, products and systems are 
slowly being replaced in the past decades of approaches that integrate probabilistic considerations. These 
probabilistic considerations were investigated and have been known to be material property deviation [1], 
allowable failure probabilities from standards [2], production condition [3], reported incidences of failures or 
satisfactions [4] and operating conditions [5], to mention a few. The basic concept behind Reliability-Based 
Design Optimization (RBDO) methods is to integrate and consider these probabilistic factors in the optimization 
process and many approaches have been developed in the past.  
Reliability Index Approach (RIA) [6-9] formulated the probabilistic constraints based on the evaluations of 
reliability indices. Lin et al. [10] resolved the convergence problems of RIA [11] by modifying the reliability index 
to correctly evaluate the failure probability for both feasible and infeasible design points. Performance Measure 
Approach (PMA) [11-15], on the other hand, implements an inverse reliability analysis, which determines the 
performance measure of a target design point. Probabilistic constraints are then formulated from these 
performance measures. Observations of the strengths and weaknesses of both RIA and PMA has led to the 
development of Hybrid Reliability Approach (HRA) [16, 17]. HRA uses a selection factor to determine whether 
PMA or MRIA would be efficient to use. Derivations of a Unified Reliability Formulation (URF) [18] had 
revealed how various RBDO algorithms can be reformulated into one general equation based on the reliability 
analyses in the standard normal design space and the fundamental aspect of linear expansions with allowable 
reliabilities.
Recently, the design optimization problems with arbitrarily distributed uncertainties have drawn high attentions 
[19-21] because they cannot be properly solved by RBDO algorithms that require transformation of the original 
design space to the standard normal design space. Therefore, the situations such as unknown random distribution 
type, undeterminable transformation to the standard normal design space, and insufficient information about the 
random distribution, are difficult for most RBDO algorithms. Thus, a new method that is capable of efficiently 
solving the RBDO problem with arbitrarily distributed uncertainties in the original design space is desirable. 
In this paper, a novel method called Ensemble of Gradient-based Transformed Reliability Analyses (EGTRA) is 
derived based on estimation of arbitrary distribution in the original design space using Kernel Density Estimation 
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(KDE) [22, 23] and reliability analyses along the gradient-based transformed direction [24]. A linearly 
approximated probabilistic constraint is formulated at the design point determined at the allowable reliability level. 
The aforementioned derivations and technologies are conducted in the original space; therefore, EGTRA is 
expected to be capable of solving RBDO problems with arbitrarily distributed uncertainties. Two numerical 
examples are solved in order to investigate the numerical performances of the proposed method.

4. Derivation of Ensemble of Gradient-based Transformed Reliability Analyses (EGTRA) 
A typical RBDO problem is formulated as follows: 

Min f d( ) s.t. P gi X( ) > 0 Pf ,i i =1...M (1)
where X  is the randomly distributed design variable; d  is the mean of X  and is commonly used as the design 
variable; f  is the objective (or cost) function; gi  is the ith  constraint function and gi 0  represents the ith  safe 
region; Pf ,i  is ith  allowable failure probability. There are M  constraints and L  variables. Several RBDO 
algorithms have been investigate the failure probability in Eq. (1) during the optimization process to reach the 
optimality, feasibility and reliability simultaneously. However, some existing methods cannot perform the 
reliability analysis properly when the following conditions occur: (1) Distribution type of X  is unknown. (2) 
Transformation of X  to the ith  standard normal design space U i  is difficult to determine or does not exist. (3) 
Data about the random distribution is insufficient. 
This paper assumes the relative positions between the sampling points and the design point remain constant and are 
independent from the location of the design point. The following gradient-based transformation [24] is first 
considered to transform the original coordinate to the single variate design space yi  toward the direction of the ith
constraint gradient v i = xgi (d) xgi (d)

1 :
yi,p = (s p d) v i  (2) 

where the design point d  is the origin of ith  gradient-based transformed design space, denoted by i ; the 
value of yi,p  is the projection of the pth  sampling point in i . Figure 1 (a) illustrates the transformation to the 
constraint gradient direction and the mapping of the sampling points to i .
A Most Probable Target Point (MPTP) in i , denoted by yi

# , is defined such that the summation of the cumulative 
probability of each kernel function from the MPTP to infinity is equal to the allowable failure probability, as 
illustrated in Figure 1 (b). Therefore, yi

#  is determined by solving the following equation: 

N 1
p (yi

# )
p=1

N
= Pf,i  (3) 

In Eq. (3), p  is the pth  Gaussian Cumulative Distribution Function (CDF) and is defined as below: 

p (y0 )=
1( 2 ) 1 exp[ 0.5(yi yi,p )

2 2 ]dyiy0
 (4) 

(a) (b)

(c)
Figure 1. Illustration of the proposed method in i : (a) Transformation of sampling points to i ;

(b) Determination of Most Probable Target Point; (c) Determination of Allowable Reliability Point. 

where  is a shape parameter in KDE [22, 23]. The size of  is critical for the accuracy of the estimation of the 

575

Leo
Rectangle



3

arbitrarily distributed PDF. The location of MPTP is essential for the estimation of the design point with allowable 
reliability and the further formulation of probabilistic constraint. 
The RBDO process in i  is expected to move the MPTP to the limit state; therefore, the value of yi

#  also 
represents the allowable tolerance near the limit state, as illustrated in Figure 1 (c). The ith  Allowable Reliability 
Point (ARP) yi

A is then determined by
yi
A = yi

* yi
# = gi (d) || xgi (d) ||

1 yi
#  (5) 

where yi
*  is the Most Probable Failure Point (MPFP) in i . In the end, the RBDO procedure is expected to move 

the design point to the location of the ARP. Thus, the failure probability of the new design point is expected to 
reach the allowable level. 
Using URF [18], the linearly approximated probabilistic constraint is formulated below: 

(d xi
A ) v i 0  (6) 

where xi
A  is the ith  Allowable Reliability Point (ARP) in the original design space. Therefore, a final formulation 

of the ith  probabilistic constraint using the EGTRA is given as follows: 
{d d(k ) +[gi (d

(k ) ) || xgi (d
(k ) ) || 1 +yi

# ]v i
(k )} v i

(k ) 0  (7) 
From the derived Eq. (7), it is noted that yi

#  is not only a most probable allowable tolerance but also a newly 
defined reliability assessment in the original design space for the proposed EGTRA method. 

5. Numerical Examples 
This section first introduces the procedure of random distribution generation that is used in this paper. Two 
mathematical problems are then solved by the proposed EGTRA.

5.1 Generations of Arbitrarily Distributed Random Variables 
This paper considers the design point at the mean value of the generated random distribution. All problems are 
solved in the two-dimensional design space, i.e. L = 2 , for better illustration of the results. The following 
distributions are artificially generated by specified procedures for research purpose and may not be seen in real 
world. This paper intentionally generates some distributions that are “concavely” ranged and are difficult for 
conventional reliability analyses. 
Figure 2 (a) shows the generated heat-shaped distribution with its mean point at the origin of the coordinate. If it is 
improperly considered as a Gaussian distribution, as shown by the dashed contour, the standard deviations along 
the x and y directions will be computed as [0.3896, 0.1648], respectively. Figure 2 (b) to (d) show the generated 
“like”-shaped, star-shaped and corona-shaped distributions, respectively. If these distributions are improperly 
considered as Gaussian distributions, the standard deviations along the x and y directions are computed as [0.2493, 
0.3045], [0.3596, 0.3606] and [0.4329, 0.4337] for the “like”-shaped, star-shaped and corona-shaped distributions, 
respectively.
The heart-shaped distribution shows a concave distribution supported in the entire design space. The “like”-shaped 
distribution shows a combined distribution that is partially supported in in the entire domain and partially 
supported in a semi-interval. The star-shaped distribution shows a uniform distribution in a concave region. The 
corona-shaped distribution shows a distribution supported in the entire design space with a void region at the 
center.

(a) (b) (c) (d)
Figure 2. Generated (a) heart-shaped, (b) “like”-shaped, (c) star-shaped and (d) corona-shaped distributions. 

5.2 Example 1: A Linear Math Problem 
The first example is a linear mathematical problem [10, 11], which is shown in Eq. (8). 

Min
d

d1+ d2

s.t. P[g1 = X1 2X2 +10 > 0] Pf ; P[g2 = 2X1 X2 +10 > 0] Pf ; 0.1 d1, d2 10
 (8) 

In this paper, two various levels of allowable failure probabilities are investigated: Pf =1%  and 30% . The initial 
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design point is located at [5, 5]. Figure 3 shows the optimal solutions using EGTRA with N = 50000  to solve the 
problem in Eq. (8) in the generated random distributions. The subfigures (a) to (d) are the results for Pf =1%
while the subfigures (e) to (h) are for Pf = 30% . The red lines represent the limit states of the original constraints 
and the black lines are the linearly approximated probabilistic constraints, which are determined using the Eq. (7)
.
Because each kernel reliability analysis in EGTRA is completed along the same gradient direction, the required 
function evaluation of each constraint per iteration is only 3. Monte Carlo Simulations (MCS) with 105  sampling 
points were used to evaluate the true failure probabilities. The numerical results showed the proposed method is 
capable of solving the problems with the generated design uncertainties with accurate estimations of reliabilities in 
the original design space, i.e. errors were less than 1%. 

Figure 3. Solutions of example 1 in various distributions and allowable failure probabilities: (a) heart, 1% ; (b) 
“like”, 1% ; (c) star, 1% ; (d) corona, 1% ; (e) heart, 30% ; (f) “like”, 30% ; (g) star, 30% ; (h) corona, 30% .

5.3 Example 2: A Nonlinear Benchmark Problem 
The second example is a well-known benchmark mathematical problem [10, 11, 25, 26] that contains three 
nonlinear constraints. Because the third constraint is inactive, it is removed and the following problem formulation 
is considered in this paper. 

Min
d

d1+ d2

s.t. P[g1 =1 ( X1
2 X2 ) 20 > 0] Pf ; P[g2 =1 ( X1+ X2 5)2 30 ( X1 X2 12)2 120 > 0] Pf ; 0.1 d1, d2 10

(9)

In this problem, two various levels of allowable failure probabilities, i.e. Pf =1%  and 30% , are studied. EGTRA 
is used to solve the problem with N = 50000 . The initial design point is located at [5, 5]. The rest of the problem 
setting is the same as the first example. Figure 4 (a) to (d) show the optimal solutions for Pf =1%  while the 
subfigures (e) to (h) show the ones for Pf = 30% . EGTRA was capable of solving the given problems with only 
3M  function evaluations per iteration. However, the accuracy of EGTRA slightly dropped because linear 
approximations were utilized for the nonlinear constraints in Eq. (9), i.e. error increased up to around 6%. 

Figure 4. Solutions of example 2 in various distributions and allowable failure probabilities: (a) heart, 1% ; (b) 
“like”, 1% ; (c) star, 1% ; (d) corona, 1% ; (e) heart, 30% ; (f) “like”, 30% ; (g) star, 30% ; (h) corona, 30% .

6. Conclusions 

577

Leo
Rectangle



5

Some existing RBDO algorithms transformed the original random design space to the standard normal design 
space in order to perform the reliability analyses for the evaluation of failure probabilities. However, these 
reliability analyses cannot be properly executed when the transformation to the standard normal design space 
cannot be determined. A new RBDO algorithm, Ensemble of Gradient-based Transformed Reliability Analyses 
(EGTRA), was developed to solve design optimization problems with arbitrarily distributed uncertainties in the 
original design space. The arbitrarily distributed PDF was approximated by KDE and then transformed to a 
single-variate coordinate toward the constraint gradient direction. The entire reliability analysis is decomposed to 
multiple kernel reliability analyses in the gradient-based transformed design space and the results are merged 
together for the formulation of a linearly approximated probabilistic constraint function. Because each kernel 
reliability analysis is completed along the same gradient direction, the required function evaluation of each 
constraint per iteration is only 3. The numerical results showed the proposed method is capable of solving the 
problems with the generated design uncertainties with accurate estimations of reliabilities in the original design 
space.
The newly developed method does not need transformation to the standard normal design space and reliability 
analyses that require additional function evaluations. EGTRA is able to perform very accurate reliability analysis 
for linear RBDO problems and the accuracy reduces when the constraints are nonlinear. EGTRA is a method that 
requires information about the sampling points of the arbitrarily distributed random variables. Insufficient 
sampling points may lead to inaccurate estimations of PDF and failure probabilities. The performance of EGTRA 
will reduce when the sampling at the tail of the distribution is insufficient. This may happen when the amount of 
sampling points and the level of allowable failure probability are both very low. 
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ṁ
Tt,in

Pt,in

φ ψ ε
ξ ṁ

�C = [Cm, Cθ]
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1. Abstract 
Semi-monocoque construction currently followed for ribs with full-depth web in aircraft wings requires extensive 
elastic analysis to ensure adequate stiffness, strength, and stability against local buckling while reducing the 
weight. In this work, we address this problem by developing a modular design enabled by fewer components as 
compared to current design. As a result, the cost and complexity of manufacturing the components as well as the 
overall assembly reduce. Furthermore, the design process of the overall wing becomes computationally efficient. 
Optimality is achieved by topology and size optimization techniques. A systematic three-stage procedure for rib 
design for any given aircraft wing is developed and is demonstrated using the wing of a light transport aircraft. 

Keywords
Design optimization, Topology-Optimization, Wing ribs, Modular design. 

2. Introduction 
There are several successful examples of application of topology optimization in optimal aircraft structural design. 
Balabanov and Haftka [1] represented the internal structure of a wing as a truss and optimized the cross-sectional 
area of the ground structure of the interconnected truss elements. In the A380 project of Airbus Industries, 
topology optimization was used to obtain new and lighter component designs such as the inboard outer fixed 
leading-edge ribs and the fuselage door intercostals. This has contributed weight savings on the order of 1000 kg 
per aircraft [2]. The successful engineering practices of the topology optimization are due to intense research in 
this field [3-10]. Locatelli et al. [11] proposed a new design concept in wing-box design called “Sparibs” by using 
topology and sizing optimization techniques, instead of using the classic design concept of straight spars and ribs. 
Wang et al. [12] proposed a topology optimization method which is based on the subset simulation method used in 
reliability analysis on improving the computational efficiency. They demonstrated this technique in optimizing the 
wing leading edge ribs and were able reduce the weight of the rib by 18.4%. 

In this work, we propose a modular design of wing-ribs with fewer components than conventional 
semi-monocoque design (web reinforced with stiffeners), which is likely to lower the cost of manufacturing and 
assembly. Furthermore, the design process of the overall wing becomes computationally efficient. Optimality is 
achieved by topology and size optimisation techniques. A systematic three-stage procedure is developed and 
demonstrated on a typical light transport aircraft wing ribs. 

3. Optimization of wing ribs 
A typical Light transport aircraft (LTA) wing under consideration is of two-spar construction, with 23 rib stations 
per side of the wing. At each rib station, the rib is divided into three portions, viz., Nose rib, Inter spar (I/S) rib, and 
trailing edge rib. This paper deals with optimization of I/S ribs. A typical LTA wing is shown in Fig.1a and 
conventional semi-monocoque rib design is shown in Fig. 1b, in which the web is reinforced with vertical 
stiffeners to resist the loads acting on the rib and to avoid buckling. The optimization procedure is explained next. 

Figure 1a: Typical Light Transport Aircraft wing Figure 1b: Typical conventional semi-monocoque rib 
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2

4. Optimization Framework
The three stages in the proposed design procedure include two stages of optimization followed by modular design 
of the rib as shown in Fig. 2. Step 1 involves topology optimization of a few selected ribs where mean compliance 
is minimized subject to the volume constraint. As the loads and lengths of the ribs are proportional to the chord, the 
pattern repeatability of the internal structure was achieved by maintaining the same area-ratio between design and 
non-design areas for all the ribs. The non-design material region exist all along the periphery of the I/S ribs.

Step 2 involves size optimization of the ribs obtained through topology optimization done in the first step. 
The objective here is to minimize the mass subject to stress and buckling constraints. Each topology-optimized rib 
is thus improved by determining the cross-section dimensions of the beam segments in the rib.  

Step 3 is the modular design of the intermediate ribs. As the pattern repeatability is achieved through 
topology optimization, the internal members of the rib can be located proportionally as per the chord-length using 
non-dimensional analysis. Non-dimensional stiffness, stress, and other parameters [13] help design any 
intermediate rib with standard available beam segments by maintaining the area and the moment of inertia.  

Figure 2: Three-step optimization framework for rib design aircraft wings 

4.1 Topology optimization of wing ribs 
Topology optimization was carried out on a few arbitrarily selected I/S ribs; Rib no. 8,12, 16 and 19 as shown in 
Fig. 3.The objective function is to minimize the strain energy (SE) with the constraint on volume . This can be 
stated in the discretized finite element framework as follows: 

          (1) 
where u is the global displacement vector of size , k the global stiffness matrix , f the external load vector, V0
the initial volume, V the final volume, and  the i element’s density that indicates the presence or absence of the 
material in the corresponding element.. 

Topology optimization was carried out using commercial software Altair Optistruct. The ribs were analyzed 
as continuum structure using 2D finite elements CQUAD4 and CTRIA3. The aim of this step is to obtain optimum 
distribution of material and to achieve pattern repeatability in the rib geometry. The chord-wise load distribution 
was computed using panel code by the aerodynamic group at the National Aerospace Laboratories, Bengaluru [14] 
on the top and bottom wing surfaces for VD (Dive Speed) case at the selected rib locations shown in Fig. 4. As can 
be seen in the figure, the loads are proportional to the local chord. Portions of the rib at the top, bottom and sides 
are defined as non-design space to accommodate the stringer cut-outs and attachments to spars.  

With the rib loads and lengths being proportional to the local chord and by maintaining the same ratio 
between design space area (A_DS) and total rib area (A_Tot) for all the ribs as shown in Fig. 5, the topology 
optimization results are shown in Fig. 6. In this, the red colour indicates presence of the material and blue colour 
the void regions. It is evident that there is pattern repeatability in the rib structure which points to generalized rib 
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geometry shown in Fig. 7. The general rib geometry shown in Fig. 7 also indicates the dimensions required to 
construct any intermediate rib in the wing. In Fig. 7, “l1, 12, l3 ,l4 ,l5, l6” indicates the lengths of the inclined 
members and “ a, b, c, d, e, f, g, h” indicates the intersection points of the inclined members with top flange , 
bottom flange , front spar and rear spar, which are  measured from front spar top (Ft). These dimensions can be 
mentioned in terms of % chord in relation to the rib location (% span) as shown in Fig. 8. With this 
non-dimensional graph, it is possible to define geometry of any intermediate rib.  

Figure 3. Typical LTA wing with conventional Rib design 

Rib 8 Rib 12 

Rib 16 Rib 19 
Figure 6 : Topology optimization plots for Rib 8,12,16 and 19 

Figure 4: Chord wise load distribution 
Figure 5: Area Ratio  
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4.2. Size optimization of the wing ribs 
Step 2 involves size optimization of the topology optimized ribs for minimizing the mass (M) with stress ( max) and 
buckling constraints (Buckling factor, BF). A typical buckling constraint is a lower bound of 1.0 indicating that the 
structure is not to buckle under the given static load. Each topology optimized rib was subjected to size 
optimization to get thicknesses of various internal elements of the rib. This problem can be formulated as follows: 

    (2) 
Size optimization was carried out on ribs 8, 12, 16, and 19 using Altair Optistruct. With the optimum thickness 
values and corresponding widths of the various elements of the rib, area (A) and Moment of inertia (MI) values 
were computed for each element and plotted with respect to % span. Typical graphs are shown Figs. 9 and 10 for 
the bottom flange. By using these graphs, cross section of any intermediate rib can be defined, as explained next. 

Figure 9: Cross sectional area graph for bottom flange Figure 10: Moment of inertia  graph for bottom flange 

4.3. Modular design of intermediate ribs 
Step 3 is modular design of the intermediate ribs. As the pattern repeatability is achieved through topology 
optimization, internal structure of any intermediate rib can be obtained by using non-dimensional plot of rib 
geometry shown in Fig. 8. Cross sectional details obtained from the topology and size optimization process, it is 
possible to decide the cross section detail of any intermediate rib by selecting the standard available section by 
maintaining the area and moment of inertia values obtained from the optimization (Figs. 9, 10).

To demonstrate this process an intermediate rib 10 is considered. Its internal structures can be obtained from 
the Fig. 8 by locating the rib at its span wise location (39%). Once the rib internal structure is obtained, its cross 
sectional area can be decided by using Area and MI graphs. We can choose a suitable standard section which meets 
cross sectional requirements and local crippling criteria. In this case, we have selected a channel section to check 
the design adequacy. Linear static and buckling analysis were carried out using Altair Optistruct and the results are 
shown in Table 1. The geometry of rib 10 with modular design concept is shown Figs. 11 and 12. Fig. 12 shows the 
geometry of the rib with stringer cut-outs as per the practical design requirement.

Figure 7: Generalized Rib geometry  Figure 8: Non dimensional plot of Rib geometry  
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Figure 11: Modular design of rib 10 (without stringer 
cut-out)

Figure 12: Modular design of rib 10 (with  stringer 
cut-out)

To prove the efficiency of the modular design procedure, we have compared the results of modular design with the 
two-step optimization procedure and conventional rib design. The conventional rib design is shown in Fig.13, 
which contains full depth web, with lightening holes and stiffeners at regular interval to meet the buckling 
requirements. Size optimization was carried out on this rib with stress and buckling constraints and the results are 
shown in Table 1.
The rib was optimized using two-step optimization procedure comprising topology optimization followed by size 
optimization. The topology optimization result is shown in Fig. 14, where it can be seen that it is very much similar 
to the modular design obtained using Fig. 8. Next, size optimization was carried out to meet buckling and stress 
requirements whose results are shown in Table 1. 

Table 1: Results of Rib 10 Optimization 

4.4. Discussion 
Results of modular design, two-step optimization procedure, and conventional design are shown in Table 1. A rib 
designed with two-step optimization procedure is 30% lighter as compared to the conventional rib design for the 
same buckling factor. The modular rib design is 22% lighter as compared to conventional design with three times 
more buckling factor. The two step optimization process and the modular design concept proposed in this paper 
results in much lighter structure as compared to conventional design. Even though von Mises stress is more in the 
proposed modular design as compared to conventional design, the absolute value is much less than the maximum 
allowable stress of  265 MPa. The complete wing with modular rib design is shown in Fig. 15. 

Figure 13 : Conventional design of Rib 10 Figure 14 : Topology optimization plot for Rib 10 

Rib 10 Weight(Kg) Max Deflection 
(mm)

Stress
(MPa)

Buckling 
factor

Modular 
design

Without stringer cut-out 0.7 0.4 60 4 
With stringer cut-out 0.76 0.39 70.6 3.23 

Conventional rib design 0.974 0.42 45 1 
Two-step optimization (Without stringer 

cut-out)
0.68 0.35 63 1 
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6

Figure 15. Typical Light transport aircraft wing with modular Ribs 

5. Conclusion 
The modular rib design is “satisficing” in nature in that it satisfies all the design and manufacturing requirements 
but is only nearly optimal. However, the unique feature of this procedure is the modular design wherein the 
internal members of all the ribs are decided as per their position in the wing.  As a result, the design is amenable for 
economical manufacturing. Through an example, it is proved that the new design procedure is more efficient as 
compared to current practices in terms of weight and performance.  
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1. Abstract 
With the wide use of fiber-reinforced composite laminates in aerospace industry, structural instability is one of the 
most key aspects for flight vehicles. Hence, the research on structural instability mechanisms of composite 
laminates, especially buckling characteristics, is of great significance. In this paper, the buckling characteristics 
analysis and design optimization of the variable stiffness composite (VSC) panel with given geometry and material 
properties are studied. Pagano’s three layer constant stiffness laminate is investigated as the baseline case. The 
method of layered modeling and numerical structural analysis of VSC panel in the commercial package ABAQUS 
is described. The design optimization of the VSC panel aims to maximize the critical buckling load with the fiber 
orientation angles at the center and end as design variables, which is solved by the sequential quadratic 
programming method. It is found that with the same weight, the optimal critical buckling load of the designed VSC 
panel is increased up to 67.9% compared to the baseline laminate. To further verify the accuracy of the optimal 
design solution, based on the first von Karman equation, critical buckling load differential equation of a 
rectangular laminate is deduced, and the fiber orientation angle corresponding to the optimal critical buckling load 
is derived by theoretical analysis, which is compared with the optimal critical fiber angle by optimization. It is 
noticed that the two critical fiber angles show great agreement to each other. Therefore, the finite element analysis 
in conjunct with optimization method is proved to be accurate for solving buckling issues of VSC laminates, which 
thus could be used in further study of the performance of VSC laminates. It is concluded that, compared to the 
traditional fiber-reinforced composite laminates, the VSC laminates can be designed with more flexibility to 
achieve better load redistribution, resulting in great improvements of the structural performance. 
2. Key words: variable stiffness composites; buckling analysis; design optimization; finite element analysis. 

3. Introduction 
Research on application of new material with superior performance is always a hot topic in aerocraft structural 
design due to the high demand for lightweight structures. Fiber reinforced composite material has many 
advantages, such as high specific strength and modulus, designable performance and excellent integral forming 
capability, etc, which almost determines the structure performances of aerocraft. Application of fiber reinforced 
composite material to aerocraft structure can significantly reduce the weight, meanwhile improve the aerodynamic 
and flight performances [1].
In order to improve the structural performances and lower the cost during the life cycle, it is necessary to carry out 
design of composite material, of which one focus is to fully explore the directionality of composites and the 
designable capability of the structural performance. It is possible to take full advantage of the directionality by 
using variable stiffness composites (VSC)[2], in which the fiber can be steered in plane with the fiber angle as a 
function of space. The continuously changed fiber orientation results in the variation of stiffness at different 
locations, based on which the designers can adjust the distribution of internal load to improve the structural 
performance or reduce weight [3]. 
Gurdal and Olmedo [4,5] proposed a fiber placement method by changing the fiber orientation angle along the 
coordinate axis. They analyzed the in-plane and buckling response of variable stiffness composite panels by closed 
analytical and numerical methods. The VSC showed considerable improvements in load-carrying capabilities 
compared to traditional composite laminates. Gurdal and Tatting [6] studied the effects of stiffness variation on the 
in-plane and buckling response for variable stiffness composite panels. The curvilinear fiber paths for fiber-steered 
variable stiffness laminates were designed and optimized based on lamination parameters distribution by Setoodeh 
[7]. Tatting and Gurdal carried out the design and manufacture of tailored tow placed plates, in which the buckling 
characteristics were studied by both finite element analysis and experimental method [8,9]. Analysis and 
optimization of variable angle tow composite plates for pre-buckling [10], buckling [11] and post-buckling 
behavior [12] have been done with differential quadrature method by Raju and Wu. 
The structural instability is one of the important issues that impact the structural performance in the application of 
composite materials, causing structural deformation, decreased load-carrying capacity and even structural damage. 
Therefore, it is necessary to study the structural instability of composite laminates, such as buckling 
characteristics. In this paper, the buckling characteristics are designed and optimized for variable stiffness 
composite laminates, in which the fiber orientation angle linearly varies along the direction of the load. Structural 
analysis is done in the finite element software ABAQUS. Sequential quadratic programming algorithm (SQP) is 
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used to optimize the design. In the following, firstly the process of FEA modeling is described. Then theoretical 
analysis method for the fiber orientation angle corresponding to the critical buckling load is given. Furthermore the 
design problem for variable stiffness composite laminate is defined. Finally the results of optimization are 
presented.

4. FEA modeling of variable stiffness composite laminate 
Fibers in every single ply are straight for conventional composite laminates, which therefore can be designed only 
by changing the stacking sequence. However, fibers can be steered in plane to make the fiber orientation angle 
continuously vary with spacial location for variable stiffness composite laminates, which makes its stiffness as a 
function of spatial location. 
The scheme of the reference path of steered fiber proposed by Gurdal [2] is used in this paper. The fiber orientation 
angle linearly varies along the direction of loading, and function of fiber orientation angle of the reference path is 
as follows:  

1 0
0

2 T T
x x T

a
  (1) 

Eq.(1) is written as x k x bfor convenience, where 1 02( ) /k T T a  and 0b T . Then the reference path 
of curve fiber can be defined as: 

1 ln cos ln cos 0
2

1 ln cos ln cos 0
2

akx b b x
ky

akx b b x
k

  (2) 

Pagano’s three layer case [13] is studied as the reference case The panel is square with cross-ply [0/90/0] stacking 
sequence. Its side length is 50mma and thickness is 1mmh . The variable stiffness cases studied in this paper 
are also stacked in a cross-ply 0 1 0 1 0 190 | 90 | 90 | 90T T T T T T  sequence, where the function 

of fiber orientation angle is x k x b in the middle ply, and 90x k x b  in the top and bottom ply. 
The ABAQUS user subroutine ORIENT is employed to implement the different orientation to fibers within the 
plane of each ply in variable stiffness composite laminate. 8-nodec elements C3D8I with incompatible modes are 
used to establish FEA model for each single ply of laminates, respectively. The panel is simply supported at all the 
four sides, and it carries unidirectional compression load. The same carbon fiber/epoxy resin material with the 
reference case is used, and its performance parameters are listed in Table 1. The subscripts 1, 2 and 3 represent 
fiber direction, transverse direction and thickness direction respectively. 

Table 1: Performance parameters of carbon fiber/epoxy resin material 
E11[GPa] E22[GPa] E33[GPa] G12[GPa] G13[GPa] G23[GPa] 12 13 23

25 1.0 1.0 0.5 0.5 0.2 0.25 0.25 0.25 

5. Theoretical analysis of the critical buckling load 
The first von Karman equation for large deflections is as follows [16]: 

4 4 4 2 2 2

11 12 66 224 2 2 4 2 2) 2 2( 2 x xy y x y z
w w w w w w w wD D D D N N N p p p

x y x yx x y y x y
        (3) 

For laminate under unidirectional in-plane loading, the governing equation is obtained by setting 
0xy y x y zN N p p p :

4 4 4 2

11 12 66 224 2 2 4 22( 2 ) x
w w w wD D D D N

x x y y x
  (4) 

where w is the out-of-plane displacement of the laminate. 
The laminate is assumed to be simply supported all around its boundary and the only load is xN . Then the 
boundary conditions are: 

2 2

11 122 2 0x
w ww M D D

x y
 at x=0 and x= a;

2 2

12 222 2 0y
w ww M D D

x y
 at y=0 and y= a.

where a is the length of the square laminate. In order to satisfy all of the boundary conditions, the expression for w
is assumed as: 

sin sinmn
m x n yw A

a a
  (5) 
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Substituting Eq.(5) into Eq.(4), one has 
2 4 2 2 4 2 2

11 12 66 222( 2 )mn mn xA D m D D m n D n A a N m   (6) 

The out-of-plane displacement w is nonzero when buckling occurs, indicating that the cofficient mnA  is nonzero 
thus can be neglected in Eq.(6), 

2 4 2 2 4 2 2
11 12 66 222( 2 ) xD m D D m n D n a N m   (7) 

For convenience, the buckling load is denoted by o xN N , where the minus sign indicates compression. Then 
we get the buckling load as: 

2 4 2 2 4
11 12 66 22

2 2

2( 2 )
o

D m D D m n D n
N

a m
  (8) 

where m is the number of half-waves in the x direction and n is the number of half-waves in the y direction, which 
define the buckling mode. The buckling load oN is a function of m and n, and changes with m and n. The critical 
buckling load is the lowest value of Eq.(8), so it is necessary to minimize the right hand side of Eq.(8) with respect 
to m and n. Obviously, this minimum is achieved when n=1, which means that there is only one half-wave in the 
transverse direction of the applied loading. Substituting n=1 into Eq.(8), one obtains,

2
2 22

11 12 662 22( 2 )o
DN D m D D

a m
  (9) 

The buckling load of a simply supported square composite laminate under unidirectional compression load can be 
obtained through minimizing Eq.(9) with respect to m. The partial derivative with respect to m is 

2
22

112 3

2 0oN DD m
m a m

  (10) 

Since
2

2 0
a

, the buckling load is obtained when 22
11 3 0

DD m
m

. The bending stiffness matrix [D] is  

3

0 1 1 2 2 3 3 4 412 D D D D
hD V V V V   (11) 

and the corresponding laminate parameters are 
1

22
1 2 3 4 1

2

, , , 12 cos 2 , sin 2 , cos 4 , sin 4D D D DV V V V z x x x x dz   (12) 

Then the laminate parameters of the three layer cross-ply laminates in this paper are expressed as: 
1 1 1

2 2 26 6 2
1 1 1 1

2 6 6

2512 cos2 cos2 90 cos2 cos2
27DV z x dz z x dz z x dz x   (13) 

1 1 1
2 2 26 6 2

2 1 1 1
2 6 6

2512 sin 2 sin 2 90 sin 2 sin 2
27DV z x dz z x dz z x dz x  (14) 

1 1 1
2 2 26 6 2

3 1 1 1
2 6 6

12 cos4 cos4 90 cos4 cos4DV z x dz z x dz z x dz x   (15) 

1 1 1
2 2 26 6 2

4 1 1 1
2 6 6

12 sin 4 sin 4 90 sin 4 sin 4DV z x dz z x dz z x dz x   (16) 

Substituting these laminate parameters into Eq.(11), the cofficients of bending stiffness matrix are obtained as 
follows: 

3

11 1 2 3
25 cos2 cos4

12 27
hD U U x U x   (17) 

3

22 1 2 3
25 cos2 cos4

12 27
hD U U x U x   (18) 

Substituting 11D and 22D into Eq.(10), one has, 

1 2 3 1 2 33

25 1 25cos 2 cos 4 cos 2 cos 4 0
27 27

m U U x U x U U x U x
m

  (19) 

Substituting m (the number of half-waves in the x direction) into Eq.(19), the fiber orientation angle 
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x corresponding to the critical buckling state can be obtained. 

6. Design and optimization of variable stiffness composite laminate 
6.1 Optimization model and method 
The slope and initial value of the function of fiber orientation angle are considerd as the design object in the 
optimization model for the variable stiffness composite laminates, and the objective is to achieve the maximum 
buckling load. Because both the slope and initial value are determined by the fiber angle at the center point of the 
panel denoted as 0T and the fiber angle at the end of the panel denoted as 1T , 0T  and 1T are treated as design 
variables. The mathematical model of the optimization of variable stiffness composite laminate is defined as:  

1

2

max
s. t . 90 90

90 90

f X
X
X

  (20) 

where design variables 1X and are 0T  and 1T , respectively. The objective function f X  presents the 
eigenvalues of linear buckling analysis for the variable stiffness composite laminate. The constraint conditions are 
the ranges of the value of 0T  and 1T .
Since the design variables are continuous, the gradient-based sequential quadratic programming (SQP) is used in 
this optimization. Because SQP is inclined to converge to local minima near the initial value, optimization from 
multiple initial points are made in this paper in order to increase the possibility to get the optimal design.  
User subroutines are used to define the fiber orientation angle of the variable stiffness composite laminate. Thus it 
is necessary to simultaneously parameterize the FEA model and the user subroutines. For each iteration during the 
optimization process, the design variables are firstly transferred to the user subroutine, in which relevant 
parameters are modified, a new user subroutine is generated and then implements different fiber orientation angles 
to the FEA model to complete the buckling analysis. 

6.2 Optimization results 
A variable stiffness composite laminate is optimized using SQP in this paper. Table 2 shows the critical buckling 
load of constant stiffness composite (CSC) laminate, the initial and optimal variable stiffness composite (VSC) 
laminate respectively. Since fiber orientation angle of each single layer in CSC laminate is constant, the CSC 
laminate with the stacking sequence [0|0|90] is obtained by setting 0 1 0T T . It can be seen from Table 2 that 
there are two optimal design points as *

1X <35.1|50.6> and *
2X <-35.1|-50.6> in this optimization, with the same 

critical buckling load as 58.291MPa, which is improved up to 67.9% and 182.5% compared with that of the CSC 
reference case (34.717MPa) and the initial VSC baseline (20.632MPa). And the reason is that the functions of fiber 
orientation angles corresponding to these design points are as: 

*
1 1 1 1

50.6 35:
25

.1 35.1 0.62 35.1X x k x b x x   (21) 

*
2 2 2 2

50.6 35:
25

.1 35.1 0.62 35.1X x k x xb x   (22) 

It is obvious that 2 1x x , which means fiber orientation angles at all points in the fiber paths defined by 
these two functions will have the same magnitude but opposite direction, if their coordinate value at x-direction are 
the same. The VSC panel is square, so its structure is symmetric with respect to the x-axis. The structural 
performance are the same when fiber orientation angles have the same magnitude and opposite direction. Thus 
there definitely exist two optimal solutions with equal magnitude but opposite directions. 

Table 1: Optimization results of VSC laminate 
 CSC VSC initial Optimum *

1X  Optimum *
2X

X1 0 0 35.1 -35.1 
X2 0 15 50.6 -50.6 

f(X) 34.717 20.632 58.291 58.291 

The variation of critical buckling load of VSC laminates with the slope and initial value of the function of fiber 
orientation angle are further studied in the optimization process, shown in Figure 1. There are two maximum peaks 
and two second largest peaks with the double-saddle distribution.
It can be seen from the projected contour that both these two pairs of peaks are symmetric with respect to the Point 
(0, 0), which demonstrates that the critical buckling load is a binary function of the slope of the initial value, and 

595

Leo
Rectangle



5

also confirms the results of the above analysis that there are two optimal solutions with equal magnitude and 
opposite directions. When the initial value is kept constant, the critical buckling load varies with the slop similar to 
an M shape, and the maximum value in each group increases substantially with the increasement of the absolute 
value of the initial value and achieves maximum when the initial value is in the vicinity of ± 45 °. Meanwhile, 
when the slop is kept constant, the critical buckling load also varies with the initial value similar to an M shape, and 
the maximum value in each group increases substantially with the decreasement of the absolute value of the slop 
and achieves maximum when the slop is in the vicinity of ± 0.5. 

Figure 1: Variation of critical buckling load of VSC laminates with the slope and initial value of the function of 
fiber orientation angle 

(a) First buckling mode 

(b) Second buckling mode 
Figure 2: The buckling modes and displacement distribution of the optimal design 

Figure 2 shows the X-Y and X-Z views of the first and second buckling modes and displacement distribution of the 
optimal design *

1X <35.1|50.6>, which are significantly different from each order.  
It is noticed from Figure 2(a) that there is one half-wave in the x-direction in the first mode, which means m=1, and 
the maximum displacement occurs at the center area of the panel. Substituting m=1 into Eq.(19), one has, 

1 2 3 1 2 3 2
25 25 50cos 2 cos 4 cos 2 cos 4 cos 2 0
27 27 27

U U x U x U U x U x U x   (23) 

Since 2U is invariant determined by material characteristics and is a non-zero constant, it can be neglected from 
Eq.(23), then 

cos2 0x   (24) 

Then the theoretical fiber angle corresponding to the critical buckling load is obtained as 45x . The 
functions of the fiber orientation angle corresponding to the two optimal design points are respectively 

1 0.62 35.1x x  and 2 0.62 35.1xx . The maximum stresses of the first mode occurs in the central 
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region of the panel, and the corresponding range for fiber angle is [39 , 46.8 ]  approximately. Clearly, the 
result of the theoretical model locates within this range. It indicates that the finite element analysis method and 
design methodology used in this paper are reasonable and accurate. 

7. Conclusions
A variable stiffness composite laminate was optimized for maximum buckling load carrying capability. Its 
buckling characteristics were analyzed by both theoretical derivation and finite element analysis method. The 
optimal design under unidirectional compression loading was obtained, with the improvement up to 67.9% 
compared with the reference constant stiffness case.  
The buckling characteristics of variable stiffness composite laminates have close relationship with the initial value 
and the slope of the function of fiber orientation angle, with which the value of critical buckling load, the shape of 
buckling modes and the distribution of displacement have great variation. 
The fiber orientation angle of the optimal design shows great agreement with that of the theoretical model. It 
verifies the reasonability and accuracy of the combined solution of the finite element analysis method and design 
methodology, which can be used in future research of variable stiffness composite materials. 
Compared with constant stiffness composite laminates, variable stiffness composite materials with steered fibers 
have the advantage of high design flexibility. The reference fiber path can be designed according to specific 
mission requirements, in order to achieve redistribution of loads and thus improve the performance of whole 
structure.
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1. Abstract
Reliability-based design optimization (RBDO) is one of the methods considering the effect of uncertainties on the
design optimization. However, the probabilistic parameters of the random variables also have uncertainties due to
lack of sufficient information under actual situation, for example in case that the number of experiments is limited.
This study considers the uncertainty of the probabilistic parameter of the random variables for the RBDO. On this
proposed method, the distribution parameters are also considered random variables. Based on Bayesian statistics,
the confidence intervals of the parameters are estimated with high accuracy. Then, the confidence interval of the
reliability-based optimum design is also evaluated. That is, the accuracy of the obtained reliability-based optimum
design is evaluated through the interval estimation, when sufficient information is not available. Through numerical
examples, the validity of the proposed method is demonstrated.

2. Keywords: Parameter estimation, Bayesian statistics, Uncertainty, Reliability, Optimization

3. Introduction
Recently, the importance of the reliability is growing in the structural design requirements. The reliability-based
design optimization (RBDO) has been adopted to evaluate the design under the reliability constraints in terms of
random variables [1]. RBDO generally requires the probabilistic distribution parameters of random values for the
reliability evaluation. For example, the first order reliability method (FORM) converts the probabilistic distribution
of random variables into the standardized normal distribution.
However, for the actual design problem, the probabilistic parameters of random parameters are sometimes obtained
with insufficient accuracy due to the limited number of experiments. In that case, the distribution parameters such
as mean and the standard deviation also have uncertainties.
This study addresses to investigate the effect of the parameter uncertainties on the reliability-based optimization.
For the purpose, this study proposes the distribution parameter estimation method considering uncertainties due to
the lack of information. Then, the effect of the uncertainties on the RBDO is clarified as the confidence interval of
the reliability-based optimum design.
The probabilistic distribution parameter is estimated based on Bayesian statistics. Bayesian statistics is the subset
of the field of statistics and related to conditional probability [2]. This statistics is well known to be suited to
estimating statistical model and employed for calculating distribution of failure probability. Gunawan et al. [2]
proposed the method considering incomplete information uncertainties, which RBDO problem is converted to the
multiobjective problem whose Pareto solutions reflect to the trade-off between performance and confidences. Wang
et al. [3] presented the paradigm of the reliability prediction using evolving, insufficient information applying
Bayes’ theory. They showed that Bayesian statistics is useful tool for the distribution parameter estimation and
that Bayesian updating method, the tool of Bayes’ theory, makes the probabilistic distribution or the estimated
reliability sufficient accuracy. However, under the lack of the number of the sample data or information of the
random values, Bayesian updating does not bring the sufficient accuracy.
First in this study, the parameter estimation method is proposed under the cases of the lack of the information.
In the next section, the reliability-based design optimization is reviewed. Then, Bayesian statistics is reviewed in
Section 5.. The proposed method is described in Section 6.. The validity of the proposed method is illustrated
through simple numerical examples in Section 7.. Finally, the conclusions are remarked.

4. Reliability-based design optimization
The RBDO is generally formulated as follows:

Minimize : f (d) (1)
subject to : P[g j(d, X) ≤ 0] ≤ Φ(−β j) ( j = 1, · · · ,NC)

1
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where d = (d1, · · · , dND) and X = (x1, · · · , xNR) indicate the design variables and the random variables, respec-
tively. The random variable is assumed to have an independent Gaussian distribution for simplicity. The reliability
constraints indicate that the failure probabilities are lower than the upper limit, where gi(d, X) is the j-th limit state
function and β j is the target reliability index value corresponding failure mode. ND, NR and NC are the number
of the design variables, the random variables, and the reliability constraints, respectively.
As the RBDO algorithm, this study adopts the Modified-SLSV(Single-Loop-Single-Vector) method [4]. The orig-
inal SLSV method [5] converts the double-loop optimization loop of the RBDO into the single loop approach
by approximating the MPP (most probable point). The modified-SLSV method improves the convergency by
eliminating zigzagging iteration that will yield divergence of the optimum design searching.
At first, the MPP(most probable point) is described in X-space as follows:

x∗j = μ − β jσα
∗
j ( j = 1, · · · ,NC) (2)

α∗j =
σ j∇g j(μ, x∗j)∣∣∣∣σ∇g j(μ, x∗j)

∣∣∣∣′
( j = 1, · · · ,NC) (3)

where μ is the mean value of the random vector that is allocated as the design variables and σ is a diagonal matrix
whose diagonal element consists of the standard deviation of each random variable. α∗j denotes the normalized
gradient vector of the j-th limit state function evaluated at the MPP x∗j .
The reliability constraint is replaced into the deterministic constraints using Eq. (2) as follows:

g j(μ,μ − β jσα
∗
j) ≥ 0 (4)

where α∗j should be evaluated after obtaining the MPP x∗j .
On the SLSV method, the normalized gradient vector α∗j is approximated by the vector obtained at the previous
iteration as follows:

x(k+1) = μ(k+1) − β jσα
∗
j
(k) (5)

where the superscript (k) indicates the number of iteration. This strategy makes the RBDO computationally effi-
cient.
However, the searching sometimes fails to converge or lead to an inaccurate solution. In the Modified-SLSV
method, the sensitivity is replaced to improve the convergence by using the previous values as follows:

α(k) = α(k−2) + α(k−1) (k > 2) (6)

5. Bayesian statistics
On Bayes’ theory, the following conditional probability formulation is used.

P(A|B) =
P(B|A)P(A)

P(B)
(7)

where event A is considered as a cause of a result B. P(A) is called a prior probability that the cause A happens,
and P(B|A) is called a likelihood that the result B happens under the condition that the cause A happens. On the
other hand, P(A|B) is called a posterior probability that indicates the cause A happens under the condition that the
result B happens.
In employing for parameter estimation, event A convert to the distribution parameter θ, this is, the random variable
X is assumed to have distribution parameter θ. P(A) convert to π(θ) because θ is defined as a distributed continuous
function. Then, Eq. (7) is described as follows:

π(θ|B) ∝ f (B|θ)π(θ) (8)

Eq. (8) indicates that the product of prior distribution π(θ) and likelihood f (B|θ) is directly proportional to the
posterior distribution π(θ|B). However, it is difficult to evaluate the product, because it is usually defined as a
multiple integral form. Usually, a natural conjugate prior distribution or Markov chain Monte Carlo (MCMC)
methods are used to evaluate the product efficiently. This study adopts the natural conjugate prior distribution.
Then, Bayesian confidence interval is evaluated by the posterior distribution to use for interval estimation, that is,
θ fall in this interval with the probability of . ( is defined as 3σ=99.6% in this research. )

2
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Figure 1: Estimation of prior distribution Figure 2: Procedure of creating simulation data

6. Proposed method
6.1 Estimate prior distribution
This study assumes that we have ND data of the normally distributed random variable X, where the parameters μX
andσX are unknown. In order to estimate the unknown parameter, MD data of X are chosen among ND data without
repetition at first. This combination is called “data set” and the number of “data set” is denoted as Nset(= NDCMD ).
Each “data set” has its own estimated mean value and standard deviation, (μ1, · · · , μNset ) and (σ1, · · · , σNset ). From
Nset mean values and standard deviations, the prior estimation of the parameters are performed by using the maxi-
mum likelihood method. This procedure is shown in Fig. 1.
Under the assumption that the mean value and the standard deviation are also normally distributed, their distribution
parameters are evaluated as follows:

μ
pri
μ =

1
Nset

Nset∑
j=1
μ j, σ

pri
μ

2
=

1
Nset

Nset∑
j=1

(μ j − μμ)2 (9)

μ
pri
σ =

1
Nset

Nset∑
j=1
σ j, σ

pri
σ

2
=

1
Nset

Nset∑
j=1

(σ j − μσ)2 (10)

where μpri
(·) and σpri

(·)
2

are the estimated mean value and the variance of the distribution parameters.

6.2 Create simulation data
To estimate the distribution parameter of X, simulation data is created from the estimated prior distributions as
follows.

1. The distribution parameters μ∗ and σ∗ are generated from their estimated prior distribution.

2. The Nsd simulation data are created by Gaussian distribution N(μ∗,σ∗) and their mean value and standard
deviation are evaluated.

3. The procedure of 2. repeats Mset times. Then, we have Mset number of the mean value and the standard
deviation, which sets are called ”simulation data set”.

4. The “simulation data sets” are prepared Nsim sets.

This procedure is shown in Fig. 2.

6.3 Bayesian updating
Bayesian updating is formulated as follow:

μ
post
μ =

Aμpri
μ + Bμ̄sim

A + B
, σ

post
μ =

√
1

A + B
(11)

μ
post
σ =

Cμpri
σ + Dσ̄sim

C + D
σ

post
σ =

√
1

C + D
(12)

3
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where

A =
1

(σpri
μ )2
, B =

Mset

(σsim
μ )2
, C =

1
(σpri
σ )2
, D =

Mset

(σsim
σ )2

(13)

The posterior distribution parameters are evaluated from Mset data set.
It is important to confirm the estimated parameter for initial data of X. In this study, the log likelihood is evalu-
ated for each estimated parameter. When the random value X is assumed to follow Gaussian distribution, its log
likelihood is obtained as follows:

L =
Mset∑
j=1

⎛⎜⎜⎜⎜⎜⎝− (xsim
j − μpost)2

2(σpost)2 − 1
2

log
(
2π(σpost)2

)⎞⎟⎟⎟⎟⎟⎠ (14)

The estimated parameter with the maximum log likelihood is considered as fit for the initial data and substituted for
the prior distribution parameter to iterate this process. If the parameters are considered as converged, the estimation
value and the confidence interval of distribution parameters are evaluated by their distribution parameters. Using a
constant α, the interval is evaluared as (μ − ασ, μ + ασ) for the normal distribution.
The proposed method is summarized as follows.

Step1 MD data of X are chosen among ND data without repetition. (Making Nset number of data set )

Step2 Nset mean values and standard deviations, the prior estimation of the parameters are estimated by using the
maximum likelihood method.

Step3 Simulation data are created from the estimated prior distributions and Nsim simulation data set are
prepared. (see Fig. 2)

Step4 The posterior distribution parameters are evaluated by using Bayesian updating and the estimated parameter
with the maximum log likelihood is considered as fit for the initial data.

Step5 The posterior distribution parameter is substituted for the prior distribution parameter.

Step6 If the parameters are considered as converged, the estimation value and the confidence interval of distribu-
tion parameters are evaluated by their distribution parameters. Otherwise, go back to step 3 with increase
Nsd.

7. Numerical example
In this research, the property ND, MD, Nsim, Mset is fixed as 5, 3, 1000 and 5. Nsd is arithmetical progression as
5, 10, 15 each repetition. Due to the importance of the standard deviation in Modified-SLSV method, if the
estimated standard deviation is considered as converged, the iteration of parameter estimation is finished.

7.1 Mathematical problem
As the first example, the following two-dimensional mathematical RBDO problem [6] is considered:

Minimize : f (d) = d1 + d2 (15)
subject to : P(g j(x) ≤ 0) ≤ Φ(−βT

j ) ( j = 1, 2)

where : g1(x) =
x2

1x2

20
− 1 ≤ 0

g2(x) =
(x1 + x2 − 5)2

30
+

(x1 − x2 − 12)2

120
− 1 ≤ 0

0 ≤ d1 ≤ 10, 0 ≤ d2 ≤ 10

where the design variables are set as the mean value of the random variable, d = μ = (μ1, μ2)T , and the target
reliability is set as β j = 3.
The random variables x follow normal distribution and the standard deviation of x2 is known as σ2 = 0.3. Here,
the standard deviation of x1 is unknown and should be estimated from a limited number of the experimental data
shown in Table 1, where the data is made from the normal distributed random number N(0.0, 0.3) because the
original problem uses σ1 = 0.3 in [6]. The distribution parameters of x1 are evaluated by the proposed method at
first. Table 2 shows the sample values, the estimated value and the confidence interval of the estimated parameters.
In this problem, the number of iteration is 6 times.

4
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Table 1: Initial experimental data of x1 in problem 7.1
x1 0.1952 -0.02904 -0.3141 0.09188 0.6509

Table 2: Estimated parameter values in problem 7.1
Sample value Estimated mean value Estimated standard deviation Confidence interval(3σ)

μ 0.1190 0.1189 0.0101 0.0885 to 0.1494
σ 0.3232 0.3063 0.03672 0.2781 to 0.3539

Table 3: Formulation of crashworthiness problem
(a) Design variables, side constraints, and cov in random variables

Name Variable Lower bound Upper bound σ

Thickness of B-pillar inner (mm) d1 0.5 1.5 0.03
Thickness of B-pillar reinforcement (mm) d2 0.5 1.5 0.03
Thickness of floor side inner (mm) d3 0.5 1.5 0.03
Thickness of cross members (mm) d4 0.5 1.5 0.03
Thickness of door beam (mm) d5 0.5 1.5 0.03
Thickness of door belt line reinforcement (mm) d6 0.5 1.5 unknown
Thickness of roof rail (mm) d7 0.5 1.5 0.03
Material yield stress for B-pillar inner (GPa) d8 0.192 0.750 unknown
Material yield stress for floor side inner (GPa) d9 0.192 0.750 0.006

(b) Objective function and ten constraints
Name Upper limit Formulation

Weight (kg) f — 1.98 + 4.9d1 + 6.67d2 + 6.98d3 + 4.01d4 + 1.78
Abdomen load (kN) g1 1.0 1.163 − 0.3717x2 x4 − 0.484x3 x9
VC upper (m/s) g2 0.32 0.261 − 0.0159x1 x2 − 0.188x1 x8 − 0.019x2 x7 + 0.0144x3 x5

+0.08045x6 x9
VC middle (m/s) g3 0.32 0.214 + 0.00817x5 − 0.131x1 x8 − 0.0704x1 x9 + 0.031x2 x6

−0.018x2 x7 + 0.021x3 x8 + 0.121x3 x9 − 0.00364x5 x6
VC lower (m/s) g4 0.32 0.74 − 0.61x2 − 0.163x3 x8 − 0.18x7 x9 + 0.227x2 x2

Rib deflection upper (mm) g5 32.0 28.98 + 3.818x3 − 4.2x1 x2 + 6.63x6 x9 − 7.70x7 x8
Rib deflection middle (mm) g6 32.0 33.86 + 2.95x3 − 5.057x1 x2 − 11.0x2 x8 − 9.98x7 x8 + 22.0x8 x9
Rib deflection lower (mm) g7 32.0 46.36 − 9.9x2 − 12.9x1 x8
Public symphysis force (kN) g8 4.0 4.72 − 0.5x4 − 0.19x2 x3
B-Pillar velocity (m/s) g9 9.9 10.58 − 0.674x1 x2 − 1.95x2 x8
Door velocity g10 0.35 16.45 − 0.489d3d7 − 0.843d5d6

(c) Initial experimental data of x6 and X8 in problem 7.2
x6 0.9773 1.038 1.015 0.9737 0.9603
x8 0.2954 0.3076 0.3031 0.2947 0.2921

Then, the optimum design is obtained using the estimated parameters. The optimum solution consisting the con-
fidence interval of σ1 is shown in Fig. 3. The “real solution” indicates the optimal solution using σ1 = 0.3, that
is included in the confidence interval. The distribution and the confidence interval indicate the effect of the uncer-
tainty of σ1 from estimated from the proposed method on the optimal solution. It is also found that this result has
an sufficient estimation accuracy regardless that it is estimated only from five sample data.

7.2 Crashworthiness problem for side impact
As the second numerical example, the following crashworthiness problem for side impact [7] is adopted. The
formulation is summarized in Table 3 (a) and (b). In this paper, the mean value of each random variable is treated
as design variable d = μ and the target reliability is set as β j = 3. The random variable x have independent normal
distributions.
To simulate the lack of information, the standard deviations of x6 and x8 are set as unknown. Instead, it is deter-
mined from the simulation data from the random numbers following N(μ6, σ6) = N(1.0, 0.03) and N(μ8, σ8) =
N(0.3, 0.006), where the standard deviations are selected from the original problem [7]. The simulation data are
listed in Table 3 (c).
The estimated distribution parameters of x6 and x8 are listed in Table 4. The confidence interval of the optimal
solution obtained with the confidence interval of σ6 and σ8 are shown Fig. 4. In this problem, the number of
iteration for estimated σ6 and σ8 are 4 times and 5 times respectively. It is found that the estimated parameters
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Table 4: The estimated distribution parameter of X6 and X8
mean(estimated value) s. d. Confidence interval(3σ)

μ6 0.9929 0.0045 0.9794 to 1.0064
σ6 0.0290 0.0023 0.021 to 0.0359
μ8 0.2986 0.0016 0.2938 to 0.3034
σ8 0.0058 0.0008 0.0034 to 0.0082

Figure 3: Confidence interval of optimal solution in prob-
lem 7.1

Figure 4: Confidence interval of optimal solution in prob-
lem 7.2

have almost linear effect on the optimum design.

8. Conclusion
This paper proposes a parameter estimation method with lack of information and investigates the effect of the
information uncertainty on the optimum design of RBDO using the confidence interval.
The prior distribution are estimated using ’data set’ which are created by an initial experimental data. To evaluate
the lack of information, the simulation data by the prior distribution is used in this study. Then, using Bayesian
updating method, the accuracy of estimated value is improved. Through numerical examples, it is demonstrated
the validity of proposed method.
In the future, the proposed method will be used on actual design e.g., space structural system under the lack of
information to estimate the distribution parameters.
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1. Abstract  
In this paper reliability-based optimization (RBO) under both aleatory and epistemic uncertainties is studied based 
on combined probability and evidence theory. Traditionally the mixed uncertainty analysis is directly nested in 
optimization which is computationally prohibitive. To solve this problem, an effective way is to decompose the 
RBO problem into separate deterministic optimization and mixed uncertainty analysis sub-problems by sequential 
optimization and mixed uncertainty analysis (SOMUA) method, which are solved sequentially and alternately till 
convergence. SOMUA transforms the RBO problem into its quasi-equivalent deterministic formulation based on 
the inverse Most Probable Point (iMPP) of objective and constraint functions in each focal element. As the iMPP 
identification calculation is complex, the computational cost grows rapidly with the increase of focal elements. To 
improve the efficiency of SOMUA, in this paper it is proposed to use Taylor approximation to transform 
deterministic optimization. The efficacy of the proposed method is demonstrated with two test problems. It shows 
that the computational cost can be greatly reduced. However, the optimum may be very close to but not as good as 
that of SOMUA, which needs further research. 

2. Keywords: Reliability-based optimization, Aleatory uncertainty, Epistemic uncertainty, Sequential 
optimization, Taylor series approximation 

3. Introduction 
Due the existence of uncertainties in engineering, reliability-based optimization (RBO) is widely studied and 
applied to enhance the system reliability. Generally uncertainties include two categories: the aleatory type arising 
from the inherent system randomness and the epistemic type due to subjective lack of knowledge [1]. In this paper, 
combined probability and evidence theory is used to deal with the mixed uncertainties. Based on probability and 
evidence theory, the RBO problem under mixed uncertainties is formulated as  

_ obj obj

_ con con

find

min

s.t. Pl{ ( , , ) } 1
Pl{ , , } 1

f

f
L U

f

f f P R
g c P R

x

x

x p z
x p z

x x

  (1) 

where _ objfP  and  _ confP  are the target failure plausibility of the objective and constraint respectively. The design 
variable vector x  is subject to random uncertainties and its mean value is optimized. The parameter vector p  and 
z  are random and epistemic uncertainty vectors respectively. From this formulation it is clear that at each search 
point the failure plausibility of the objective and constraint must be analysed which needs conduct the expensive 
mixed uncertainty analysis. Thus if the mixed uncertainty analysis is directly nested in the optimization, the 
computational cost would be unaffordable. To alleviate this problem, Yao proposed a sequential optimization and 
mixed uncertainty analysis (SOMUA) method to decompose the RBO problem into separate deterministic 
optimization and mixed uncertainty analysis sub-problems, which are solved sequentially and alternately until 
convergence is achieved [2]. SOMUA firstly decomposes the total reliability target into each focal element of the 
epistemic uncertainties. Then in each focal element the uncertain objective and constraint are transformed into the 
quasi-equivalent deterministic formulations by calculating the inverse Most Probable Point (iMPP) corresponding 
to the target reliability target in this focal element. The iMPP search is based on optimization, which induces extra 
calculation and gets worse when the number of focal elements grows big. To solve this problem, it is proposed to 
use Taylor approximation to transform deterministic optimization. In each cycle, uncertainty analysis is conducted 
at the deterministic optimum to obtain its MPP in each focal element. Then the epistemic uncertainties are assigned 
the values of MPP under the assumption that the worst case will happen with these values. Since the epistemic 
uncertainties are fixed, only random uncertainties are left. Thus the uncertain distributions of the objective and 
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constraint functions are also random, which can be approximated by Taylor series approximation methods. As this 
method has the same structure as SOMUA to conduct the optimization and mixed uncertainty analysis sequentially, 
it is named as Taylor-SOMUA indicating that the deterministic transformation is based on Taylor series. The 
original SOMUA method in is denoted as iMPP-SOMUA emphasizing the iMPP based deterministic 
transformation.  The rest of the paper is structured as follows. First, the preliminaries of RBO and the SOMUA 
method are introduced. Then the proposed method Taylor-SOMUA is developed, followed by two test 
demonstrations. Finally some conclusion remarks are presented.

4. Preliminaries 
4.1. Reliability analysis under mixed uncertainties 
The probability space of a random uncertain vector 1 2[ ]

xNx x xx  is described by a triple ( , ,Pr)X , where 
X  is the universal set of all possible values of x ,  is a -algebra over X , and Pr  is a probability measure 

indicating the probability that the elements of  occur. The evidence space of an epistemic uncertain vector 
1 2( )

zNz z yz  is also described by a triple ( , , )C m , where C  contains all the possible distinct value set of z ,
m  is the basic probability assignment (BPA) function which maps C  to [0,1]  satisfying the following axioms: 
1) , ( ) 0A C m A ; 2) for the empty set , ( ) 0m ; 3) for all the A C , ( ) 1m A . The set A  which 
satisfies ( ) 0m A  is called a focal element. is the set of all the focal elements [3, 4].
For a system response function ( , )g x z  , its input includes both the aleatory uncertain vector x  defined by 

, ,Pr  and the epistemic uncertain vector z described by ( , , )C m with CN focal elements. Denote the 
failure region as {( , ) | ( , ) }F g ax z x z . The precise probability of failure is bounded by its lower limit called 
belief (Bel) and its up limit called plausibility (Pl) defined as [2, 5, 6]

1
Bel{( , ) } ( ) Bel {( , ) } ; Bel {( , ) } Pr{ | , ( , ) }

CN

k k k k
k

F m c F F c g ax z x z x z x z x z   (2) 

1
Pl{( , ) } ( ) Pl {( , ) } ; Pl {( , ) } Pr{ | , ( , ) }

CN

k k k k
k

F m c F F c g ax z x z x z x z x z   (3) 

Bel {( , ) }k Fx z  and Pl {( , ) }k Fx z  are called the sub-belief  and sub-plausibility of the focal element 
(1 )k Cc k N . The methods to calculate Bel {( , ) }k Fx z  and Pl {( , ) }k Fx z  are referred to [7] and [5].

4.2. The SOMUA method 
Denote the cycle number as 1i . Directly ignore all the uncertainties (the uncertain variables are assigned with 
fixed values) and run the deterministic optimization. Denote the optimum as ( )*i

x  and its objective response as 
( )*if . Analyze the plausibility of the objective failure and the constraint failure at the optimum ( )*i

x  under mixed 
uncertainties with the mixed uncertainty analysis method SLO-FORM-UUA [5]. For each focal element 

(1 )k Cc k N , the sub-plausibility ( )
objPl ( )i

k F  and ( )
conPl ( )i

k F  can be first calculated with the MPP 
( )* ( )* ( )*

_ MPP_obj _ MPP_obj _ MPP_obj[ , , ]i i i
k k kx p z  and ( )* ( )* ( )*

_ MPP_con _ MPP_con _ MPP_con[ , , ]i i i
k k kx p z . Then the total failure plausibility ( )

objPl ( )i F

and ( )
conPl ( )i F  can be calculated with (3). Calculate the target sub-plausibility 

( 1)

_ objPl ( )
i

k T F  and 
( 1)

_ conPl ( )
i

k T F  of the 
objective failure and the constraint failure for each focal element (1 )k Cc k N  by  

( 1) ( ) ( )
_ obj obj objPl ( ) Pl ( ) Pl

i i i
k T kF F  and 

( 1) ( ) ( )
_ con con conPl ( ) Pl ( ) Pl

i i i
k T kF F  where ( ) ( )

obj obj _ objPl =Pl ( )i i
fF P  and 

( ) ( )
con con _ conPl =Pl ( )i i

fF P . Identify the corresponding inverse MPP of ( )*i
x , which are denoted as 

( )* ( )* ( )*
_ iMPP_obj _ iMPP_obj _ iMPP_obj[ , , ]i i i

k k kx p z  and ( )* ( )* ( )*
_ iMPP_con _ iMPP_con _ iMPP_con[ , , ]i i i

k k kx p z  for the objective and constraint in k th
focal element respectively.  Then the deterministic optimization problem for the 1i th cycle can be formulated as 

( 1)

( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( )* ( )*
_ obj _ iMPP_obj _ iMPP_obj1

( 1) ( 1)

( 1) ( 1) ( 1) ( 1) ( )*
_ con _ iMPP_con

find

min max ( ), ( ) , ,

s.t. ( ) , 1

( ) , ,

C

i

i i i i i i i i i
k k k k kk N

i i
k C

i i i i i
k k k

f f f f

g c k N

g g

x

x x x

x

x x

s p z

s p ( )*
_ iMPP_con

( 1) ( )* ( )* ( 1) ( )* ( )*
_ obj _ iMPP_obj _ con _ iMPP_con

( 1)

,

i
k

i i i i i i
k k k k
L i U

x x

x

z

s x s x
x x

  (4) 
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3

Increase the cycle number 1i i  and conduct the deterministic optimization of the next cycle. Repeat the 
preceding steps until convergence is achieved. For more detailed introduction of SOMUA, please refer to [2].

5. Taylor-SOMUA 
5.1. The transformation of deterministic objective and constraint 
At the optimum of the i th deterministic optimization, conduct the mixed uncertainty analysis and obtain the MPP 

( )* ( )* ( )*
_ MPP_con _ MPP_con _ MPP_con[ , , ]i i i

k k kx p z . Assign the fixed value ( )*
_ MPP_con

i
kz  to the epistemic uncertainty vector z  under 

assumption that the failure will occur with bigger probability when the epistemic uncertainty vector is at this value. 
Then only random uncertain vectors x  and p  are left. Accordingly the constraint function response 

( )*
_ MPP_con( , , )i

kg x p z  is also random. Denote ( )*
_ _ MPP_con( , ) ( , , )i

k rand kg gx p x p z . Assume the distribution of _k randg
follows the normal distribution, then its mean and standard deviation can be approximated based on the first order 
Taylor series expansion as follows: 

_ _

2 2
_ _2 2

_
1 1

( ) ( , )

( , ) ( , )
( )

X P

i i

k rand k rand

n n
k rand k rand

k rand x p
i ii i

g g

g g
g

x p

x p

x p x p   (5) 

According to the target failure plausibility 
( 1) ( 1)1
_ _ con _ con= (Pl ( ))
i i

k T k T F , where  is standard normal cumulative 

distribution function and generally 
( 1)

_ _ con 0
i

k T  as 
( 1)

_ conPl ( ) 0.5
i

k T F , reliability constraint can be formulated as  
( 1)

_ _ _ con _( ( , )) ( ( , ))
i

k rand k T k randg g cx p x p   (6) 
Actually _ ( , )k randg x p  may not be normally distributed, thus it should be verified whether the normal distribution 
assumption is rational and the accuracy of approximation formulation (6) is within acceptable level. Denote 

( ) ( )1
_ con con= (Pl ( ))
i i

k k F . Substitute ( )* ( )*
_ MPP_con _ MPP_con[ , ]i i

k kx p  into (5) and obtain 
( ) *
_ con _( )
i

k k randg  and 
( ) *
_ con _( )
i

k k randg .

If _k randg  follows normal distribution, then the equation 
( ) ( ) ( )* *
_ con _ _ con _ con _( ) ( )
i i i

k k rand k k k randg g c  should exist. 

Thus denote 
( ) ( ) ( )* *
_ con _ _ con _ con _= ( ) ( )
i i i

k k rand k k k randg g c . If  is smaller than the predefined threshold, then the 

normal distribution assumption is rational. Otherwise it is suggested to revise the standard deviation as 
( 1) ( )* ( )

_ con _ _ con _ _ con( ) ( ) /
i i i

k k rand k k rand kg c g   (7) 

And use this value instead of the one estimated in (5) for constraint transformation in (6). The transformation of the 
objective function is the same as the aforementioned procedure, and the deterministic objective is formulated as 

( 1)

( )*
_ MPP_obj

2 2( )* ( )*
_ MPP_obj _ MPP_obj1 1 2 2

_ obj
1 1

( , , )

min max ( , , ) ( , , )
(Pl ( ))

X Pi
C

i i

i
k

i in n
k kk N

k T x P
i ii i

f

f f f
F

x p

x p z

x p z x p z   (8) 

5.2. The Taylor-SOMUA algorithm 
To sum up, the detailed procedure of the Taylor-SOMUA algorithm is as follows: 
Step 1: Denote 1i . Directly ignore all the uncertainties and run the deterministic optimization. 
Step 2: For the i th cycle solve the deterministic optimization problem. Denote the optimum as ( )*i

X  and the 

objective value as ( )*if .
Step 3: Conduct uncertainty analysis at ( )*i

X with SLO-FORM-UUA method [5]. For each focal element 
(1 )k Cc k N , calculate the sub-plausibility ( )

objPl ( )i
k F  and ( )

conPl ( )i
k F  with the MPP 

( )* ( )* ( )*
_ MPP_obj _ MPP_obj _ MPP_obj[ , , ]i i i

k k kx p z  and ( )* ( )* ( )*
_ MPP_con _ MPP_con _ MPP_con[ , , ]i i i

k k kx p z . Denote the objective failure plausibility as 
( )

objPl ( )i F  and constraint failure plausibility as ( )
conPl ( )i F . If all the failure plausibility satisfies the reliability 

requirement, go to Step 5. Otherwise go to next step.  
Step 4: Fix the value of epistemic uncertainty vector as ( )*

_ MPP_con
i

kz  or ( )*
_ MPP_obj

i
kz  and substitute it into the constraint 

and objective function. Denote ( )*
_ _ MPP_con( , ) ( , , )i

k rand kg gx p x p z  and  ( )*
_ _ MPP_obj( , ) ( , , )i

k rand kf fx p x p z . Denote 
( ) ( )1
_ con con= (Pl ( ))
i i

k k F  and 
( ) ( )1
_ obj obj= (Pl ( ))
i i

k k F . Denote  
( ) ( ) ( ) ( )* *
_ con _ con _ _ con _ con _= ( ) ( )
i i i i

k k k rand k k k randg g c
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and
( ) ( ) ( ) ( )* * ( )*
_ obj _ obj _ _ obj _ obj _= ( ) ( )
i i i i i

k k k rand k k k randf f f .  Then the deterministic optimization problem of 1i th

cycle is formulated as 

( 1) ( 1)

( ) ( 1) ( )

( 1) ( 1)

( 1) ( 1) ( 1)

1

( 1) ( 1) ( 1) ( )* 1
_ MPP_obj _ obj _ obj _

*
_ obj 0 _ obj _ _ obj

find ( )

min max ( )

( ) ( , , ) (Pl ( )) ( )

if , ( ) (

C

i i

i i i

i L i U

i i i
kk N

i i i i
k k k T k k rand

k k k rand k

f f

f f F f

f c f

x x

x

x x p

x x

z
( )

( ) ( 1)

_ obj

2 2( )* ( )*
_ MPP_obj _ MPP_obj2 2

_ obj 0 _ obj _
1 1

( 1) ( 1)

( 1) ( 1) ( 1)
_ M

) /

( , , ) ( , , )
if , ( )

s.t. ( ) , 1

( ) ( , ,

i

X Pi i

i i

J k

i in n
k k

k k k rand x P
i ii i

i i
k C

i i i
k k

f f
f

X P

g c k N

g g
x

x x p

x p z x p z

z
( 1) ( 1)

( ) ( 1) ( ) ( )

( ) ( 1)

( )* 1
PP_con _ con _ con _

*
_ con 0 _ con _ _ con _ _ con

2( )*
_ MPP_con 2

_ con 0 _ con _
1

) (Pl ( )) ( )

if , ( ) ( ) /

( , , )
if , ( )

i i

i i i i

Xi i

i

i
k T k k rand

k k k rand k k rand k

in
k

k k k rand x
i i

F g

g c g

g
g

x
x p z

2( )*
_ MPP_con 2

1

( , , )P

i

in
k

P
i i

g
p

x p z

  (9) 

where the symbol k  in the subscript represents the focal element index. Denote 1i i  and go to Step 2. 
Step 5: Check convergence. If the relative change between the optimums of two consecutive cycles is smaller than 
the threshold, end the algorithm. Otherwise go to Step 4. 

6. Tests 
6.1. Test 1: a numerical problem 

2

find

min

s.t. Pl{ ( , , ) } 0.1, ( , , ) 2.5
Pl{ , , 0} 0.01, ( , , ) ( 0.7) , 3 2

x

x

f

f x p z f f x p z x p z
g x p z g x p z x z p

  (10) 

The optimization variable x  is subject to normal distribution ( ,1.0)xN . The uncertain parameter p  follows 
normal distribution (2.0,1.0)N . The BPA of the epistemic uncertainty z  is as follows: 

1 1 2 2[ 1,0), ( ) 0.5; [0,1], ( ) 0.5c m c c m c   (11) 
The optimization result of Taylor-SOMUA is compared with that of iMPP-SOMUA and the traditional nested 
method, which are presented in Table 1. The convergence history is depicted in Figure 1. All of the three methods 
obtain optimization designs which satisfy reliability requirements. It can be observed that the optimum of 
Taylor-SOMUA is slightly bigger than that of other two methods, but its computational cost is the smallest, which 
proves its efficacy in balancing the computation cost and optimization effect.  
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Figure 1: The optimization convergence history of Test 1 
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Table 1: The optimization results of Test 1 

 iMPP-SOMUA Taylor-SOMUA Traditional nested method
x -2.60076 -2.70490 -2.60073 

conPl( )F 0.00998 0.00956 0.01001 
F 4.93895 5.02799 4.93891 

objPl( )F 0.09994 0.09856 0.09997 
Cycle number 9 9 1 

Total number of function calls 8262 7985 169724 
Number of function calls used for 

deterministic transformation 780 268 -- 

6.2. Test 2: The Golinski’s  speed reducer design optimization problem 

1 2 4 5 6 73

2 2
1 2 3 3

2 2 3 3 2 2
1 6 7 6 7 4 6 5 7

2
1 1 2 3 2

find : [ ]

min:

s. t. Pl{ } 10%, Pl{ 0} 1%, 1 11
( ) 0.7854 (3.3333 14.9334 43.0934)

1.5079 ( )+7.477(x ) 0.7854( )
: 27.0 / ( ) 1 0, : 397.5

T
x x x x x x

i

x

f

f f g i
f x x x x

x x x x x x x x
g x x x g

x

x

2 2 3 4
1 2 3 3 4 2 3 6

3 4
4 5 2 3 7 5 1 1 6 2 2

7 2 3 8 1 2 9 1 2
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2

1 4
1

2 3

/ ( ) 1 0, :1.93 / ( ) 1 0
:1.93 / ( ) 1 0, : / 1100 0, : / 850 0
: 40.0 0, : 5.0 / , : / 12.0
: (1.5 1.9) / 1 0, : (1.1 1.9) / 1 0

x x x g x x x x
g x x x x g A B g A B
g x x g x x g x x
g x x g x x

a x
A

x x

1 2 4

5 6 7

0.5 0.52
6 3 6 31 5

2 1 3 6 2 4 2 3 7
2 3

3

10 , , 10 ,

2.6 3.6,0.7 0.8,17 28,7.3 8.3

7.3 8.3,2.9 3.9,5.0 5.5
x x x

x x x

a x
a B a x A a B a x

x x

x

  (12) 

The optimization variables except 3x  are random. The mean values are optimized and the standard deviations are 
[21um, 1um, 30um, 30um, 21um, 30um] for 1 2 4 5 6 7[ ]x x x x x x  respectively.  For the four epistemic uncertainties 

1a , 2a , 3a , and 4a , one interval is considered for each uncertainty as follows:  

1 2 3 4[740.0,750.0], [16.5,17.5], [0.09,0.11], [157,158]a a a a   (13) 
The optimization results of Taylor-SOMUA and iMPP-SOMUA are presented in Table 2. The convergence 
history of Taylor-SOMUA is depicted in Figure 2. The optimum of Taylor-SOMUA is slightly bigger than that of 
iMPP-SOMUA, but its computational cost is much less than iMPP-SOMUA, which proves its efficiency. 
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Figure 2: The optimization convergence history of Test 2 
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Table 2: The optimization results of Test 2 

 Deterministic optimum Taylor-SOMUA optimum iMPP-SOMUA optimum

Design variables 3.5, 0.7, 17, 7.3, 
7.7153, 3.3502, 5.2867

3.50502, 0.7, 7.3, 7.94452, 
3.49492, 5.48559 

3.5050, 0.7, 17, 7.3, 
7.9348, 3.4949, 5.4856

Objective 2994.355 3174.334 3174.108 

Constraints 

Pl{f >F} 0.5 0.1 0.1 
Pl{g5>0} 1 0.01 0.01 
Pl{g6>0} 1 0.01 0.01 
Pl{g8>0} 0.5 0.01 0.01 
Pl{g11>0} 0.5 0 0 

Cycle number -- 6 5 
Total number of function calls -- 875 3290 
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8. Conclusions 
In this paper, the RBO method under mixed uncertainties is studied based on sequential optimization and mixed 
uncertainty analysis method. To alleviate the computational problem of the original SOMUA method which needs 
iMPP to transform the deterministic optimization formulation, it is proposed to use Taylor approximation to 
transform the deterministic objective and constraint in this paper. The efficacy of the proposed method is 
demonstrated with two test problems. It shows that the computational cost can be greatly reduced. However, the 
optimum may be very close to but not as good as that of iMPP-SOMUA, which proves the efficacy of the proposed 
method in balancing the computational efficiency and optimization effect. However, the applicability of this 
method in highly nonlinear optimization problems still needs further studies.  
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1. Abstract
There are a lot of efficient methods in surrogate optimization. Convolute RBF is the one of them, and we have 
examined its effectiveness for years. However, in most case, if the number of design variables raise and/or the 
searching range extended, they have some problems in approximating functions both in local accuracy and global 
trends. They have the same reason of sparseness of given data with respect to its searching range, and which 
happens by the nature of large scale optimization. In this study, zooming technique in approximation is proposed. 
When we have a certain amount of data, we can divide given datum into some parts and restrict its searching range 
to some small area. Then in each part, we can achieve more accuracy for local approximation. Moreover, if we can 
restrict searching range smaller, we have more possibilities to achieve global solution within given searching range. 
Besides, we can have local optima for each part, which can be candidates for true global solution in the future. In 
this paper, we examined effectiveness of the method through numerical example. 
2. Keywords: Surrogate Optimization, Convolute RBF, Data Distribution 

3. Introduction 
There are a lot of excellent studies on Surrogate Optimization. Kashiwamura, Shiratori and Yu had published 
response surface method by experimental design [1], in 1998. Todoroki and Ishikawa used D-Optimality in data 
distributions [2]. And Myers, Montgomery and Aderson-Cook’s book[3] was one of the most contributions in this 
area. They are all based on quadratic form. Well distribution of initial data for its approximation form. As for 
Meta-Modeling, Spline[4], Kriking[5], RBF network[6] and SVR[7] have been widely used to have a better 
approximations rather than quadratic form. Among all these studies, EGO[8] is one of the best contribution that it 
add strategy for global optimization especially in sampling of new data points. 
I have proposed parameter optimization in setting RBF[9], recommendation function for new data points[10], 
convolution of RBF[11,12], data distribution method, basis distribution method [13] and so on to have better 
efficiency in the past. 
In surrogate optimization, we already have amount of datum. Which means we can scope approximation around 
some data points; most likely the best solution data. When we can zoom the searching range, we may have the 
following advantages: 1) as the searching range shrinks, it makes easier to find make better approximation, 2) it 
makes easier to optimize surrogate function, and so on. 
In this paper, we are going to propose the method and examined its effectiveness through numerical example. 

4. Convolute RBF 

4.1. RBF networks
When we think about approximation of function y(x) by linear summation of basis functions hi(x), approximate 
function f(x) can be expressed as follow. 

=

=
m

i
iihwf

1
)()( xx          (1) 

In Eq.(1) we assume that we have m basis functions. When we have p teaching data, we can calculate energy of 
RBF as follow 

( )
==

+=
m

i
ii

p

j
jj wfyE

1

2
2

1
)()( xx      (2) 

Learning for RBF means trying to minimize energy in Eq.(2) with respect to weights of wj. Thus, we can have final 
solutions as follows. 

yw THA 1=           (3) 
Where 

610

Leo
Rectangle



2

=

=

+=

m

pmpp

m

m

T

hhh

hhh
hhh

H

HHA

00
0

0
00

)()()(

)()()(
)()()(

)(

2

1

21

22221

11211

L

OM

M

L

L

MOLM

L

L

xxx

xxx
xxx               

4.2. Convolute RBF 
As a nature of RBF, it does not go through teaching data of y (xi). However, average of error that is given from y(x)
and yapp(x) is almost always close to zero. Thus, we can approximate these errors again and again until we satisfy 
with the error. Thus convolute RBF (Arakawa 2007)can be expressed as follow 

=

+=
1

)()()(
l

lapp fby xxx       (6) 

Example of convolute RBF can be seen in Fig.1. 
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Fig. 1 Convolute RBF 

4.3. Data Distribution 
For better approximation for over all region, we would like to distribute initial data as equal as possible. For that 
purpose, we use 2-norm as following steps. Assume we would like to have m data. 

1) Distribute m x M candidate data randomly. 
2) Choose data #1 which is close to average of all m x M data. 
3) Choose data #2 that has maximum distance from data #1. (Currently, we have 2 decided data) 
4) Find candidate that has maximum 2-norm. 

2-norm=minimum distance + second minimum distance 
 But, if minimum distance=0 then, 2-norm=0. 
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Figure 2 shows illustration of this method. At the beginning, we choose #1 as closest one to average. Then, we 
choose #2, that has maximum distance from #1. Then, #3 is chosen by calculating maximizing 2-norm between 
#1 and #2.

Fig. 2 Illustration of 2-norm distribution 

4.4 Selection of Basis Center 
For ith convolution, estimate errors at teaching data points for i-1th results. We are going to approximate these 
errors.

1) Find teaching data point that has maximum absolute error. (xmax) Archive sign of error at this point as 
signmax.

2) Find closest candidate of basis function to xmax. (cclo)
3) Center of basis function is given by following 

cloj cxc )1(max +=     (7) 

Where,  is 0 at the first convolution and 1 at the final convolution. 
4) Give radius according to the following 

10/)min(max iikij ratior ×=    (8) 

5) Count data points within the radius. If there are more than minimum request go to 6), Otherwise enlarge 
radius by following 

6) Count the number of data that has same sign with signmax. If its ratio is higher than given ratio then learn 
RBF and estimate errors and go to 1) until it becomes number of basis function for accuracy. Otherwise go 
to 7) 

7) Find data that has opposite sign and farther distance from center of basis function cj, as xfar. Calculate 
maximum value of the following 

)min/(maxmax ,max iijiifari
cxt =

If tmax is given by imax variable, then change radius of imax to 

maxmax,max jiifari cxr =

Then go to 6). If we cannot satisfy both condition simultaneously for several times, we will quit there and 
learn RBF and go to next one. 

4.6 Flow of Surrogate Optimization 
Figure 3 shows the flow chart of the surrogate Optimization. 
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Fig. 3 Flow Chart of Surrogate Optimization 

5. Prosed Method
When the number of design variables increase and/or searching range for each design variables expanded, it is 
sometimes difficult to obtain global optimization within a small number of function calls. Even in those cases, as a 
nature of surrogate optimization, we can get close to global optimization relatively in a small number of function 
calls. From there on, we need to repeat a number of iterations to find the solutions. One of the ways to get rid of 
these situations is to zoom the searching range with existence information. In this study, we propose to shrink the 
searching range close to the best data when it gets some amount of datum. Figure 4 shows the flow of the proposed 
method. 

Fig.4 Flow Chart of the proposed method 

6. Numerical Example 
We use a famous pressure vessel problem as an example. Table 1 shows comparison of the results in some methods. 
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As this problem is mixed variable problem, so it is very complicated problem. In GRGAs, it needs more than 
10,000 function calls to obtain final results, and also it needs more than 6000 function calls to get close to global 
optima.  

Table 1 Comparison of the results of Pressure Vessel Problem 

Sandgren Qian Kannan Lin Hsu Lewis Arakawa
Penalty GA ALM SA GA RS+NLP ARGA
1990 1993 1994 1992 1995 1996 1997

R    m 1.212 1.481 1.481 N/A 1.316 0.985 0.986
L    m 2.990 1.132 1.198 N/A 2.587 5.672 5.626

Ts  cm 2.858 2.858 2.858 N/A 2.540 1.905 1.905
Th  cm 1.588 1.588 1.588 N/A 1.270 0.953 0.953

g1 0.840 1.000 1.000 N/A 1.000 0.997 1.000
g2 0.747 0.890 0.890 N/A 0.989 0.986 1.000
g3 0.445 0.186 0.182 N/A 0.424 0.938 0.922
g4 1.000 1.000 1.000 N/A 0.831 0.930 1.000

f   $ 8129.80 7238.83 7198.20 7197.70 7021.67 5980.95 5850.38

Table 2 was the results that we had in the previous study[12] . Correlation means that we have added 10 new data 
after “Cut 5900”, and it is the average of correlation of actual value and RBF outputs for all functions. Indeed, if we 
add only one optimum solution, we need more than 300~500 function calls to cut 5900 and still keep constraints. 
Thus, we can safely say that recommendation function and multi-adding points really works better. Table 3 shows 
the results that we have obtained by using the proposed method. In each case, starting from 50 data, and they are 
the same compared with the results in Table 2.[13] 

Table 2 Results of the previous method 

We start from the same Initial data with Table 2. However, we add 3 datum for optimization in each case, and add 
3 for recommendation function and add 3 for minimization of existence. And we zoomed after we had more than 
40 datum at least. Which means, we zoomed after we had more than 80, 120. Table 3 shows the results of the 
proposed method. In this case, zooming started after we came close to global solutions, so that we could not see the 
effect of zooming to find global solutions. However, we can still see effectiveness in the number of function calls, 
and also its accuracy. 

Table 3 Results of the proposed method 

7. Conclusion 
In this paper, we propose zooming of searching range for surrogate optimization. As surrogate optimization has a 
number of datum before we are going to approximate functions. Thus, we can select the best data, and also we can 
gather nearest datum around the best data. With these datum, we can zoom searching range. It makes 
approximation of global optima much easier to approximate precisely, and also it makes optimization much easier 
to find the global solution. In this paper, we have shown the effectiveness of the method through numerical 
example.
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1. Abstract  
A design concept is proposed called 'Data-inspired Reliability Design', where measured data are aggressively used 
to improve the accuracy of structural reliability design, and surrogate models suitable for this design concept are 
investigated. Since the amount of measured data is limited due to the cost of sensors, the structural responses that 
are not measured should be predicted using the measured data. To best use the measured data, the hybrid surrogate 
models generated using both the measured data and simulation results are applied to predict structural responses in 
this study. For the hybrid models, the discrepancy between the measured data and simulation results is 
approximated using response surface methodology. The Gauss process model and an artificial neural network 
were used as the response surface, and the suitability of the response surfaces were checked for use as virtual 
sensors. To validate the hybrid surrogate models, the structural responses of a welded structure were predicted 
using both the measured responses and those analyzed using a simulation. As a result, the predicted responses 
agreed well with the measured ones. It can therefore be concluded that using the hybrid surrogate models is one 
way to predict structural responses instead of using sensors in the proposed design concept. 
2. Keywords: Virtual sensor, Surrogate model, Gauss process model, Neural networks, Data-inspired design 

3. Introduction 
Today, pieces of infrastructure include many sensors for collecting operational and environmental data. The 
collected data are then used, for example, to control infrastructure machinery more efficiently, to determine the 
maintenance interval of parts appropriately, and to design more reliable machinery. As the number of sensors 
increases, we can gain more benefits from the collected data, because the amount of information obtained from the 
data increases. On the other hand, the increase in the number of sensors raises the initial cost of machinery. It is 
therefore better to obtain much information about operational condition and environment with the fewest sensors. 
To increase the amount of information without increasing the number of sensors, the surrogate model that predicts 
responses to be measured can be used as a virtual sensor. 
Although the surrogate model should be accurate enough to be used as a virtual sensor, an accurate surrogate 
model is difficult to generate with few sensor outputs. To overcome this difficulty, we can employ the method for 
generating a surrogate model by using both measured outputs and simulation results. According to this hybrid 
modelling method, the discrepancy between real output and simulated output is explicitly included in the model of 
target output [1][2][3], so accordingly the target out is predicted by adding the discrepancy to the simulation result. 
The discrepancy is usually approximated with the Gauss process (GP) model [4], which is a response surface 
model, hence the parameters in the GP model, called hyper-parameters, are determined with known discrepancies. 
Since the GP model is based on a stochastic framework, the hyper-parameters can be determined by using the 
Markov chain Monte Carlo method (MCMC). The estimation of an unknown response with the GP model is, 
however, computationally demanding; hence, this high computational cost limits the usage of the GP model. In 
addition to the GP model, an artificial neural network is therefore applied to the approximation of the discrepancy 
in this study. Once an artificial neural network has been learned, a target response can be estimated quickly by 
using the learned neural network. 
In the following sections, first, the design concept is introduced where the collected data can be effectively 
employed, and then a procedure is described for generating the GP model and estimating unmeasured responses 
with a hybrid modelling method. Furthermore, we propose a procedure for using an artificial neural network to 
interpolate the discrepancy instead of the GP model. These procedures are applied to predict the strains occurring 
on a typical welded structure, and the approximation accuracy is investigated for three validation scenarios.  

4. Data-inspired Reliability Design 
When developing a product, the structural reliability of the product is usually designed in accordance with a design 
standard for the product. The design standard provides the safety margin for structural reliability, such as the safety 
margin for fatigue resistance; hence, the structure of the product is designed so that the product is within the safety 
margin. If operational and environmental conditions, for example, applied loads, are uncertain for the product to be 
designed, the safety margin for structural reliability is set to a large value. As a result, the developed product will 
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be inappropriate for a sustainable society because it is too heavy, and heavy products need a large amount of 
material and energy for manufacturing and operating them. A decrease in the uncertainty of the conditions 
therefore leads to the development of products that are appropriate for a sustainable society. A better way to 
decrease the uncertainty is to clarify the uncertain conditions with the data collected during the bench test, test 
operation, and field operation. By repeating the data collection and improving the design standard for structural 
reliability, the reliability of products can be improved continuously as shown in Figure 1. We call this design 
concept "data-inspired reliability design". 
The data-inspired reliability design can be applied to the reliability design of the products (such as wind turbines, 
construction machinery and trains) for which operational and environmental data are monitored. Figure 2 shows an 
example of the data analytics performed to confirm the safety margin for fatigue resistance of a wind turbine. The 
fatigue damage of the welded joints in the tower of the wind turbine was estimated with measured strain data, and 
then the estimated damage was compared with the damage that had been evaluated in accordance with a design 
standard. Since strain sensors are mounted on the tower at two different heights, the structural reliability of the 
tower was evaluated there. If the number of sensors is increased, the structural reliability can be evaluated at other 
positions. The number of sensors, however, increases the cost of products; hence, the number of sensors used for a 
product has to be limited. To overcome this limitation, virtual sensor technology, namely, surrogate models, can be 
used for collecting data to supplement real sensors. 

5. Surrogate models 

5.1. Bias-corrected model 
The hybrid surrogate model using both measured data and simulation results is applied to predict unknown 
responses. There is generally a discrepancy between the output of computer simulation and measured output 
because simulation models approximate the target physical phenomenon and the measured output includes 
measurement noise. When formulating the prediction model of a target phenomenon, the measurement noise is 
usually modelled as a Gaussian noise with zero mean. On the other hand, for the discrepancy caused by model 
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approximation, methods for modelling the discrepancy as a bias have been proposed in the last decade. In 
accordance with these methods, the real output of the target phenomenon that does not include measurement noise 
is formulated as 

yy MR   (1) 

where yR and yM are the real and simulation outputs, respectively, and  is the bias between the two outputs. When 
the outputs are strains that have to be evaluated at some positions and for some applied loads, Eq. (1) could be 
rewritten as follows. 

FxFxFx ,,, yy MR   (2) 

where x and F are respectively the vectors of positions and applied loads. 

5.2. Output prediction using Gauss process model 
To estimate the real output yR(x, F), two response surfaces for simulated outputs yM(x, F) and bias (x, F) were 
constructed by using the GP model. The mean and covariance of the applied GP model are 

xm   (3) 

2

1

2 exp,
q

j
jjj xxk xx   (4) 

where , , and j are the hyper-parameters. In this study, these parameters were adjusted by using the MCMC 
method. Bayesian analysis was also applied to predict the expected mean of real output because the uncertainty of 
the hyper-parameters should be considered for the prediction. The whole prediction process proposed in this study 
is as follows. 

1) Generate the GP response surface for interpolating simulated outputs yM(x, F)
2) Generate the GP response surface for interpolating bias (x, F)
3) Obtain posterior distributions for the hyper-parameters of the bias response surface by using Bayesian analysis 
4) Obtain the expected mean of real output from the posterior distributions of the hyper-parameters and the bias 

If the computational cost of the simulation is not expensive, we can skip prediction process step 1. The expected 
mean of real output was calculated with 

N

i

iR
N

i

iMR y
N

y
N

y
11

,1,,1,ˆ FxFxFxFx   (5) 

where (i)(x) is a sample of the bias drawn by using Bayesian analysis in step 4, and N is the number of samples. 
The same as the expected mean of the real output, the expected mean of the bias can be estimated with 

N

i

i

N 1

1ˆ xx   (7) 

5.3. Output prediction using artificial neural network 
Artificial neural networks can be also used to predict the real response in accordance with the model bias 
correction; that is, the response surfaces of the simulated output and the bias can be generated using artificial 
neural networks as well as the GP model. However, conventional neural networks sometimes fit only teacher data, 
hence the generated response surface does not become smooth enough to use it, especially for the interpolation of 
the bias. The Bayesian framework for learning neural networks [5][6] is therefore applied when generating the 
response surfaces by the neural networks in this study. On the basis of the Bayesian framework, the objective 
function to be minimized for the learning of neural networks is formulated as follows. 

DW EEM   (8) 

where ED is error sum of squares and Ew is a generalization term that expresses the prior information for the 
weighing coefficients of the neural network to be learned. The prior information introduced here means that the 
response surface should be smooth; therefore, the weighing coefficients should preferably be small values.  and 

 in Eq. (8) are hyper-parameters that are determined by maximizing the likelihood of the hyper-parameters. 
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After the development of a formula, the equations for maximizing the likelihood are 

DE
N

E 2
,

2 W

  (9) 

where  is the effective number of the weighing coefficients and means how many coefficients are accurately 
determined with teacher data. Given that the eigenvalues of matrix DE  are a (a = 1 k),  can be 
calculated by 

k

a a

a

1
.  (10) 

By repeating the learning of the neural network and the update of the hyper-parameters sequentially, the smooth 
response surface of the bias was generated in this study. 

6. Example 

6.1. Measurement and simulation of typical welded structure 
A welded structure that includes the weld joints typically used in construction machinery was designed and 
experimentally produced. A load of 100 kN was applied to the produced welded structure, and strains were 
measured with strain gauges near a weld line as shown in Figure 3(a). This static load test was performed twice, 
and the strains were accordingly measured twice. Although the strains were measured at a static load of 100 kN, 
the strains measured at the other applied loads were needed to investigate the prediction accuracy of the bias 
correction model in Eq. (2). A virtual load history shown in Figure 4 was therefore assumed, and then the measured 
strain histories caused by the load history were generated by using the liner relationship between the applied load 
and the strains. In addition, the finite element model of the typical structure was also prepared to calculate strains at 
the points where the strain gauges were placed. The finite element model shown in Figure 3(b) was composed of 
shell elements, each of which was rectangular and had four nodes. Numbers 1 to 6 in Figure 3 show the points 
where strains were measured on the produced structure. The measured and simulated strains were then utilized to 
predict real strains yR(x, F) at the points where strains were not measured by using the procedure described in 
section 5. The measured and simulated strain values for this prediction are shown in Figure 5. Since the measured 
strains in Figure 5 were generated using the two test results, two measured values are shown at a position and a 
load. Notice that there is obviously a model bias caused by incomplete modeling because the simulated strains are 
larger than the measured ones except for one point. Despite this discrepancy, the finite element model shown in 
Figure 3(b) was generated in accordance with the International Institute of Welding recommendations. 

6.2. Prediction of real strain and bias with GP model 
In the case of the GP model, the two strains measured at the same position and load were averaged, and 
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the averaged value is regarded as a measured strain to predict real strain yR(x, F). To validate the prediction 
accuracy of the bias-corrected model in Eq. (2), not all the measurement points were used to predict the real strains. 
That is, four out of the six points were selected and used to model the real strain, and then the other two points were 
used to validate the generated model. Figure 6 shows the expected mean of bias (x, F) defined in Eq. (7) and the 
predicted real strain yR(x, F) when selecting Nos. 2, 3, 4, and 5 for the modeling.  Note that the expected mean of 
the bias is smooth, hence the predicted real strain represents the feature of the simulated strains, especially for the 
positions where strains are not measured. By comparing the predicted and measured strains at the points for 
validation, the predicted strains are respectively 118 % and 119 % of the measured strains for positions Nos. 1 and 
6. On the other hand, the simulated strains are respectively 120 % and 148 % of the measured strains for positions 
Nos. 1 and 6 as shown in Figure 7. It is therefore clear that the bias-corrected model with the GP model works well 
for predicting the real strains. 

6.3. Prediction of real strain and bias with neural network 
In the case of the artificial neural network, all the measured values were used to generate the response surface of 
bias (x, F). Figure 8 shows the resulting response surfaces of bias (x, F) and the predicted real strain yR(x, F). It 
can be seen that the response surface of the bias obtained using the neural network is smooth and so is the expected 
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Figure 6: Strain and bias predicted with GP model 
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Figure 8: Strain and bias predicted with neural network 

mean of the bias obtained using the GP model. While the absolute value of the bias when using the neural network 
is larger than that when using the GP model at 50mm to 100mm positions, both response surface models generate 
almost the same bias near the measurement positions. 

7. Conclusion 
Surrogate models can be used as virtual sensors for monitoring the operation condition of infrastructures. Methods 
for generating a surrogate model using measured data and simulation results have been applied to several 
engineering examples in the last decade. This hybrid surrogate model is accurate enough to be used as virtual 
sensors and therefore was used to predict structural responses, namely strains, in this study. To investigate the 
accuracy of prediction in unmeasured strains, a typical welded structure was experimentally produced to obtain the 
measured strains, and the numerical analysis of the welded structure was also conducted to obtain the simulated 
strains. When predicting the strains, the discrepancy between the measured and simulated strains was 
approximated with the response surfaces, namely the GP model and the neural network. In the results of this 
investigation, the predicted strains agreed well with the measured ones. It can therefore be concluded that the 
hybrid surrogate model can work as virtual sensors. 
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1. Abstract
Mechanical systems subject to vibration are prevalent across many industries.  Although potentially different in 
application, they sometimes share the need to minimize aspects of flexural deformation given harmonic loading 
and the need to consider a variety of design variable and response-based constraints in the process.  Practical 
design efforts also sometimes include the need for consideration of the optimal response of a platform-style 
product, including responses of multiple design variants supported by a common base structure.  Harmonic 
problems can be especially challenging to optimize due to the likelihood that the response will be multi-modal; 
influenced by system natural frequencies throughout the design space.  Further, analysis of these systems often 
involves large and complex computer models which require significant resources to execute.   A harmonically 
loaded, platform-style parallel beam system with multiple family variants is used as an example in this work to 
demonstrate a proposed method for identifying an optimum in a constrained, multi-modal response environment 
with consideration for Expensive Black Box Functions (EBBF).   
The presented method leverages benefits of a combined approach where the domain is first surveyed for potential 
areas of optimal response using a method of Steepest Feasible Descent (SFD), followed by a search in the optimal 
region using direct search methods.  The method of SFD is a modification of the classical method of Steepest 
Descent, made useful for constrained models by a penalty system including both deterministic and programmatic 
methods.  A sensitivity-based search vector method also helps to manage situations where significant difference in 
magnitude exists among the design variables.  Evidentiary support for these key program elements is provided 
using standardized test functions.  The effectiveness of the method is demonstrated by seeking a minimum flexural 
response for a parallel beam system subject to elastic support and response constraints. 
2. Keywords: harmonic optimization, parallel beam, elastic supports 

3. Introduction 
Figure 1 illustrates the problem under study; a harmonically loaded parallel beam system with elastic supports and 
three (3) family variants, subject to harmonic loading through a range of frequencies.  The objective of the study is 
to minimize flexural deformation of the tip mass ‘m’ subject to location constraints of the elastic supports as well 
as a maximum allowable static deformation of the tip masses ‘m’.  A total of ten (10) design variables are 
considered.

Figure 1: Elastically supported parallel beam structure with 3 family variants 

The family variants differ in upper-beam definition only, each constrained with a specified and differing length, tip 
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mass and cross-sectional geometry.  As shown, the location of intermediate supports (L3 and L4) are fixed and 
represent a design constraint often encountered in platform-style products; the need for common interface design.  
The objective function (flexural response) is multi-objective; being comprised of the summed effect of all family 
variants (upper beams) upon the integrated response across the prescribed frequency range as well as the 
maximum range of response across the frequency range.    
A common approach in the design of vibrating systems is to stiffen the structure such that the fundamental natural 
frequency is higher than the operating range.  As is demonstrated later with this example, such a philosophy is not 
always possible given the design constraints and an alternate method is needed.  In his text on the subject, Den 
Hartog [1] discusses the use of a damped dynamic vibration absorber (DDVA) as a means to reduce the magnitude 
of the response near to the natural frequencies.  The DDVA is illustrated in Figure 2 and the Equation of Motion 
given in Eq.(1) below. 

Figure 2: Damped dynamic vibration absorber 

(1)

Also illustrated in Figure 2 is the frequency response plot for the DDVA, illustrating the effect of damping 
coefficient upon the system.  As described by Den Hartog [1], an optimal response exists for some finite value of 
damping coefficient whereby the response is minimized; the slope of which becomes horizontal at frequency 
points ‘P’ and ‘Q’.  It is this type of system behaviour that is sought for the parallel beam system in order to 
minimize flexural response among the family variants given that some resonant conditions may exist within the 
frequency range of interest.  Since the parallel beam system is complex relative to the DDVA of Figure 2, a 
numerical optimization approach is needed to identify the optimal values. 
Multiple strategies exist for optimization of such a system.  Among the simplest are ‘First-Order’ methods, 
including the method of Steep Descent (SD) [2].  These gradient-based methods are known to be initially 
productive, but overall inefficient as the solution nears the optimal result.  In addition, they are useful for single 
objective and unconstrained searches; neither of which applies to the parallel beam problem at hand.  Fliege and 
Svaiter [3] however, propose using the method of SD for multicriteria optimization as well as adaptation of 
Zoutendijk’s [4] method of feasible directions for use in constrained cases.  They conclude though that since the 
result is a first-order method, it should be considered only as a ‘first step’ toward an overall efficient method rather 
than an efficient method unto itself.  ‘Second-Order’ methods improve upon first-order methods by incorporating 
Hessian matrix information and result in a more efficient process [2].   This information however is not readily 
available for Black Box methods [5].  Since a goal of this effort is to find a method suitable to Expensive Black 
Box Functions (EBBF’s), second-order methods are not considered further. 
Direct methods including Genetic Algorithm (GA) [6], Particle Swarm Optimization (PSO) [5] and Sequential 
Quadratic Programming (SQP) [2] are advantageous in that they are suitable for constrained functions, but are 
known to potentially require a high number of function evaluations, particularly for multi-modal responses [2], 
making them undesirable for EBBF’s.  In addition, although SQP, is known as a more efficient method than 
first-order methods, it is primarily a ‘local’ search tool with respect to multimodal response in that it has the 
potential to be ‘constrained’ by local maxima.[2]  Laskari et al. [5], compare the use of PSO as a means of 
optimizing minimax problems to SQP.  They conclude that for Black Box functions where gradient information is 
not available (as with EBBF’s) that PSO may be a good alternative as an initial search tool with continued 
optimization performed by more efficient methods such as SQP.   
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Laskari et al.’s conclusion [5], together with Fliege and Svaiter’s similar conclusion regarding SD [3] is the basis 
for the proposed method here.  That is, that the best overall method may be to initially investigate the design space 
using a first-order method and then, from the region of most promising minimum response, continue the search 
using SQP.  A first order method, when limited to a few jumps and modified for use with constraints, is theorized 
to be more efficient for the initial search than direct methods.  In addition, the use of a polynomial approximation 
during the steepest descent’s 1-D search is theorized to be effective in identifying ‘global’ minima in a 
multi-modal environment.   

4. Development and validation of proposed optimization method 
The proposed optimization method uses a derivative of the first-order method of SD as the initial search method in 
order to make it effective for constrained searches.  The derivative, termed Steepest Feasible Descent (SFD), 
features a deterministic penalty system as well as programmatic considerations to assure feasibility of the result 
from the 1-D line search.  Also, consideration is given to orientation of the search vector to assure that only feasible 
space is searched.  Finally, weighting is given to the search vector with respect to differences in order of magnitude 
among the design variables in order to improve effectiveness of the search. 

4.1. Steepest Feasible Descent as a constrained search tool 
Feasibility is considered during the execution of the 1-D line search in multiple ways.  First, the length of the line 
search is limited by design variable constraint bounds (both side bounds and other).  Secondly, as proposed by 
Vanderplaats [2], an external penalty term is combined with the function value to form a penalized function value 
to be used in the objective function.  This is shown in Eq.(2) below.

(2)

By Eq.(2), a penalty is assessed to the function value only if constraints are violated (and scaled by the multiplier 
p), which is intended to aid the 1-D line search in identifying only those minima that are in feasible space.  

However, as illustrated in Figure 3 below, it remains possible that a local minimum of the penalized function value 
could be infeasible; particularly with a multi-modal response. This is due to the effect of the squared term in Eq.(2) 
which minimizes the penalty near the constraint bounds.   

Figure 3: Identification of constraint boundaries 

It is recognized that this effect could be limited by converting the penalty term in Eq.(2) to a linear function.  
However that would potentially cause a more abrupt transition in the resulting penalized function value at the 
transition from feasible to infeasible space, leading to numeric difficulties in the optimization which could be 
problematic.  Therefore, a programmatic element is incorporated in the event that a minimum (fpen) is identified 
within infeasible space to search the 1-D vector for a minimum penalized function value that is feasible.  
In addition to considerations during the 1-D line search, feasibility is considered in the determination of the 
descent vector by a programmatic implementation of the Method of Feasible Directions (MFD) [2].  One common 
implementation of MFD is to incorporate an offset or ‘push-off factor’ [2] to the search vector in order to avoid a 
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constraint bound. In the case of a nonlinear constraint bound however, an additional ‘optimization exercise’ is 
needed within the larger optimization effort [2] to avoid infeasible space.  Given consideration to use of this tool 
for cases where multiple, highly non-linear constraints may exist; a programmatic implementation of the method 
of feasible directions is selected to avoid a potentially large subproblem.  A minimum length for the 1-D search 
vector is established (as a percentage of the bounded design space).  If the distance from starting point of the search 
vector (X0) to the nearest constraint bound (along the search vector) is measured to be below this limit, then the 
vector direction is programmatically modified by eliminating the coordinate term which points most directly to the 
nearby bound.  In so doing, the resulting search vector is redirected to a trajectory ‘approximately parallel’ to the 
subject constraint bound.  In this way, the new descent vector is guaranteed to provide at least a minimum search 
length within feasible space.  

4.2. Sensitivity-based search vector 
As experienced with the parallel beam problem, design variables may have significantly different orders of 
magnitude (length vs. spring stiffness vs. damping coefficient).  If the gradient for the search vector is determined 
via a finite difference approach, as may be typical for Black Box functions, then an error in vector sensitivity could 
occur.  That is, if a common step size were used for the finite difference calculation that is appropriate to the 
smaller variable, then it could be so small as to have an insignificant effect upon a larger variable’s effect.  By 
scaling the finite difference step size (in the direction of each given design variable) to the magnitude of the given 
variable, then the likelihood is increased that the descent vector will be sensitive to the impact of each variable.  
Eq.(3) below illustrates one method of determining such a scale effect upon the finite difference step size in a given 
design variable direction. 

(2)

4.3. Confirmation of optimization method 
It is proposed that a ‘combined’ search methodology of SFD followed by SQP is an efficient overall search tool by 
leveraging the strengths of each individual method.  To challenge this theory and determine if the combined 
method is truly better than either of the methods used individually, a test was conducted using four (4) standard test 
functions [7] where theoretical global optimums are known; De Jong, Rosenbrock, Rastrigin and Schwefel.  For 
each test function, the proposed ‘combined’ search methodology as well as each of the component methods were 
run from an array of 75 starting points across the 2-dimensional design space, determined using MATLAB’s 
‘haltonset’ quasi-random method.  For each case, the coordinate location of the global optimum, optimal function 
value and number of function evaluations was recorded.  Results are shown in Table 1 below.

Table 1: Unconstrained test results 

De Jong’s Rosenbrock’s Rastrigin’s Schwefel’s

Coordinate Location of Overall Minimum 

Theoretical (0,0) (1,1) (0,0) (420.969,420.969) 

SFD (4.2e-4, -4.5e-4) (1.0067, 1.0135) (-0.0070, 0.0117) (421.109, 419.456) 

SQP (7.4e-6,1.0e-3) (0.9793, 0.9597) (4.7e-5, 1.0e-3) (-296.88, 438.27) 

Combined (3.9e-4, -1.4e-3) (1.0065, 1.0135) (6.3e-4, 7.7e-4) (421.109, 419.458) 

Function Value of Overall Minimum 

Theoretical 0 0 0 0

Steep Descent 0 0 4.6e-4 2.0e-4

Direct (SQP) 2.03e-8 1.55e-7 2.7e-6 0.107

Combined 4.3e-8 1.7e-8 2.5e-6 1.9e-4

Number of Function Evaluations 

Steep Descent 1131 1190 2233 1869

Direct (SQP) 1344 4863 2118 450
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Combined 1137 1194 2250 1875 

With consideration for EBBF’s, a minimum Design Variable step size was established as a stopping criterion, the 
order of magnitude of which might be considered meaningful with respect to practical design (0.001% of design 
variable magnitude).  The error of the individual SQP solution for the Schwefel function is attributed to this fact, 
proof of which is not presented here due to brevity.  However, a reduced value resulted in a result of similar 
accuracy to SFD or the Combined, but at the expense of significantly greater function evaluations.
For the multi-modal responses of Rosenbrock and Schwefel then, the proposed ‘combined’ search method yielded 
the most accurate result of either of the two (2) individual methods, while also utilizing approximately the fewest 
of the function evaluations of the individual methods.  No practical benefit is demonstrated for De Jong’s unimodal 
function and the proposed method is slightly less efficient (5.8%) for Rastrigin.  Together, these results confirm 
that the combined method leverages the ‘best’ qualities of either of the individual methods for some multi-modal 
responses (with consideration for use with EBBF’s), without significant consequence for the other functions. 
Constrained response of the proposed method was evaluated similarly using the same test functions [7], with the 
addition of a circular region of infeasibility centered at the location of theoretical global optimum. Results for De 
Jong’s and Rosenbrock’s functions are shown in Figure 4 below.  For each test, the location of the (same) 75 start 
points is identified as are the optimization path and optimum solution for each start point’s search.  The location of 
the global optimum is also identified.  As shown, the modifications incorporated to the SFD approach, as well as 
use of the follow-on SQP method successfully prevent solutions from being identified in the infeasible region. 

Figure 4: Constrained test results 

5. Parallel beam optimization 
The parallel beam problem was solved using the proposed ‘combined’ method with multiple start points.  A 
‘single’ objective function was defined for multi-objective use by summing combined responses of tip deflection 
across frequencies and for each family variant as well as the range across both frequency and model.  In addition to 
side-bound constraints, location constraints were established for each of the supports to address the practical need 
that a minimum spacing must be allowed for the physical attachment structures.  A response-based constraint was 
also considered for the static deflection of the upper beam in order to assure a minimum stiffness to the structure; to 
prevent the optimal harmonic design from being so flexible as to be impractical.   
As indicated previously, the global SFD search was conducted from multiple start points, resulting in many areas 
of potential optimum throughout the design space.  The best result from the among these multiple SFD results was 
used as the start point for the subsequent SQP search, resulting in an optimal design with relative positioning of the 
supports as shown in Figure 1.  That is, L1<L3 and L3<L2<L4.  For purposes of comparison, frequency response 
plots for the ‘worst’ of the global SFD searches as well as the global optimal result are shown in Figure 5.  Note 
that these data include response for each of the family variants. 
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Figure 5: Parallel Beam Results 

As shown, the global optimal solution results in an approximate 99.2% reduction in peak amplitude as compared to 
the ‘worst’ starting point.  However, natural frequencies remain within the range of interest for two (2) of the 
family variants.  Although not shown for brevity, these resonant responses are the fundamental frequency of the 
upper beam(s).  Given the design constraints on upper beam specification, these frequencies could not be 
significantly altered.  However, the resonant responses were significantly modified as predicted by Den Hartog’s 
[1] explanation of the DDVA in Figure 2.  The optimal solution is also shown to be a ‘compromise’ in that,
although significant reductions were made in the resonant responses, the third (stiffest) family variant worsened 
slightly in the process.  This highlights an important aspect of platform-style design, that ‘compromise’ solutions 
must be considered and managed in the optimization process.   

6. Conclusions 
A proposed ‘combined’ optimization method utilizing the method of Steepest Feasible Descent as an initial search 
tool, followed by a use of the more efficient SQP method for ‘local’ refinement was demonstrated to be effective 
on both classical test functions and a parallel beam problem.  Key conclusions are as follows: 

• The combined method is shown to leverage the ‘best’ of the component methods for an improved result 
on some multi-modal responses, without consequence to other test surfaces used. 

• The proposed method of SFD is shown to be effective as a constrained search tool, incorporating both 
deterministic and programmatic feasibility elements as well as a sensitivity-based search vector. 

• The proposed method is shown to be more tolerant of a coarse design variable step size as a stopping 
criterion than SQP implemented individually.  This is an important benefit with respect to use with 
EBBF’s.  

• The platform-style parallel beam structure was successfully optimized for harmonic loading, with 
significant improvements to peak response amplitudes, even though natural frequencies remained in the 
frequency range of interest due to design constraints of the system.    
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1. Abstract
Designing efficient and lightweight structures is a key objective for many industrial applications such as in aerospace

or the automotive industry. To this end, composite materials are appealing as they combine high stiffness and light

weight. The main challenge slowing down the integration of such materials in real structures is their damage be-

havior. The latter should be considered in the design process of the structures. This work focuses on developing a

systematic approach to designing structures that can sustain an acceptable amount of degradation or exhibit a low

sensitivity to damage. An optimization approach is chosen to achieve this goal. To deal with complex geometries

and to allow for large shape modifications in the optimization process, the extended finite element method (XFEM)

is advantageously combined with a level set description of geometry. The degradation of materials is modeled by

using a non-local damage model, motivated by the work of James and Waisman [1] on a density approach to topol-

ogy optimization. To solve design problems with damage constraints by gradient-based optimization method, a

sensitivity analysis of the damage process is developed. Damage propagation and growth is an irreversible pro-

cess. Therefore, the path dependence of the structural response needs to be accounted for in the sensitivity analysis.

In this paper, we present an analytical approach for efficiently and accurately evaluating the design sensitivities,

considering both direct and adjoint formulations. Finally, the sensitivity analysis approach is studied with simple

benchmark problems and compared with the results obtained by finite differences.

2. Keywords: damage, sensitivity analysis, XFEM, level set.

3. Introduction
This research work focuses on introducing the effect of degradation in the design process of structures. Taking

into account the potential degradation of materials at the design stage allows creating structures that can sustain

an acceptable amount of degradation and exhibit a low sensitivity to damage. To achieve this goal, a shape opti-

mization approach is chosen. The work aims at developing systematic tools to evaluate the influence of damage

on the optimal design of structures. First, a sensitivity analysis of the non-linear damage process is developed and

is the key objective of this study. The analysis of the structures is performed exploiting both a level set description

of the geometry, which enables dealing with moving boundaries and complex structures, and the extended finite

element method (XFEM), which allows working on fixed non-conforming meshes. The degradation of materials

is represented using a non-local damage model, which reduces the material stiffness by a scalar damage value D.

To perform the sensitivity analysis, an analytical approach is proposed. As damage is an irreversible process, the

history of the structural response has to be accounted for in the sensitivity computation. Finally, the proposed ana-

lytical approach is validated and compared against finite differences for a simple benchmark example: a bimaterial

bar in tension. Ongoing work is devoted to apply the approach to academic examples.

4. Framework
This research work aims at accounting for the damage behavior of materials in the design process. To this end,

damage constraints are introduced in the optimization problem. These constraints include either bounds on the

maximum damage value or a global restriction on the percentage of damage tolerated in the structures for a given

load level.

To predict the structural response, the XFEM is combined with a level set description of the geometry. The

XFEM allows working with non-conforming mesh and avoids costly remeshing operations required in classical

shape optimization. The level set description enables an easy handling of moving boundaries and certain topologi-

cal modifications as geometric entities can merge or disappear. The basics of these methods, necessary for further

developments, are outlined in the following sections.

1
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4.1. Level set description of the geometry

The level set method was introduced in 1988 by Osher and Sethian [5] to describe propagating fronts. In a n
dimensional space, the method represents the boundaries implicitly resorting to a level set function φ of dimension

n+ 1. An iso-level of this function φ , generally the iso-zero level, is selected to represent the boundaries and so

the distribution of the materials on a given domain. The level set function φ can be expressed as a function of the

spatial coordinates x and some design parameters s as:⎧⎨⎩
φ(x,s)> 0, ∀x ∈ ΩA
φ(x,s) = 0, ∀x ∈ ΓAB
φ(x,s)< 0, ∀x ∈ ΩB

, (1)

where ΩA is the domain filled with material A, ΩB the domain filled with material B, and ΓAB the interface between

materials A and B.

Working on a discrete mesh, the level set function φ is typically represented through its nodal values φi that are

interpolated using classical finite element shape functions Ni(x) to capture the singular behavior:

φ h(x,s) = ∑
i

Ni(x) φi. (2)

4.2. The extended finite element method

The XFEM offers a convenient way to represent discontinuities and singularities within the elements by adding

particular shape functions to the approximation field:

uh = ∑
i∈I

Ni(x) ui + ∑
i∈I�

N�
i (x) ai, (3)

where I is the set of all the mesh nodes, Ni(x) the classical finite element shape functions, ui the degrees of freedom

related to Ni(x), I� the set of enriched nodes, N�
i (x) the enriched shape functions, ai the additional degrees of

freedom related to N�
i (x).

There exists different types of enrichment functions ψ depending on the type of discontinuity across material

interfaces. This work focuses on materials exhibiting different properties. This kind of interface are characterized

by a continuous displacement field, but a discontinuous strain field. A commonly used enrichment function for

material interface is the ridge function proposed by Moës [3]:

ψ(x) = ∑
i

Ni(x) |φi|−
∣∣∣∣∣∑i

Ni(x)φi

∣∣∣∣∣ . (4)

The enriched shape functions are obtained multiplying the enrichment function ψ and the classical finite element

shape functions Ni(x):
N�

i (x) = Ni(x) ψ(x). (5)

5. Non-linear damage analysis
The degradation of materials is accounted for using a non-local damage model, motivated by the work of James

and Waisman [1], who implemented a non-local approach to perform topology optimization. The non-local dam-

age model and the computational scheme for predicting the structural response are summarized in the following

subsections.

5.1. Non-local damage model

The damage is represented by a scalar value D. The degradation of the structure is described by the evolution of this

scalar value from D = 0, corresponding to the undamaged state of the material to D = 1, where the material is fully

degraded and unable to sustain any higher load. In a finite element model, the damage parameter D is evaluated

at each Gauss point. The evolution law governing the growth of material degradation is given as a function of the

displacements:

D = g(u). (6)

Typically, damage laws provide the evolution of damage as a function of the stresses or the strains. Degradation is

generally initiated at a prescribed stress or strain threshold leading to an abrupt change in the damage values and

a non-smooth dependence in stresses or strains. To avoid these problems degrading the convergence, the damage

law is smoothed using some regularization function f S:

DS = f S(D). (7)

2
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The damage is considered non-local to avoid the localisation of damage in a thin strip of mesh elements. The

damage value at each Gauss point is then influenced by the damage values at neighboring Gauss points, i.e. Gauss

point located within a given distance lc to the considered Gauss point. The value of the damage at a given Gauss

point is then computed as:

DNL
i =

∑ j∈N W (di j)DS
j

∑i∈N W (di j)
, (8)

where the subscript i accounts for the treated Gauss point, N is the set of Gauss points in the neighborhood of the

treated one, W a given weighting function depending on the distance di j between the treated Gauss point i and its

neighbor j.

5.2. Analysis of the damage process

The damage process is non-linear and exhibits a limit point in its force-displacement curve, as shown in Figure 1.

The evaluation of the structural response of the system is conducted using a path-following procedure. This form of

structural response can not be analyzed by classical solvers as Newton-Raphson, unless working with low damage

values. As a first step, a Newton-Raphson solver is used. Later, a displacement control or a Riks-Crisfield solver

will be used to follow the force-displacement curve further than the limit point.

The procedure followed by the iterative solver to evaluate the structural response of the system is illustrated

in Figure 1. The problem is solved simultaneously for the displacement variables u and the damage variables D,

collected in the vector y. The residuals are also collected in a vector R given as:

R(k) =

[
R(k)

u

R(k)
D

]
=

[
K(k)u(k)− f(k)

D(k)−g
(

u(�)
) ] , (9)

where K(k) is the stiffness matrix, u(k) the displacements variables, f(k) the external forces, D(k) the damage vari-

ables at iteration k and u(�) the displacement variables at an iteration � where the maximum damage was reached

so far.

As showed in (9), the residuals can depend on several or all the prior iterations and can be expressed in the

most general way as:

R(k) = R(k)
(

s,y(k),y(k−1), . . . ,y(1)
)

(10)

6. Sensitivity analysis
To solve optimization problems with damage constraints, a sensitivity analysis has to be developed. An important

feature of the degradation process is that the damage propagation is irreversible. Therefore, the path dependence

of the structural response has to be taken in account in the sensitivity analysis. An analytical approach to the sen-

sitivity analysis, based on the work by Michaleris et al. [2], is proposed and explained in the following sections.

6.1. Derivative of an objective/constraint function

Let us consider an objective or constraint function F given as follow:

F = F
(

s, y(k)
)

(11)

where s are the design parameters and y(k) are the discrete state variables at iteration k, i.e. the displacements u
and the damage D.

The derivative of this function with respect to a particular design parameter si can be expressed as:

dF

dsi
=

∂F

∂ si
+

∂F

∂y(k)
dy(k)

dsi
(12)

where d
dsi

and ∂
∂ si

are the total and the partial derivative with respect to the design parameter si.

To evaluate this expression, the total derivative of the state variables y(k) with respect to the design variable si
is computed through the derivatives of the residuals R(k). Taking the derivative of (10) with respect to a particular

design parameter si, one gets:

dR(k)

dsi
=

∂R(k)

∂ si
+

∂R(k)

∂y(k)
dy(k)

dsi
+

∂R(k)

∂y(k−1)

dy(k−1)

dsi
+ . . .+

∂R(k)

∂y(1)
dy(1)

dsi
(13)

3

630

Leo
Rectangle



Initialization of analysis :
Data & initial configuration

y(1) =

[
u(1)

D(1)

]

External loop :
Load/Displacement increment

for N = 1 : Ntot

First prediction :
Displacement & damage increment

Δy(k) = −

⎡⎢⎢⎣
∂R

(k)
u

∂u(k)
∂R

(k)
u

∂D(k)

∂R
(k)
D

∂u(k)

∂R
(k)
D

∂D(k)

⎤⎥⎥⎦
−1 [

R
(k)
u

R
(k)
D

]

y(k+1) = y(k) +Δy(k)

Evaluation :

R(k+1) =

[
R

(k+1)
u

R
(k+1)
D

]
Internal loop :

Correction on prediction

Δy(k+1) = . . .

y(k+1) = . . .

Force-displacement curve
for a non-linear 1D damage process

u

f

Limit
point

Equilibrium :
Check the residuals and the damage growth

||R(k+1)|| ≤ tol

D(k+1) ≥ D(k)

Last time step ?

End of analysis

yes

yes

no

no

Figure 1: Procedure of the non-linear damage analysis.

Starting from (13) evaluated at the first iteration and proceeding to the last iteration, the derivatives of the problem

variables y can be successively evaluated at each iteration provided that the derivatives of the residuals ∂R(k)

∂ si
and

∂R(k)

∂y(l)
, l = 1, . . . ,k are known.

The derivative of the residuals R(k) at iteration k with respect to a particular design parameter si can be ex-

pressed as:

∂R(k)

∂ si
=

⎡⎢⎢⎢⎢⎣
∂R(k)

u

∂ si

∂R(k)
D

∂ si

⎤⎥⎥⎥⎥⎦ , where

∂R(k)
u

∂ si
=

∂K(k)

∂ si
u(k)− ∂ f(k)

∂ si
,

∂R(k)
D

∂ si
=−

∂g
(

u(�)
)

∂ si
.

(14)

The derivative of the residuals R(k) at iteration k with respect to the state variable y(l) at any iteration l = 1, . . . ,k
can be expressed as:

∂R(k)

∂y(l)
=

⎡⎢⎢⎢⎢⎣
∂R(k)

u

∂u(l)

∂R(k)
u

∂D(l)

∂R(k)
D

∂u(l)

∂R(k)
D

∂D(l)

⎤⎥⎥⎥⎥⎦ , where

∂R(k)
u

∂u(l)
=

{
K(k) if k = l
0 if k �= l

,
∂R(k)

u

∂D(l)
=

∂K(k)

∂D(l)
u(k),

∂R(k)
D

∂u(l)
=−

∂g
(

u(�)
)

∂u(l)
,

∂R(k)
D

∂D(l)
=

{
1 if k = l
0 if k �= l .

(15)
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All the derivatives are evaluated analytically starting from the discretized governing equations and taking their

derivatives with respect to the design parameters s. The procedure to compute the analytical derivatives, within an

XFEM-level set framework for shape optimization of bimaterial structures, is detailed in [4].

7. Application
The sensitivity analysis method described above is illustrated and validated with a simple benchmark example: a

bimaterial bar in tension. The bar is loaded with a force F that increases monotonously at each iteration of the

path-following procedure. The setting of the problem is illustrated in Figure 2, where a single mesh element is

used to model the bar. The location of the interface, given by s, is used as design variable . All the parameters of

the problem are summarized in Table 1. The damage law used to evaluate the propagation of the degradation is

given as:

Dgp = 1− exp

(
1− εgp

εth

)
, (16)

where εgp is the strain at the considered Gauss point and εth the strain threshold from which the material degradation

is initiated. The damage law is then smoothed using a Kreisselmeier-Steinhauser function:

DS
gp =

1

ηS
ln(1+ exp(ηS Dgp)) , (17)

where ηS is a smoothing parameter.

E2 E1

GP3 GP4 GP1 GP2

s

F

x

Figure 2: First benchmark - bar in tension.

Table 1: Bimaterial bar in tension - parameters

Dimensions [m] L = 2

Elastic moduli [N/m2] E1 = 1, E2 = 5

Load [N] F = 10−4

Level set function φ(x,s) = x− s
Gauss points per subelement ngp = 2

Strain threshold εth = 10−4

Smoothing parameter ηS = 7

The structural response of the bar is computed by a Newton-Raphson solver, as damage is kept small. The

design sensitivities are computed by the analytical approach (A) and validated against finite differences (FD).

Figure 3 depicts the evolution of the displacements and its derivatives. Figure 3(a) shows the displacements at

the interface and at the bar tip. Figures 3(b) gives the evolution of the free degrees of freedom of the structure u2

and a2. Figure 3(c) shows the evolution of the derivatives of these degrees of freedom with respect to the design

parameter s. As can be seen, both sensitivity analysis approaches are in good agreement.
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Figure 3: Structural response and sensitivity analysis of the displacement variables u.
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Figure 4 presents the results of the damage variables. Figures 4(a) shows the evolution of the damage parameter

at each Gauss point of the structure; Figure 4(b) shows the evolution of the derivatives of these damage parameters

with respect to the design parameter s. Once again, the sensitivity results are in excellent agreement.
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Figure 4: Structural response an sensitivity analysis of the damage variables D.

8. Conclusion
An analytical approach to the sensitivity analysis of damaged structures for shape optimization has been devel-

oped. The approach combines the extended finite element method and a level set description of the geometry. The

level set function is given as a function of some design parameters. The degradation of materials is described by a

non-local damage model, which reduces the material stiffness by scalar damage value D. The sensitivity analysis is

performed analytically, starting from the discretized governing equations and taking their derivatives with respect

to the design parameters. The proposed analytical approach is validated and compared against finite differences

for a simple benchmark: a bimaterial bar in tension. The sensitivity results obtained with the proposed analytical

approach are in good agreement with finite differences results. In further work, the sensitivity approach is extended

to two dimensional structures and optimization problems including damage constraints are solved.
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1. Abstract
Radial basis function neural network (RBFNN) has been widely used in nonlinear function approximation. In this 
paper, two limits of RBFNN have been handled which are network complexity and large-scale calculation 
respectively. Firstly, network complexity, which results from problems of numerous width parameters 
optimization, is solved by a method of space decomposition based on sensitivity analysis. If a dimension is more 
sensitive to approximation error, the design space along this dimension is decomposed into several subspaces and 
the width parameter in each subspace is regarded as an independent variable and optimized respectively. In this 
way, the number of width parameters to be optimized can be reduced while the flexibility of parameter settings is 
maintained, so that the approximation accuracy and modeling efficiency can be balanced. Secondly, large-scale 
calculations, which come from leave-one-out method for cross validation error estimation, are improved by 
adopting the Pareto law in economic science. According to the Pareto law, referred as “majority is decided by the 
minority”, we propose to choose only those sample points, which play dominant roles on the global errors, as cross 
validation points. Then large-scale calculations can be greatly reduced as the cross validation need not be 
conducted at those samples which have minor effects on the global errors. Combining the space decomposition and 
leave-one-out methods, the improved RBFNN modeling method based on sensitivity analysis and Pareto principle 
can effectively reduce the calculation costs and improves the accurate. Finally, several mathematical examples are 
tested to verify the efficacy of this method. 
2. Keywords: RBFNN, sensitivity analysis, Pareto law 

3. Introduction 
With the development of computer technology, numerical simulation has been playing an increasingly important 
role in modern engineering design, but the huge amount of calculation is always a barrier. In recent years, 
metamodel, also called response surface method, is found to be a valuable tool in simulation areas. A metamodel is 
an approximation to system response constructed from its value at a limited number of selected input values [1]. 
Because of its simplicity and accurate results, it is used to instead of complex and computationally expensive 
systems. 
The commonly used metamodels include Kriging, polynomial response surface model, support vector machine, 
radial basis function,  neural network model et al. As the combination of radial basis function and neural network, 
radial basis function neural network is not only simple but also accurate. It is one of the most suitable 
approximation methods in approximating high nonlinear systems [2]. Especially in modeling the deterministic 
computer experiment response data which are identical each time the simulation is repeated, the interpolation 
modeling feature of RBFNN is very feasible and applicable. In the classical interpolation form of RBFNN, the 
RBF centers of neurons in network hidden layer are the training sample data. The accuracy of the model directly 
depends on the selected basis functions and the training samples [3]. 
With an unknown system, an efficient method to improve the approximation quality is to increase the number of 
sample data, which is also the neuron number in hidden layer of the network. If the number is big, the network 
would be extremely complicated and the calculation efficiency would be influenced. Besides, every sample data 
needs to run the high fidelity model to obtain the system response. If the sample set is too large, the calculation 
burden may be unacceptable. In recent years, the commonly used method to improve the approximation quality is 
shape parameter optimization to instead of increasing the number of sample data. The present research on the 
shape parameter optimization mainly includes two categories:  
a) The shape parameters of all the RBF neurons are fixed to the same value with optimization methods. 
b) The shape parameters of all the RBF neurons are designed respectively with optimization methods. 
In the first category, the shape parameters of all the RBF neurons are set to be the same. It is much easier to design 
and optimize this single parameter, but this simplification may greatly limit the capability of RBFNN in complex 
highly nonlinear approximation problems. The second category designs and optimizes the shape parameter of each 
neuron respectively. Theoretically this method can find the best approximation model, but the giant calculation 
cost of each neuron optimization respectively may be unacceptable. 
In this paper, two limits of RBFNN have been handled which are network complexity and large-scale calculation 
respectively. Actually, network complexity is also the problem of large-scale calculation. Firstly, we propose a 
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new method of space decomposition based on sensitivity analysis to solve the problem of network complexity, 
which results from problems of numerous width parameters optimization. In this way, the number of width 
parameters to be optimized can be reduced while the flexibility of parameter settings is maintained, so that the 
approximation accuracy and modeling efficiency can be balanced. Secondly, we improved the traditional 
leave-one-out method for cross validation error estimation by adopting the Pareto law, to solve the problem of 
large-scale calculations. In this way, large-scale calculations can be greatly reduced. Combining the space 
decomposition and leave-one-out methods, the improved RBFNN modeling method based on sensitivity analysis 
and Pareto principle can effectively reduce the calculation costs and improves the accurate. Finally, several 
mathematical examples are taken to verify the proposed method, and the results are discussed. 

4. RBFNN based on sensitivity analysis and Pareto law 

4.1. RBF neural network 
Radial basis function neural network is essentially an interpolation method. In classical RBFNN model, the 
approximation response is defined as a linear combination of radial functions. The approximation response 
expression is as follows, 

1

ˆ ( )
Ns

i i i
i

y w x x
=

=  (1) 

Ns is the number of hidden layer neurons, which is also the number of sample points. xi is the sample point, and wi

is the output layer weight. i  is the radial basis function of the Euclidean distance 
ix x . ŷ  is the 

approximation response at the unknown point x.
The output weighs constitute a vector W=[w1,w2, ,wNs]T, and the radial basis functions constitute a vector 

T
1 1 2 2( ) [ ( ), ( ), , ( )]Ns Nsx x x x x x x= . Eq.(1) can be written as 

Tˆ ( )y W x=  (2) 

The weight vector W can be obtained from 
1W Y=  (3) 

The accurate responses of sample points constitute the vector T
1 2[ , , , ]NsY y y y= . The expression of matrix 

can be written as 

1 1 1 2 1 2 1

1 2 1 2 2 2 2

1 1 2 2

( , ) ( , ) ( , )
( , ) ( , ) ( , )

( , ) ( , ) ( , )

Ns Ns

Ns Ns

Ns Ns Ns Ns Ns

x x x x x x
x x x x x x

x x x x x x

=  (4) 

The radial basis function ( )i
has many forms such as the Gaussian function, the thin-plate-spline function, the 

multi-quadric function, etc.[4, 5]. As the theoretical investigation and practical results suggest that multi-quadric 
function has a high rate of convergence [6, 7], in this paper we choose multi-quadric function as basis function. We 
use ri substituting the Euclidean distance 

ix x , then the radial basis function can be written as 

2 2
i i ir c= +  (5) 

ci is constant number of each neuron. Because the shape characteristic of basis function is decided by ci, we call ci
the shape parameter. 

4.2. Space decomposition base on sensitivity analysis 
To obtain the high approximation accuracy, we usually choose the second category of shape parameter 
optimization stated in section 3, but the expensive computational cost is a barrier. To improve the computational 
efficiency in solving the shape parameter optimization problem, a method of space decomposition is proposed 
based on sensitivity analysis. We decompose the whole design space into several sub-spaces, and the shape 
parameter in each subspace is regarded as an independent variable and optimized respectively. In this way, the 
number of shape parameters to be optimized can be reduced. Therefore, the large-scale optimization problem is 
decomposed into several sub-problems, each of which has less optimization variables and smaller matrix to 
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manipulate. 
For a n-dimensional design space, a simple method to decompose the space is: if each dimension is divided into m
parts equally, we can obtain mn sub-spaces. This method is simple and easy to operate, but it may encounter a 
problem, dimension disaster. For a 20-dimensional design space, we divide each dimension into 2 parts, then the 
design space is decomposed into 220 sub-spaces. The big number of sub-spaces makes it difficult to complete the 
computation.
Sensitivity analysis is the study of how the change in the output of a mathematical model or system can be 
apportioned to different sources of change in its inputs. It is an important method to solve the complex problem in 
MDO. In this section, a practical approach of space decomposition is proposed based on sensitivity analysis. The 
basic idea of this method includes three parts: 
a) Analyze the sensitivity of each dimension respectively, and arrange these dimensions according to the impact 
on system in an order from largest to smallest. 
b) If a dimension is more sensitive to approximation error, we insist that change in this dimension has larger 
influence to system. Select k dimensions which have largest impact on the system, and divide these dimensions 
into m parts respectively. Then the design space is decomposed into mk sub-spaces and the shape parameter in each 
subspace is regarded as an independent variable and optimized respectively. 
c) If a dimension is less sensitive to approximation error, we insist that change in this dimension has little influence 
to system. Therefore, measures are not taken to this dimension. 
For a 20-dimensional design space, we divide each dimension into 2 parts, then the design space is decomposed 
into 220 sub-spaces. The big number of sub-spaces makes it difficult to complete the computation. 

4.3. Leave-one-out method based on Pareto law 
Leave-one-out method is a cross validation method of estimating the approximation model prediction error. The 
basic ideas of this method are as follows: 
a) For a sample set X=[x1,x2, ,xNs]T, leave out one sample point (1 )ix i Ns , and construct metamodel based on 
the rest of the sample points X-i=[ x1,x2, ,xi-1,xi+1, ,xNs]T.
b) Use this metamodel to predict the response on the leave-out point ˆiy .
c) Calculate the difference e-i between the prediction ˆiy  and the accurate response yi.
Generally speaking, we use RMSE (root of mean square errors) to estimate the global error of metamodel. The 
RMSE is calculated by the following equation: 

2

1

ˆRMSE ( ( ) )
Ns

i i
i

y y Ns
=

=  (6) 

Where Ns is the number of sample points, ˆiy  and yi are the predicted response and accurate response. The smaller 
the value of RMSE, the better accurate the metamodel will be. 
By optimizing Eq.(6), the smallest value of RMSE can be found. But the drawback of this optimization based on 
leave-one-out is large-scale calculations. It will take much time to build the leave one out metamodel for cross 
validation of every point in the sample set, especially for RBFNN which needs large matrix calculation. To save 
cross validation time and calculation cost, we improve the leave-one-out method by Pareto law, which only use 
part of the sample data as the key points to conduct cross validation and build the global error prediction 
metamodel. 
The Pareto law (also known as the law of vital few) states that, for many events, roughly 80% of the effects come 
from 20% of the causes. Therefore, many businesses have an easy access to dramatic improvements by focusing on 
the most effective areas and eliminating, ignoring the rest, as appropriate. 
According to the Pareto law, referred as majority is decided by the minority , we propose to choose only those 
sample points, which play dominant roles on the global errors, as cross validation points. Then large-scale 
calculations can be greatly reduced as the cross validation need not be conducted at those samples which have 
minor effects on the global errors. 
The leave-one-out method is improved by the Pareto law, and the main idea of this method is as follows: 
a) Calculate the square errors 2 (1 )ie i Ns  based on the traditional leave-one-out method by the following 
equation,

22 ˆi i ie y y=  (7) 

b) Rearrange the sample set X=[x1,x2, ,xNs]T, according to the value of 2 (1 )ie i Ns in an order from largest to 
smallest. Then, we obtain the new sample set T

1 2[ , , , ]NsX x x x= .
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c) It is obvious that, those points with larger square error have larger influence on the global error. Choose k points 
with larger square error as Pareto points from the new sample set X  by the following program: 

2

0;
0;

1:
;

1;
( )

;

( );

i

E
m
for i Ns

E E e
m m
if E E

break
end

end
return m

=

=

=

= +

= +  (8) 

Where (0 1)< is a constant, we call it Pareto coefficient. We set it to 0.8. 
d) After determining the Pareto points, the RMSE is calculated by the following equation: 

2

1

ˆRMSE ( ( ) )
k

i i
i

y y k
=

=  (9) 

Where ˆiy  and iy  are the predicted value and accurate value on the point ix .

4.4. The method of SAPRBFNN 
Combining the space decomposition and leave-one-out methods, the RBFNN modeling method based on 
sensitivity analysis and Pareto principle (SAPRBFNN) is proposed. The flowchart of SAPRBFNN is shown in 
Fig.1.
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Figure 1: SAPRBFNN modeling flowchart 

The proposed method mainly includes the following parts: 
a) Collection of sample points. In this paper, an optimum Latin hypercube design method is utilized to construct 
the uniformly distributed sample points filling the design space. 
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b) Sensitivity analysis. Analyze the sensitivity of each dimension respectively, and arrange these dimensions 
according to the impact on system in an order from largest to smallest. 
c) Space decomposition. Select k dimensions which have largest impact on the system, and divide these 
dimensions into m parts respectively. Then the design space is decomposed into mk sub-spaces and the shape 
parameter in each subspace is regarded as an independent variable and optimized respectively.
d) Construct metamodel in each sub-space respectively. 
e) Optimize shape parameters based on Pareto law. Determine the Pareto points of each sub-space, and then 
calculate RMSE by Eq.(9). The shape parameter in each subspace is regarded as an independent variable and 
optimized respectively. 
f) Judge the convergence of the optimization. When RMSE reaches the required accuracy threshold, the 
optimization process terminates. 

5. Tests of SAPRBFNN 
Now we will test SAPRBFNN using Camelback function and a 7-dimensional function. All the two functions are 
constructed through optimum Latin hypercube design sampling strategy. 

5.1. Camelback function 
2 4 2 2 2

1 2 1 1 1 1 2 2 2 1 2( , ) (4 2.1 / 3) (4 4) , [ 1,1], [ 1,1]f x x x x x x x x x x x= + + +         (10) 

The sample set is composed of 100 uniformly distributed points in the design space designed by optimum Latin 
hypercube design method. Comparing the traditional RBFNN and SAPRBFNN, and the results are shown in Fig. 2 
and Table 1. 

(a)Accurate function (b)RBFNN modeling result (c)SAPRBFNN modeling result

Figure 2: Test result of Camelback function 

Table 1: Test result of Camelback function

Method Shape parameter Percentage of 
validation points RMSE

RBFNN    0.0451

SAPRBFNN

Subspace 1 
Subspace 2 
Subspace 3 
Subspace 4 

0.3189
0.1046
0.3305
0.0098

17%
8%

11%
16%

0.0460

5.2. 7-dimensional function 
2 2 2 2

1 2 3 3 1 6 7
3 3 2 2
6 7 4 6 5 7

( ) 0.7854 (3.3333 14.9334 43.0934) 1.5079 ( )

7.477( ) 0.7854( ) 5i

f x x x x x x x x

x x x x x x x

= + + +

+ + +      ,   1
 (11) 

The sample set is composed of 300 uniformly distributed points in the design space designed by optimum Latin 
hypercube design method. Firstly, analyzing the sensitivity of this function. After the normalization process, the 
results of sensitivity analysis is depicted in Fig. 3. It is obvious that x2 and x3 are more sensitive than other variables. 
Therefore, these two dimensions is divided into 2 parts respectively. Then the design space is decomposed into 4 
sub-spaces. Comparing the traditional RBFNN and SAPRBFNN, and the results are shown in Table 2. 
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6

Figure 3: Sensitivity analysis 

Table 2: Test result of 7-dimensional function 

Method Shape parameter Percentage of 
validation points RMSE

RBFNN    93.7760

SAPRBFNN

Subspace 1 
Subspace 2 
Subspace 3 
Subspace 4 

0.2886
0.5836
1.0060
0.0198

18%
20%
19%
19%

97.2409

6. Discussions and conclusions 
From Camelback function, the number of shape parameters is decreased from 100 to 4, and the percentage of 
validation points (Pareto points) in all sample points is less than 20%. As the Fig. 3 shows, the accuracy remains 
almost the same with the traditional RBFNN. The RMSE test also supports the judgment. For 7-dimensional 
function, we can draw the same conclusion.  
In this paper, two limits of RBFNN have been handled which are network complexity and large-scale calculation. 
Firstly, a method of space decomposition based on sensitivity analysis is proposed to solve network complexity, 
which results from problems of numerous width parameters optimization. In this way, the number of width 
parameters to be optimized can be reduced while the flexibility of parameter settings is maintained, so that the 
approximation accuracy and modeling efficiency can be balanced. Secondly, the leave-one-out is improved by 
Pareto law to solve the problem of large-scale calculations, which come from cross validation error estimation. 
Then large-scale calculations can be greatly reduced as the cross validation need not be conducted at those samples 
which have minor effects on the global errors. The results of the benchmark functions show that, the proposed 
SAPRBFNN which combining the space decomposition based on sensitivity analysis and leave-one-out based on 
Pareto law can effectively reduce the calculation costs. Most importantly, the accuracy remains almost the same 
with the traditional RBFNN. Further research of this method should be conducted in high dimensional problems 
and engineering application problems. 
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1. Abstract
When designing complex structures, optimization can play a major role. The most common procedure uses finite

element analysis conducted on a mesh of the shape. Since the mesh is an approximation of the structure geometry,

the quality of the simulations and consequently the optimization results are often downgraded. In this paper, we

propose a computation method using the exact shape geometry for multi-shells structures. This method is based

on isogeometric approach and allows to get better computation and optimization results.

2. Keywords: Isogeometry, Thin Shell, Shell Junctions, Shape Optimization.

3. Introduction
In order to conceive better products, industrial projects use more and more optimization methods during the nu-

merical design process. The common work-flow relies on different steps. Each of these steps requires a particular

expertise. In the case of automotive industry, designers create a parameterized shape, known as the CAD model,

then engineers mesh it and run simulations using finite elements analysis to carry out the shape optimization [12].

This standard process raises several limitations such as: the design time, the computational cost and one of the

most important, the return to a CAD model from a mesh after computation, which can corrupt the optimization

expectations. To offset these limitations, some methods like the isogeometric approach have been proposed. The

isogeometric consists on running computations directly on the shape by using the exact geometry of the shape to

perform the finite elements analysis[6], [7]. Thereby, the difficulty of the CAD return disappears since the opti-

mization is conducted on the geometry described by the CAD model. In this paper, we propose a method based

on the isogeometric approach for surface shape using deep shell models. As they enable high curvature variations,

deep shells represent a great interest in the automotive industry and for shape optimization. The technique we

present uses shape functions based on Bézier’s patches of the CAD model. Since complex structures are designed

with the help of multiple CAD patches, we consider each patch as a Koiter’s shell and we ensure the connections

between patches with shell junctions. This process enables to carry out optimization on shape with discontinuous

curvature. In the first part of this paper, we recall the Koiter’s shell model, deal with shell junctions in the next and

finally we present the results of an optimization test case.

4. Koiter’s shell linear model
Thin shells are used as components in many industrial structures and thus are a real concern in numerical simula-

tion. In this paper, we will use the Einstein’s summation convention. Both Greek indices or exponents take their

values in {1,2} while Roman are in {1,2,3} .

4.1. Description of a thin shell geometry

Let Ω be a open subset in a plane E 2,the euclidean space, with a boundary noted Γ. The middle surface S of a

shell is defined as the image in E 3 of Ω by a mapping �φ ∈ (C 3(Ω))3:

�φ : (ξ 1,ξ 2) ∈ Ω ⊂ E 2 → �φ(ξ 1,ξ 2) ∈ S ⊂ E 3 (1)

φ is called the shape function and Ω the reference domain, which is independent from the shape. The mechan-

ical equations are formulated on the reference domain in curvilinear coordinates. In the interest of formulating

the mechanical equations, we recall some differential geometry entities. We define the two linearly independent

vectors �aα = �φ,α = ∂φ/∂ξ α , α = 1,2 for all points ξ = (ξ 1,ξ 2) ∈ Ω. The (aα) vectors define the tangent

plane to the middle surface. With the unit normal vector �a3 = �a1 ∧ �a2/|�a1 ∧ �a2|, they constitute the covariant ba-

sis. Associated to the covariant basis, the contravariant basis is defined through the relation �aα .�aβ = δ α
β where

1
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ξ1

ξ2

3D surface

Ω S
•

•

φ(ξ1,ξ2) �a3
�aα

�aβ

Figure 1: Definition of the middle surface

δ α
β is the Kronecker’s symbol. The first fundamental covariant form is given by aαβ = aβα = �aα .�aβ and the

second by bαβ = bβα = −�aα .�a3,β = �a3.�aα,β = �a3.�aβ ,α . The mixed components of the second fundamental

form are defined by bβ
α = aβλ bλα with aαβ = �aα .�aβ . Finally, in order to compute the basis vector derivative,

�aα,β = Γγ
αβ�aγ +bαβ�a3; �aα

,β =−Γα
βλ +bα

β�a3; �a3,α =�a3
,α =−bγ

α�aγ . Christoffel’s symbols are also used to com-

pute the covariant derivative of surface tensors: Tα|γ = Tα,γ −Γλ
αγ T λ ; T α |γ = T α

,γ +Γλ
λγ T λ . The origin and the

relations between all these entities are detailed in [6].

4.2. Koiter’s shell model

The Koiter’s thin shell model was introduced by W. T. Koiter in 1966. The linear model relies on the Kirchhoff-

Love assumptions: straight lines normal to the middle surface remain normal to the middle surface after defor-

mation and the stresses remain plane and parallel to the tangent plane of the middle surface. We assume that the

shell is clamped along a part Γ0 of its boundary and that it is loaded on its complementary part Γ1 by a distributed

force �N and a distributed moment �M. We also suppose that �p is the external loads referred to the middle surface

and �ψ(�v) is the infinitesimal rotation vector such as �ψ(�v) = ελβ (v3,β + bα
β vα)�aλ +

1

2
ελβ vβ |λ�a3. The variational

formulation of Koiter’s linear model is

Find �u ∈�V such as a(�u,�v) = f (�v), ∀�v ∈�V (2)

where

a(�u,�v) =
∫

Ω
eEαβλ μ

[
γαβ (�u)γλ μ(�v)+

e2

12
ραβ (�u)ρλ μ(�v)

]√
adξ 1dξ 2 (3)

f (�v) =
∫

Ω
�p�v

√
adξ 1dξ 2 +

∫
Γ1

�N�v+ �M�ψ(�v)ds (4)

and

�V =
{
�v = (vα ,v3) ∈ ((H1(Ω))2 ×H2(Ω)); �v|Γ0

=�0,
∂v3

∂n

∣∣∣
Γ0

= 0
}

(5)

with�u = (u1,u2,u3) the displacement of the middle surface, e the shell thickness,
√

a = |�a1∧�a2|, Eαβλγ the elastic

modulus tensor for plane stresses, γαβ (�u) the middle surface strain tensor, and ραβ (�u) the modified change of cur-

vature tensor. The expression of these tensors are given by: Eαβλ μ = E
2(1+ν)

[
aλ μ aβ μ +aαμ aβλ + 2ν

1−ν aαβ aλ μ
]
,

γαβ (�u) =
1
2

(
uα|β + uβ |α

)
− bαβ u3, and ραβ (�u) = −(u3|αβ − bλ

α bλβ u3 + bλ
α|β uλ + bλ

α uλ |β + bλ
β uλ |α) where E is

Young’s modulus ans ν is Poisson’s ratio.

Complex structures are made of multiple shells. To conduct satisfying simulations, each shell must have a good

approximation as well as the description of their junctions.

5. Shells junction
5.1. Description of the shells junction problem

In the case of a structure composed of shells connected with C 1 geometric continuity, the equality of the displace-

ment from either side of a junction may be a sufficient condition to ensure the quality of the simulation. However,

some constructions like the body frame of a car body are assemblies of several shells with C 0 geometric continuity.

In order to treat these parts, we propose to implement the Koiter’s shells junction equation described in [2] and [3].

Let S and S̃ be two middle surfaces of two shells sharing a common boundary, known as the hinge Γ. S and

S̃ are the images of reference domains Ω and Ω̃ by the mappings �φ and �̃φ . We suppose that S , respectively S̃ ,

is clamped along a part ∂S0, respectively ∂S̃0, and loaded along a part ∂S1, respectively ∂S̃1. Let �p, respec-

tively �̃p, be the external load to the middle surface S , respectively S̃ , �N (respectively �̃N), the distributed force

2
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on ∂S1, respectively ∂S̃1, and �M respectively �̃M the distributed moment. We note γ = φ−1(Γ) and γ̃ = φ̃−1(Γ̃).
The figure 2 shows the problem configuration. The action-reaction principle enforces the transmission of stresses.

ξ1

ξ2

Ω γ
•

ξ̃1

ξ̃2

Ω̃γ̃
•

S̃
∂S̃

S
∂S Γ• •

�φ �̃φ

�e1
�e2

�e3

Figure 2: Junction between two shells

Therefore, �N(P) = �̃N(P) and �M(P) = �̃M(P). In [2] and [3], two types of hinge behaviour are considered:

• the rigid behaviour for which the continuity of the displacements and the continuity of the tangential rotations

along the hinge Γ are ensured: �u(P) =�̃u(P) (�ψ.�t)(P) = (�̃ψ.�t)(P) = (�t.�̃t)(�̃ψ.�̃t)(P) ∀P ∈ Γ

• the elastic behaviour for which only the continuity of the displacements is ensured:

�u(P) = �̃u(P) Mn(P) = k[(�ψ − �̃ψ).�t](P), ∀P ∈ Γ. The tangential component of moment is proportional

to the jump of the tangential components of the rotations along the hinge. The coefficient k represents the

elastic stiffness along the hinge.

�ψ being the infinitesimal rotation vector and�t, respectively�̃t, the tangent vector to Γ in the tangent plane to S ,

respectively S̃ . We also introduce the normal vector �n, respectively �̃n, to the boundary Γ in the tangent plane to

S , respectively S̃ .

The variational formulations of the junction problems are determined by summing the Koiter’s formulation on each

shell and applying the relations expressed above.

5.2. Variational formulations

The variational formulation for a junction problem with an elastic hinge is:

Find (�u,�̃u) ∈Welas such as a[(�u,�̃u),(�v,�̃v)]+ kb[(�u,�̃u),(�v,�̃v)] = l(�v,�̃v) ∀(�v,�̃v) ∈Welas (6)

where

Welas = {(�v,�̃v) ∈�V ×�̃V , �v =�̃v on γ } (7)

and ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a[(�u,�̃u),(�v,�̃v)] =

∫
Ω

eEαβλ μ
[

γαβ (�u)γλ μ(�v)+
e2

12
ραβ (�u)ρλ μ(�v)

]√
adξ 1dξ 2+

∫
Ω̃

ẽẼαβλ μ
[

γ̃αβ (�̃u)γ̃λ μ(�̃v)+
ẽ2

12
ρ̃αβ (�̃u)ρ̃λ μ(�̃v)

]√
ãdξ̃ 1dξ̃ 2

(8)

b[(�u,�̃u),(�v,�̃v)] =
∫

γ
[nβ (u3,β +bα

β uα)− ñβ (�t.�̃t)(ũ3,β + b̃α
β ũα)][nβ (v3,β +bα

β vα)− ñβ (�t.�̃t)(ṽ3,β + b̃α
β ṽα)]dγ (9)

l(�v,�̃v) =
∫

Ω
�p�v

√
adξ 1dξ 2 +

∫
∂Ω1

�N�v+ �M�ψ(�v)ds+
∫

Ω̃
�̃p�̃v

√
ãdξ̃ 1dξ̃ 2 +

∫
∂ Ω̃1

�̃N�̃v+ �M�̃ψ(�̃v)ds̃ (10)

The variational formulation for a junction problem with a rigid hinge is given by:

Find (�u,�̃u) ∈Wrig such as a[(�u,�̃u),(�v,�̃v)] = l(�v,�̃v) ∀(�v,�̃v) ∈Wrig (11)

where:

Wrig = {(�v,�̃v) ∈�V ×�̃V , �v =�̃v on γ ; nβ (v3,β +bα
β vα)− (�t.�̃t)ñβ (ṽ3,β + b̃α

β ṽα) = 0 on γ} (12)

3
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and a and l correspond to (8) and (10).

The proofs of these results are presented in [3]. Each of these problems admits a unique solution. What is more,

the solution of elastic hinge problem converges strongly to the solution of the rigid hinge problem when k tends to

infinity.

6. Application of the method in an optimization process
As explained previously, the interest in using an isogeometric approach is the idea of working on the exact geome-

try of the shape. This approach can be useful in a shape optimization work-flow when at the end of the optimization

the return to a CAD model is immediate. Some optimization results using the same method for one patch are pre-

sented in [10]. In this paragraph, we will combine our method with an optimization problem and present the first

results.

6.1. The shape function

The shape function �φ is the link between the reference domain in dimension 2, Ω, and the surface in dimension 3.

In order to describe an exact geometric model, CAD model patches are used to define the shape functions. Several

types of patches can be used in CAD modelling. Bézier’s surfaces, B-Spline surfaces or NURBS constitute some

of them. The definition and properties of these surfaces are detailed in [11]. In our case, Bézier’s surfaces are the

components of the shape functions. A Bézier’s surface is defined as a tensor product of two Bézier’s curves. The

expression of a Bézier’s curve of degree n is given by:

C (u) =
n

∑
i=0

Bi,n(u)Pi 0 ≤ u ≤ 1 (13)

where the basis functions {Bi,n(u)}= n!
i!(n−i)! ui(1−u)n−i are Bernstein polynomials of degree n. The coefficient Pi

are called the control points or poles and are the geometric coefficient that tune the curve. Thus, a Bézier’s surface

of degree n and m can be expressed by:

B(u,v) =
n

∑
i=0

m

∑
j=0

Bi,n(u)B j,m(v)Pi, j 0 ≤ u,v ≤ 1 (14)

CAD models are composed of multiple patches. In our approach, we consider each patch as a shell and ensure the

Figure 3: Example of a Bézier surface of degree 3

connection between them with shells junction conditions. As Bézier’s surfaces are defined by their control points,

these poles will be the optimization’s variables. In comparison, for a classical industrial optimization problem,

the number optimization variables matches the number of the shape’s nodes mesh, which can be significant. By

choosing the control points as variables, the dimension of the optimization problem substantially decreases.

6.2. The optimization problem

As a test case, we considered the optimization of the plate shape presented in Figure 4 under a compliance criteria.

We supposed that the structure, modeled by two Bézier’s patches of degree 5, is supported on its curved edges and

subjected to self weight. A shape optimization problem is composed of an objective function J(�φ) to minimize and

a state equation depending on the shape function φ , and a space of admissible shapes Gad . In this application, the

state equation is given by the equations (6) or (11). The space of admissible shapes is described by the constraints

on the control points of the surfaces. The studied optimization problem is:{
min

φ∈Gad
J(�φ , �up)

sub ject to {Find �up ∈W such as ap(�φ , �up, �vp) = fp(�φ , �vp) ∀�up ∈W}
(15)

4
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•A

•B

•C

•Dα

AB = BC = 10

α = 60o

e = 0.025

E = 4.32.108

ν = 0.0

Figure 4: Description of the shape of the test case

where�up =(�u,�̃u) and�vp =(�v,�̃v). The state equation depends on the type of junction. For an elastic hinge W =Welas

from (7) and ap(�φ , �up, �vp)= a[(�u,�̃u),(�v,�̃v)]+kb[(�u,�̃u),(�v,�̃v)] from (8) and (9). For a rigid hinge W =Wrig from (12)

and ap(�φ , �up, �vp) = a[(�u,�̃u),(�v,�̃v)] from (8). In both configurations, fp(�φ , �vp) = l(�v,�̃v) with l from (10). Since the

optimization criteria is the compliance J(�φ , �up) =
1

2
ap(�φ , �up, �up), the space of admissible shapes Gad depends on

the constraints imposed to the shape. Its definition is crucial as it has a direct impact on the existence of a solution

to the optimization problem. We have chosen as optimization variables only the z coordinates of the control net.

Regarding the constraints, we imposed the equality of the poles located on the hinge and that the area of the optimal

shape must be around ±15% of the area of the original surface. The problem (15) admits at least one solution with

theses conditions. The algortihm used for the optimization is the Powell’s free-derivative algorithm COBYLA.

6.3. Results

The result provided by the algorithm is the shape displayed on Figure 5(b). The compliance has droped by 24%

and the area has increased of 12% approximately. The new shape presents more curvatures and thus is more

subjected to membrane deformations than bending deformations that stiffen the structure. It has been observed

that discontinuous curvature appeared during the optimization especially at the point (D). The implementation of

the shell junction allows to carry on computations even with this discontinuity. Those results are encouraging and

corroborate the efficiency of the method. The next step in this work will consist in comparing the results with other

examples in the litterature [5],[8],[13].

(a) original shape (b) optimized shape

Figure 5: Original shape and optimization result

7. Conclusion
The application showed that the proposed method can be integrated in a shape optimization process with a result

given in the form of a CAD model. On the other hand, several shapes could be considered, even shapes with

discontinuous curvature. However, as mentionned previously, the definition of the optimization problem can raise

some difficulties. Indeed, as in every shape optimization problem, the space of admissible solution must be care-

fully chosen in order to ensure the existence of a solution. Besides, in the application case, as the optimization

variables are control points, the shape constraints must be expressed on the control points, which can be difficult

ine some cases.
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1. Abstract
For a few decades topology optimization has been one of the most important aspects of structural design. One of

the most important issues stimulating permanent development of this research area is implementation of efficient

and versatile methods for generation of optimal topologies. Many modern computational techniques are nowa-

days invented so as to perform similarly to biological systems. They have gained widespread popularity among

researchers because they are easy for numerical implementation, do not require gradient information, and one can

easily combine this type of algorithms with any finite element structural analysis code. Among biologically in-

spired methods, which have recently aroused interest of designers one can find also Cellular Automata (CA). The

idea of Cellular Automata is to replace a complex problem by a sequence of relatively simple decision making

steps. In engineering implementation of Cellular Automaton the design domain is decomposed into a lattice of

cells, and a particular cell together with cells to which it is connected form neighborhood. It is assumed that the in-

teraction between cells takes place only within the neighborhood, and the states of cells are updated synchronously

in subsequent time steps according to some local rules. In recent years the Cellular Automata concept has been

successfully applied to structural topology optimization problems. The majority of results that have been obtained

so far were based on regular lattices of cells. Practical engineering analysis and design require however using, in

many cases, highly irregular meshes for complicated geometries and/or stress concentration regions. The aim of

the present paper is to extend the concept of Cellular Automata towards implementation of unstructured grid of

cells related to non-regular mesh of finite elements. Introducing irregular lattice of cells allows to reduce number of

design variables without loosing accuracy of results and without excessive increase of number of elements caused

by using fine mesh for a whole structure. It is worth noting that the non-uniform density of finite elements can

be, but not necessary is, directly related to design variables which are related to cells of Cellular Automaton. The

implementation of non-uniform cells of Cellular Automaton requires a reformulation of standard local rules, for

which the influence of neighborhood on current cell is independent of sizes of neighboring cells.

2 . Keywords: topology optimization, Cellular Automata, unstructured mesh.

3. Introduction
Topology optimization of structures is a permanently developing research area. Since the early paper by Bendsoe

and Kikuchi [1] one can find in the literature numerous approaches to generating optimal topologies based both

on optimality criteria and evolutionary methods. A general overview as well as a broad discussion on topology

optimization concepts are provided by many survey papers e.g. [10], [12]. At the same time hundreds of pa-

pers present numerous solutions including classic Michell examples as well as complicated spatial engineering

structures, implementing specific methods ranging from gradient based approaches to evolutionary structural op-

timization, biologically inspired algorithms, material cloud method, spline based topology optimization and level

set method. It is a permanently developing area and one of the most important issues stimulating this progress

nowadays is implementation of efficient and versatile methods to generation of optimal topologies for engineering

structural elements. In recent years the Cellular Automata paradigm has been successfully applied to topology

optimization problems. In engineering implementation of Cellular Automaton the design domain is decomposed

into a lattice of cells, and a particular cell together with cells to which it is connected form neighborhood. It is

assumed that the interaction between cells takes place only within the neighborhood, and the states of cells are

updated synchronously according to some local rules. The first application of CA to optimal structural design,

and to topology optimization in particular, was proposed by Inou et al. [5]. The idea of implementation of CA

to optimal design was described also by Kita and Toyoda [6]. During the last two decades implementation of CA

in structural design has been under permanent development, and numerous papers related to application of CA to

topology optimization, see e.g. [2], [3], [4], [8], [11] or [14], have been published.

The majority of structural topology optimization results that have been obtained so far were based on regular

lattices of cells, among which the most common choice is a rectangular grid. One can find only isolated examples

of implementation of triangular or hexagonal lattices. Practical engineering analysis and design require however
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using, in many cases, highly irregular meshes for complicated geometries and/or stress concentration regions. The

aim of the present paper is to extend the concept of Cellular Automata lattice towards irregular grid of cells related

to non-regular mesh of finite elements. The strategy which consists of resizing of traditional uniform grid of cells

allows to obtain more flexible solutions. The advantage of using of non-uniform lattice of cells is the most evident,

when the design domain is extremely irregular and it is even impossible to cover design domain with uniform e.g.

rectangular cells. On the other hand, it is well known, that holes and sharp edges indicate stress concentration,

and the regions of such intensity should be covered with a more fine mesh, what is not necessary for structure as a

whole. In other words, a non-uniform density of cells is used in order to achieve a more accurate solution without

excessive increase of number of elements caused by using fine mesh for a whole structure. It is worth noting that

the non-uniform density of finite elements can be, but not necessary is, directly related to desity of cells of Cellular

Automaton. The implementation of non-uniform cells of Cellular Automaton requires a reformulation of standard

local rules, for which the influence of neighborhood on current cell is independent of sizes of neighboring cells

and neglects for example the length of mutual boundaries. This paper proposes therefore new local update rules

dedicated to implemented irregular lattices of cells. The novel concept is discussed in detail and the performance

of the numerical algorithm based on the introduced idea is presented.

4. Unstructured Cellular Automata
Most of to date applications of Cellular Automata in structural optimization are conventionally based on regularly

spaced, structured meshes. On the other hand using unstructured computational meshes provides more flexibility

for fitting complicated geometries and allows local mesh refinement. Some attempts to implement unstructured

Cellular Automata have been already reported in the literature e.g. [7], [9], but application to topology optimiza-

tion is rather incidental (see [13]).

Figure 1: Unstructured triangular mesh. The von Neuman type neighborhood (left) and the Moore type neighbor-

hood (right)

In this paper the concept of topology generator based on Cellular Automata rules is extended to unstructured

meshes. Similar to structured (regular) Cellular Automata, several neighborhood schemes can be identified. The

two most common ones are the von Neumann type and the Moore type. As can be seen in the Fig.1 in case of

the von Neumann configuration only three immediate neighbors are taken into account. These neighboring cells

share common edges with the central cell. In the Moore type neighborhood any triangle that has common edges

or common vertices with the central cell can be considered as a neighbor of the central triangle. It is worth noting

that this type of neighborhood involves more neighbors around the central cell, and the number of neighbors can

vary since it depends on particular unstructured mesh arrangement.

5. The algorithm
The performance of Cellular Automata algorithms, reported in literature, is often based on heuristic local rules.

Similarly, in the present paper the efficient heuristic algorithm, being extension of the one introduced by Bochenek

and Tajs-Zielińska [2], [3], has been implemented. The power law approach defining solid isotropic material with

penalization (SIMP) with design variables being relative densities of a material has been utilized. The elastic

modulus of each cell element is modelled as a function of relative density di using power law, according to Eq.(1).

This power p penalizes intermediate densities and drives design to a solid/void structure.

Ei = dp
i E0, dmin ≤ di ≤ 1 (1)
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The local update rule applied to design variables di associated with central cells is now constructed based on the

information gathered from adjacent cells forming the Moore or von Neumann type neighborhood. It is set up

as linear combination of design variables corrections with coefficients, the values of which are influenced by the

states of the neighborhood surrounding each cell, as presented in Eq.(2):

d(t+1)
i = d(t)

i +δdi, δdi = (α0 +
N

∑
k=1

αk)m = α̃m (2)

The compliance values calculated for central cell Ui and N neighboring cells Uik are compared to a selected thresh-

old value U∗. The quantities Ai and Aik stand for areas of central and neighboring cells, respectively. Based

on relations Eq.(3) and Eq.(4) specially selected positive or negative coefficients Cα0
for central cell and Cα for

surrounding cells are transferred to the design variable update.

α0 =

⎧⎨⎩
−Cα0

if Ui ≤U∗

Cα0
if Ui >U∗

(3)

αk =

⎧⎪⎨⎪⎩
−Cα if Uik

Aik

Ai
≤U∗

Cα if Uik
Aik

Ai
>U∗

(4)

The move limit m implemented in the above algorithm controls the allowable changes of the design variables val-

ues. The numerical algorithm has been build in order to implement the above proposed design rule. As to the

optimization procedure the sequential approach, has been adapted, meaning that for each iteration, the structural

analysis performed for the optimized element is followed by the local updating process. Simultaneously a global

volume constraint can be applied for specified volume fraction. If so the generated optimal topology preserves a

specified volume fraction of a solid material.

Figure 2: The rectangular Michell-type structure

Figure 3: The rectangular Michell-type structure. Irregular meshing

6. Generation of optimal topologies
Selected examples of compliance-based topologies generated using the approach presented in this article are dis-

cussed in this section. The first one it is a rectangular Michell-type structure , clamped at the left edge and loaded
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Figure 4: The rectangular Michell-type structure, force P=500 N, a=5m, material data E=200 GPa, ν=0.3. Final

compliance: 8.58 10−5 Nm (left) and 8.62 10−5 Nm (right).

Figure 5: The L-shaped structure

by a vertical force applied at the bottom right corner, see Fig.2. The irregular mesh that consists of triangular

elements/cells has been applied. The more dense mesh surrounds right bottom corner of the rectangle, as shown

in the Fig.3. The two cases are considered, namely larger and smaller area of mesh concentration. The topology

optimization has been performed and the obtained results are presented in the Fig.4, with final compliance 8.58

10−5 Nm for total number of cells 10594 and 8.62 10−5 Nm for 10439 cells, respectively. The latter case represents

more dense mesh surrounding stress concentration region. Calculating von Mises stress gives maximal values of

11.9 kPa for less concentrated and 14.8 kPa for more concentrated mesh. It is worth noting that in order to reflect

such stress values with regular meshes it is necessary to use 28056 and 42230 cells, respectively.

Figure 6: The L-shaped structure. Irregular (left) and regular (right) lattice of cells

The next example it is the L-shaped structure shown in the Fig.5. The unstructured mesh that consists of tri-

angular elements/cells has been applied. The more dense mesh surrounds two corners within stress concentration
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Figure 7: The L-shaped structure, force P=100 N, a=0.8 m, material data E=200 GPa, ν=0.3. Final compliance:

Irregular lattice of 11396 cells 4.1 10−6 Nm (left) and regular lattice of 36490 cells 4.0 10−6 Nm (right), volume

fraction 0.5

Figure 8: The Hook structure. Loading and support (left), irregular lattice (right)

regions as shown in the Fig.6. The exemplary regular mesh is presented as well. The topology optimization has

been performed and the obtained results are presented in the Fig.7, with final compliance 4.1 10−6 Nm for irregular

lattice of 11396 cells and 4.0 10−6 Nm for regular lattice of 36490 cells, respectively. Calculating von Mises stress

gives maximal value of 38.5 kPa for both unstructured and regular mesh. It is worth noting that in order to obtain

comparable results more than 3 times more cells for regular mesh were required.

The final example it is the Hook structure shown in the Fig.8. As for the previous cases, the irregular/unstructured

mesh that consists of triangular elements/cells has been applied. The more dense mesh surrounds region of loading

application. The minimal compliance topologies have been found for the considered structure and the obtained

results are presented in the Fig.9 for two cases of volume fraction.

7. Concluding remark
The proposal of extension of Cellular Automata concept towards unstructured/irregular grid of cells related to non-

regular mesh of finite elements has been presented. The subject is still under development but it seems that the

approach presented in this paper demonstrates a significant potential of application to problems which cannot be

adequately represented by regular grids. The use of unstructured meshes may be helpful while modelling a domain

geometry, accurately specify design loads or supports and compute structure response.
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Figure 9: The Hook structure, loading q=1.67 N/mm, material data E=200 GPa, ν=0.25. Final topology, volume

fracture 0.5 (left), volume fracture 0.35 (right)
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[3] B. Bochenek and K. Tajs-Zielińska, Topology optimization with efficient rules of cellular automata, Engineer-
ing Computations, 30, 8, 1086-1106, 2013.

[4] Y. Du, D. Chen, X. Xiang, Q. Tian and Y. Zhang, Topological design of structures using a cellular automata

method, Computer Modeling in Engineering and Sciences, 94, 1, 53-75, 2013.

[5] N. Inou, N. Shimotai and T. Uesugi, A cellular automaton generating topological structures, Proceedings of
the 2nd European Conference on Smart Structures and Materials, 2361, 47-50, 1994.

[6] E. Kita and T. Toyoda, Structural design using cellular automata, Structural and Multidisciplinary Optimiza-
tion, 19, 64-73, 2000.

[7] Y. Lin, A.E. Mynett and H. Li, Unstructured Cellular Automata for modelling macrophyte dynamics, Journal
of River Basin Management, 9, 3-4, 205-220, 2011.

[8] S. Missoum, Z. Gurdal and S. Setoodeh, Study of a new local update scheme for cellular automata in structural

design. Structural and Multidisciplinary Optimization, 29, 103-112, 2005.

[9] D. O Sullivan, Exploring spatial process dynamics using irregular cellular automaton models, Geographical
Analysis, 33, 1, 1-18, 2001.

[10] G.I.N. Rozvany, A critical review of established methods of structural topology optimization, Structural and
Multidisciplinary Optimization, 37, 217-237, 2008.

[11] E. Sanaei and M. Babaei, Cellular Automata in topology optimization of continuum structures, International
Journal of Engineering Science and Technology, 3, 4, 27-41, 2011.

[12] O. Sigmund and K. Maute, Topology optimization approaches, Structural and Multidisciplinary Optimiza-
tion, 48, 1031-1055, 2013.

[13] C. Talischi, G.H. Paulino, A. Pereira and I.F.M. Menezes, PolyTop: a Matlab implementation of a general

topology optimization framework using unstructured polygonal finite element meshes, Structural and Mul-
tidisciplinary Optimization, 45, 329-357, 2012.

[14] A. Tovar, N.M. Patel, G.L. Niebur, M. Sen and J.E. Renaud, Topology optimization using a hybrid cellular

automaton method with local control rules, Journal of Mechanical Design, 128, 1205-1216, 2006.

6

651

Leo
Rectangle



11th World Congress on Structural and Multidisciplinary Optimization
7th - 12th, June 2015, Sydney Australia

Topology optimisation of passive coolers for light-emitting diode lamps

Joe Alexandersen1, Ole Sigmund, Niels Aage

Department of Mechanical Engineering, Technical University of Denmark
1 joealex@mek.dtu.dk

1. Abstract
This work applies topology optimisation to the design of passive coolers for light-emitting diode (LED) lamps.

The heat sinks are cooled by the natural convection currents arising from the temperature difference between the

LED lamp and the surrounding air. A large scale parallel computational framework is used to perform topology

optimisation for minimising the temperature of the LED package subjected to highly convection-dominated heat

transfer.

The governing equations are the steady-state incompressible Navier-Stokes equations coupled to the thermal

convection-diffusion equation through the Bousinessq approximation. The fully coupled non-linear multiphysics

system is discretised using stabilised trilinear equal-order finite elements and solved using Newtons method and a

multigrid-preconditioned iterative method. Topology optimisation is carried out using the density-based approach.

The optimisation results show interesting features that are currently being incorporated into industrial designs

for enhanced passive cooling abilities.

2. Keywords: topology optimisation, passive cooler, LED lamp, heat sink design, natural convection.

3. Introduction and motivation
The motivation for this work is the design of efficient and visually-pleasing passive coolers for LED lamps. LED

lamps are a highly energy-efficient light source, however, it remains a problem to adequately cool them. This is

a problem since around 70% of the energy supplied to an LED is converted to heat, which severely affects their

lifespan unless effectively cooled. From an industrial design perspective, LEDs offer a large degree of design

freedom since LED units are generally quite small and the passive cooling elements have the opportunity to make

up the majority of the full lamp design as illustrated by figure 1.

Figure 1: Design concept of a high-power LED spot with a 3D printed aluminium heat sink for passive cooling.

Pictures are courtesy of AT Lightning Aps.

In order to fully utilise the design freedom and to allow for the appearance of non-intuitive designs, topology

optimisation [1] is used. This is done using the density-based approach as detailed in [2] for two-dimensional

natural convection problems. Despite the methodology being the same, the extension to three-dimensions has been

far from trivial in the sense of the vast growth in computational workload. Topology optimisation for fluid systems

began with the treatment of Stokes flow [3] and has since been applied to Navier-Stokes, as well as scalar transport

problems. However, to the authors knowledge, this work is the first to treat a real-life application using a correct

and coupled physical model.

1

652

Leo
Rectangle



4. Theory

4.1. Governing equations

The incompressible Navier-Stokes equations are coupled to the convection-diffusion equation through the Boussi-

nesq assumption. The dimensionless equations are:

u j
∂ui

∂x j
−Pr

∂
∂x j

(
∂ui

∂x j
+

∂u j

∂xi

)
+

∂ p
∂xi

=−α(x)ui −GrPr2 eg
i T (1)

∂u j

∂x j
= 0 (2)

u j
∂T
∂x j

− ∂
∂x j

(
K(x)

∂T
∂x j

)
= s(x) (3)

where ui is the velocity field, p is the pressure field, T is the temperature field, xi denotes the spatial coordinates,

eg
i is the unit vector in the gravitational direction, α(x) is the spatially-varying effective impermeability, K(x) is

the spatially-varying effective thermal conductivity, s(x) is the spatially-varying volumetric heat source term, Pr is

the Prandtl number, and Gr is the Grashof number.

The effective impermeability is set to 0 in the fluid subdomain and αmax in the solid subdomain. Likewise,

the effective thermal conductivity is set to 1 in the fluid subdomain and 1
Ck

= ks
k f

in the solid subdomain. The

volumetric heat source is only active within a specified subdomain, within which it has a constant value.

4.2. Optimisation problem

In order to perform topology optimisation, continuous variables, γe, varying between 0 and 1 are introduced in each

finite element, e, of the discrete system. Fluid is represented by γe = 1 and solid by γe = 0. For values between 0

and 1, the effective material properties, impermeability and conductivity, are interpolated as described in [2].

minimise:
γ∈Rn

f (γ,s) = ft
Tt

subject to: g(γ) =
∑e∈Ed

(1− γe)ve

v f ∑e∈Ed
ve

−1 ≤ 0 (4)

�(γ,s) = 0
0 ≤ γi ≤ 1 for i = 1, ...,n

where γ is a vector of n design variables, s = {u,p, t}T is the vector of state field variables, f is the objective

functional, g is the volume constraint functional and�(γ,s) = M(γ,s)s−b(γ,s) is the residual of the discretised

system of equations.

The objective functional, f , is chosen as the thermal compliance, where ft is the vector arising from the dis-

cretised volumetric flux and t is the vector of nodal temperatures. Since the flux load is constant, the optimisation

problem essentially becomes to minimise the temperature of the heat source. The constraint functional, g, is a

volume constraint on the solid material usage, where Ed is the set of elements belonging to the design domain and

ve is the volume of element e. Although not always necessary for convection-dominated problems, the volume

constraint helps the design to converge to well-defined topologies.

The optimisation problem is solved using the nested formulation, where the discretised system of equations for

the state field is solved separately from the design problem. The design sensitivities are found using the adjoint

method.

5. Numerical implementation
The governing equations are discretised using stabilised trilinear finite elements as described in [2] and have been

implemented in a large scale parallel topology optimisation framework based on PETSc [4, 5].

The resulting fully-coupled non-linear system of equations is solved using a damped Newton method. For the

initial design iteration, a slow ramping strategy on the heat flux is applied in order to reach convergence from a

zero initial vector. For subsequent design iterations, the state solution from the previous design iteration is used as

the initial vector.

The linearised systems of equations is solved using an iterative solver, more specifically F-GMRES with a

Galerkin-projection geometric multigrid (GMG) preconditioner. For the GMG smoother and coarse grid solver,
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Figure 2: Illustrations of the problem setup showing the dimensions and the prescribed boundary conditions.

GMRES with a Jacobi preconditioner is used. Although multigrid is known not to be an optimal solver for non-

elliptic systems of equations, the performance is very good and allows for the optimisation of the presented problem

in a reasonable time.

The design field is regularised using the partial differential equation (PDE) filter [6] and the optimisation

problem is solved using the method of moving asymptotes (MMA) [4, 7].

6. Problem setup
The problem setup is presented in figure 2. As an initial investigation, the lamp is oriented vertically downwards

allowing for quarter symmetry to be imposed. The lamp is sought modelled suspended in free space, so all bound-

aries should ideally be left as open, that is σi jn j = 0. However, as all rooms are finite, a floor (no-slip condition) is

added at the bottom of the domain. This has the added advantage of stabilising the solution process and to ensure

the Newton solver converges to a correct physical solution. The temperature field is imposed to be equal to the

reference room temperature at all boundaries except the top-most boundary which acts as an outflow.

The reference temperature is assumed to be 25oC and properties of air and aluminium for this reference tem-

perature have been used. The resulting dimensionless numbers for the presented problem are:

Pr = 0.74

Gr = 1.60×105 (5)

Ck = 1.08×10−4

where the Grashof number, Gr, is defined using the diameter of the LED package as the reference length.

The computational domain is truncated around the lamp to a rectangle 10 × 20 × 10 times larger than the

diameter of the LED package. Based on initial investigations of the flow field, this is assumed to be large enough

for the open boundary conditions not to affect the solution around the lamp significantly. The LED package is

modelled as a solid slab of aluminium with a uniform volumetric heat source totalling a power of Stot = 1W. This
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Figure 3: Optimised design from various angles and shown with a slice of the temperature field and streamtubes.

is at the lower end of the intended application range, but is chosen for numerical stability and to demonstrate a

proof-of-concept.

Initial investigations using the full domain showed that the flow, temperature and design fields remained

quarter-symmetric throughout the optimisation and the computational domain has thus been reduced to a quar-

ter with symmetry boundary conditions. The computational mesh used is 160× 640× 160 elements yielding a

total number of 16,384,000 elements and 83,076,805 degrees of freedom (velocity, pressure and temperature).

The design domain consists of 51,776 elements and the filter radius is set to 4mm.

7. Optimisation results
Figure 3 shows the optimised design from various angles and also with a slice of the temperature field and

streamtubes. The design exhibits tree-like branches extending out from the centre of the LED package. This

intuitively makes sense as the thermal hotspot is located in the centre of the LED package. The branches conduct

the heat away from the LED package and transfer it to the moving air by allowing the flow to move between the

members. It can clearly be seen that the offset of the members enables the flow to zig-zag through the cooler in the

vertical direction.

Figure 4 shows the optimised design together with slices showing the global velocity and temperature fields.

It can be seen that the highest velocity is found some distance above the lamp, as expected and observed from

experiments. The air is generally moving slowly far from the lamp and is accelerated above it, when it has been

drawn in from the surroundings. The temperature field shows that globally the heat transfer is highly convection-

dominated. The ambient temperature is observed in the entire computational domain, except for close to the lamp

where a plume forms above it.

The computations have been performed using 2560 cores (128 nodes with two Intel Xeon e5-2680v2 10-core

2.8GHz processors) and the total computational time was approximately 8.5 hours for 200 design iterations. After

the first design iteration, the number of Newton steps is around 2-4 and the number of F-GMRES iterations per

linear solve is 20-30 for the state problem and 30-40 for the adjoint problem.

8. Conclusions and future work
Initial results for the application of topology optimisation to the design of passive coolers for LED lamps have1

been presented. A computational model problem has been set up to model the natural convection flow around

a freely hanging LED lamp. Topology optimisation has been successfully applied to the highly convection-

dominated heat transfer problem using a large scale parallel computational framework. The initial optimisation
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Figure 4: Optimised design with slices showing the global velocity and temperature fields. Please note that the

bottom of the domain is not shown due to lack of interesting details.

results show interesting features, such as organic tree-like structures with offset members, that are currently being

incorporated into industrial designs for enhanced passive cooling abilities.

Further developments will be presented in a journal paper in the near future. This includes comparison of

the numerical model to experimental results in order to validate modelling assumptions and design performance.

Initial results show promise and that the modelling assumptions are satisfied at the settings of interest. However,

in order to treat higher power LED packages, it may be necessary to extend the analysis and optimisation to handle

time-dependent flows. Also, investigations into the modelling accuracy of the fluid and thermal boundary layers is

necessary to ensure physically accurate optimisation.
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1. Abstract
This article presents an evolutionary topology optimization method for mean compliance minimization of struc-

tures under design-dependent viscous fluid flow loads. The structural domain is governed by the elasticity equation

and the fluid by the incompressible Stokes flow equations. When the modelling of a system consists in the inter-

action of multiple domains, the classic density-based topology optimization methods become arduous within the

framework of dealing with the moving multi-physics loads and interfaces, due to the considerable volume of inter-

mediate density elements. Herein it is suggested an alternative methodology to handle this type of loading prob-

lems. With an extended Bi-directional Evolutionary Structural Optimization (BESO) method, design-dependent

Stokes flow loads are modelled straightforward during the optimization procedure. The discrete nature of the

method allows both fluid and structural domains to be modelled separately in each step of the optimization. In

order to validate the methodology, only small structural displacements and a simple staggered fluid-structure in-

teraction algorithm are considered in this paper. Primary results are shown for a 2D flexible structure immersed in

an incompressible viscous flow channel.

2. Keywords: Topology Optimization; BESO Method; Design-dependent loads; Fluid-structure interaction;

Stokes flow.

3. Introduction
In order to improve the structural design in the field of engineering, Structural Topology Optimization [1,2] has

been developed. The idea is to find optimal structural topologies inside predefined design domains concerning

objective functions and constraints.

Through the last years, topology optimization has been under some strong scientific effort to be extended for

different classes of engineering systems [3-5]. Some of them include fluid flow or even multiphysical effects, such

as fluid-structure interaction problems [6,7,8].

Only a few authors have studied the topology optimization of FSI coupled systems. The classic element

density-based topological optimization methods become arduous when dealing with FSI problems within the

framework of separated domains with explicit boundaries. That is because this kind of analysis methods requires

predefined explicit interfacing boundary descriptions for the coupling boundary conditions. Thus, it is necessary

to devise new computational techniques to overcome this limitation [8].

In this context, the presented work proposes the extension of the Bi-directional Evolutionary Structural Opti-

mization (BESO) [9] method for FSI systems design. The discrete nature of the evolutionary methods imply that

no intermediate density elements are allowed during the optimization procedures. Thus, fluid-structural bound-

aries are always explicit and the coupling boundary conditions evaluation is straightforward. To the best of the

authors’ knowledge, fluid-structure interaction problems still have not been treated with the evolutionary topology

optimization methods..

4. Governing equations and finite element model

4.1. Fluid domain

In this work we shall consider fluids with the following properties:

• The medium is incompressible.

• The medium has a Newtonian character.

• The medium properties are temperature independent and uniform.

• The flow is laminar and at steady-state.

• Inertia forces are not considered.
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• There are no body forces.

For the above restrictions, the governing partial differential equations for the motion of the fluid can be ex-

pressed as the incompressible Stokes flow equations{ −P,i f +μvi, j j = 0

v j, j = 0
(1)

where μ is the dynamic viscosity and P and v are the pressure and velocities on the fluid domain, respectively. The

boundary conditions applied in this work are

• No-slip condition: v j = 0 at fluid flow walls.

• Velocity profile given at inflow: v j = v0
j

• Pressure value given: P f = P0

4.2. Solid domain

Herein we shall consider linear elasticity for the solid domain under fluid flow loads. Neglecting body forces and

any acceleration, the linear structural analysis is governed by

σ s
i j, j(u) =−(−P,i f +μvi, j j

) f si
(2)

where σs is the Cauchy stress tensor, u is the displacement field and the superscript f si denotes the vector with the

loads from the fluid flow. Equation (2) is also given as the fluid-structure interface boundary condition. For the

solid domain, the following Dirichlet boundary condition is applied:

ui = 0 (3)

4.3. Finite element model

A mixed finite element is chosen to model Stokes flow equations, in which velocities and pressures from the fluid

domain are interpolated in the same finite element. With the correct shape functions these elements are stable and

satisfy compatibility conditions [10]. Although they are too costly for large-scale problems, they showed to be

effective for the cases explored in this work. The finite element used herein is known as Q2P1, in which velocities

are interpolated with quadratic shape functions and pressures with bilinear shape functions in isoparametric axes.

The finite element matrices for solving (1) are[
K f −Q
−Q 0

]{
v f
P f

}
=

{
0
0

}
(4)

where P f and v f are the pressure and velocities vector, respectively. The fluid stiffness matrix K f and the incom-

pressibility matrix Q are evaluated as follows:

K f = μ
∫

Ωe

BT I0BdΩe (5)

Q =
∫

Ωe

∇NT
v NPdΩe (6)

where the matrices N contain the shape functions for velocities and pressures with the correspondent v and P
subscripts, respectively. The matrix B contains the partial derivatives of the shape functions and, for 2D cases,

I0 =

⎡⎣ 2 0 0

0 1 0

0 0 1

⎤⎦ (7)

Considering only Stokes flow loads, the finite element model for the structure is expressed as

Ksus =−(K f v f −QP f
) f si

(8)

where Ks is the finite element matrix for the structure and us is the displacements vector. The fluid loads(
K f v f −QP f

) f si
are evaluated at the fluid-structure interfaces.

In order to model the fluid-structure interaction, some assumptions were made:
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• Incompressible fluid and structure are at steady state.

• The control volumes of a fluid domain before and after structural deformation shall be distinguishable.

• Small structural displacements are considered. However, fluid-induced forces in the linear elasticity equation

are dependent on the structural displacements.

5. Optimization problem and sensitivity analysis

The examples considered in this work concern compliance minimization with volume constraints of structures

under fluid flow loading. The fluid model considered is the Stokes flow. The objective is to find the distribution of

a given amount of solid material to obtain a structure with maximum stiffness (or minimum compliance C). The

evolutionary topology optimization problem for this case can be stated as:

min: C (xi) =
1
2 uT

s Ksus
xi

subject to: h =V (xi)/V0 =Vs

Ksus =−(K f v f −QP f
) f si

xi = [0,1]

(9)

where C is the structural compliance, V0 is the full design domain volume, Vs is the prescribed final solid volume,

nel is the number of elements inside the design domain and xi represents the discrete design variables, in which 1

is a solid element and 0 is void or fluid.

The sensitivity of the structural compliance due to an element removal can be obtained by its derivative:

∂C
∂xi

=−uT
s

∂K f

∂xi
vf +uT

s
∂Q
∂xi

Pf − 1

2
uT

s
∂Ks

∂xi
us (10)

We assume that the first term from the sensitivity expressed in (10) is zero at the element level, since there

are no-slip boundary conditions at the walls (vf = 0). For the second term, the derivatives of the incompressibility

matrix is expressed as

∂Q
∂xi

= Qi (11)

where Qi is the fluid elemental incompressibility matrix. It represents an addition of a fluid matrix in the problem,

once the solid element is removed. The variation of the stiffness is defined by the derivatives of the material as

∂Ks

∂xi
= Ki

s (12)

when xi = 1 and null when xi = 0 (fluid or void elements). Ki
s is the ith element stiffness matrix.

Thus, the sensitivity numbers for stiffness maximization of structures under Stokes fluid flow loads are

αi =− ∂C
∂xi

=

{
1
2 uT

i Ki
sui −uT

i QiPi if xi = 1

0 if xi = 0
(13)

where the subscript i indicates the values of us and P f at the element level.

6. The extended BESO method for fluid-structure interaction problems

The following algorithm lists the steps of extended the BESO method for steady state and small displacements

fluid-structure interaction problems.

1. Define design domain, loads and boundary conditions.
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2. Define BESO parameters.

3. Discretize the design domain using a FE mesh for the given fluid and structure domains.

4. Apply the fluid boundary conditions and solve fluid flow FE Equations (4).

5. Identify the fluid flow loads considering the fluid-structure boundary conditions, apply the solid boundary

condition and solve structural FE Equation (8).

6. Calculate the sensitivity numbers according to Equation (13).

7. Apply a filter scheme. Project the nodal sensitivity numbers on the finite element mesh and smooth the

sensitivity numbers for all (fluid, void and solid) elements in the design domain.

8. Average the sensitivity numbers with their previous iteration (n− 1) numbers and save the resulting sensi-

tivity numbers for the next iteration.

9. Determine the target structural volume Vn+1 for the next iteration.

10. Construct a new fluid-structure design by switching design variables xi from 1 to 0 and from 0 to 1, tracking

the advance of the fluid-void regions. Details of the material update scheme can be found in [7,9].

11. Assemble the global matrices according to the change of the current design.

12. Repeat steps 2-12 until the following stop criterion is satisfied:

error =
|∑5

k=1 Cn−k+1 −∑5
k=1 Cn−5−k+1|

∑5
i=1 Cn−k+1

≤ τ (14)

7. Numerical results

The studied example considers a fluid channel with a flexible structure obstructing the flow. The physical model

is shown in Figure 1. The fluid flows through the channel with an inlet velocity v j = 0.0001 m/s. The pressure

boundary condition is imposed at the outlet as P f = 0 and no-slip conditions are imposed at the fluid flow walls.

The fluid density is chosen to be ρ f = 1000 kg/m3 and its viscosity as μ = 0.001 kg m−1 s−1. The structural design

domain is represented by a flexible structure of 60×60 μm, including a rectangular area of 50×10 μm considered

as a solid box in order to avoid trivial solutions or a void structure. The elasticity modulus of the structure is chosen

to be as E = 3 ×109 N/m2 and the Poisson’s ratio ν = 0.3. This example is similar to the one presented by [8] for

compliance minimization considering design-dependent fluid flow loads.

Figure 1: Structural design problem for a fluid flow channel.

The model was discretized with 25600 finite elements in total, being 2304 solid elements and the other 23296

ones modeling the fluid flow. The BESO method started from the initial full design domain with an evolutionary

ratio ER = 2%, i.e., removing 2% of the initial structural volume each iteration until the prescribed volume fraction,

taken as Vs = 30% from the design domain. The other BESO parameters are chosen to be the maximum admission

ratio ARmax = 1%, filter radius rmin = 7.5× 10−6 m and the convergence error tolerance τ = 0.001. Figure 2
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shows the structural topology solution, as well as streamlines, velocity and pressure fields of the fluid domain after

the structural optimization process. Figure 3 presents the evolutionary history of the structural mean compliance

(objective function) along the optimization. The final solution presents a structural topology with mean compliance

C = 2.0800×10−20.

Figure 2: Final topology solution for the structure after the optimization and fluid streamlines, velocity and pressure

fields.
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Figure 3: Evolutionary history of the structural mean compliance during the optimization.

The evolutionary procedures showed to be effective in dealing with the moving fluid-structure interfaces. Solid

elements were replaced by fluid ones and the fluid flow advanced into the structural design domain. This represents

a great potential for design problems considering design-dependent FSI loads and topology optimization. The new

term uT
i QiPi on the sensitivity showed similar behavior as the pressure loading sensitivities from design-dependent

pressure loading problems presented in [7]. A greater portion from the regions with low strain energy were first
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removed due to the subtraction of this new term on the sensitivity.

10. Conclusions
This paper described a topology optimization problem of structures under viscous fluid flow loading. A new

sensitivity analysis is presented. The features of the evolutionary methods allow the switch between fluid and

solid elements, which address the main challenge of dealing with moving fluid-structural boundaries during the

optimization procedures. This presents some potential use for the area of fluid-structure interaction systems de-

sign and it might be of some impact in the research of structural topology optimization. The results considered a

flexible structure in contact with stokes fluid flow. The structural topology was designed considering compliance

minimization and design-dependent FSI loads. The ongoing research expects to explore new results and bring

further discussions on fluid-structure interaction problems considering topology optimization.
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1. Abstract
This article presents a computationally-efficient optimization tool for stacking sequence design of blended
composite structures. In this tool, blended laminates are designed using stacking sequence tables (SST),
coupled with a suitable genetic algorithm (GA). The SST approach guarantees complete-blending, en-
suring manufacturability of the optimized design. The concept of successive structural approximations is
implemented to improve computational efficiency. Optimizations are carried out on the approximations
of responses rather than actual responses themselves, thus reducing the number of expensive design anal-
yses. A recently-proposed modified Shepard’s interpolation enriches the quality of the approximations
used, by constructing multi-point approximations using the elite designs of the previous iterations. The
generality and efficiency of the algorithm is further improved by directly approximating panel loads, thus
enabling implementation of a wide range of stress-based design criteria.
An analytical multi-panel blended composite problem is presented as an application. The results show
that completely blended and feasible stacking sequence designs can be obtained, having its structural
performance close to the theoretical continuous optimum itself.
2. Keywords: stacking sequence optimization, blended composites, structural approximations.

3. Introduction
The use of composite materials in today’s aerospace industry is experiencing a strongly increasing trend.
The superior mechanical properties of composites and the ability to tailor their properties efficiently
has been a major reason for this increased focus on its research and application. For practical design
purposes, the ply angles and thickness of composites are usually restricted to a discrete set. The vast
design space, coupled with the discrete nature of the design variables poses a tricky task of optimally
designing composites.

The focus of this article is toward the design of efficient and manufacturable composite structures with
varying stacking sequences in different regions. Spatially varying ply layups are necessary to efficiently
tackle local load requirements. However, unless these individual zones or panels are designed correctly,
abrupt ply-angle changes or ply-drops may occur, degrading the structural integrity of the component.

In order to overcome this, the concept of laminate blending [1] was introduced. Blending accounts for
continuity of material and fibre content between adjacent panels having different stacking sequences. A
blended design hence increases manufacturability and structural integrity. The optimization of blended
composite designs has been well-studied and presented in [2–6].

Irisarri et al. [7] present a technique for achieving fully-blended designs by optimizing stacking se-
quence tables (SST) using a genetic algorithm (GA). In addition to guaranteeing fully-blended designs,
optimizing using SST provides a detailed manufacturing insight of the ply-drop and transition region
between adjacent panels. Furthermore, the GA takes into account several composite effects such as resin
accumulation, free-edge delamination and transverse matrix cracking, by implementing industry-standard
guidelines as part of the optimization.

In the design of composite structures on a practical-scale using GAs, an important challenge per-
taining to computational costs arises from the large number of designs that need to be analysed. The
concept of successive structural approximations [8] helps to reduce the computational costs by optimiz-
ing on approximations of the responses rather than on expensive responses themselves. Using response
approximations in GAs to optimize for stacking sequence have been presented in [4, 9–12].

Irisarri et al. [13] present an effective approach in improving the quality of the approximations
used. This is achieved by constructing multi-point structural approximations using a modified Shepard’s
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method. As a result of the improved quality, the number of FE analyses required in the optimization is
shown to be significantly reduced.

The stacking sequence design tool presented here uses the GA for SST [7] as the optimization algo-
rithm. The GA was extended to account for load re-distribution using the optimization strategy presented
in [13] for improved computational efficiency. In this work, panel loads are directly used as the responses
to be approximated using which, structural responses like buckling and strain are obtained analytically.
This novel approach provides the potential of including a wide range of stress-based responses in the
optimization using in-house strength prediction tools.

Results from the weight-optimization of a multi-panel stiffened composite plate demonstrate the effi-
ciency of the developed framework. Fully-blended designs having its performance reasonably close to the
theoretical optimum were achieved, while requiring a low number of design FE analyses.

4. Optimization Framework
In a successive approximation technique as implemented here, optimizations are carried out on approxima-
tions of structural responses, followed by a design update with an FE analysis. This iterative optimization
and update helps to reduce the number of required FE analyses.

The structural approximations used in this work are based on the generic formulation presented in
[4] as

f̃ =
n∑

i=1
(Ψm

i : Ai +Ψb
i : Di +Φm

i : A−1
i +Φb

i : D−1
i +αi hi)+ c (1)

where f̃ is the approximated response, Ai and Di are the in-plane and bending stiffness matrices of the
ith design region or panel and n is the total number of design regions in the structure. The terms Ψm

i ,
Ψb

i , Φm
i , Φb

i are the sensitivities of the response with respect to the membrane, flexural stiffness matrices
and their inverses and αi is the sensitivity with respect to the laminate thickness hi. The : operation
is the matrix contraction or dot product and is defined as the trace of the product of two square matrices.

4.1 Stacking sequence tables
The optimizer uses a GA for SST [7] as the optimization algorithm. An SST is an intuitive method
to represent and design a blended composite structure. For efficient use with a GA, the entire SST is
encoded using just three chromosomes

1. SSTlam: stacking sequence of the thickest laminate in the SST.
2. SSTins: order of insertion of the plies from the thinner laminate to subsequent thicker ones.
3. Nstr: number of plies in each of the R panels or regions in the structure.

By optimizing the three chromosomes, an optimal stacking sequence distribution in the blended panels
and a safe ply-drop distribution between them are simultaneously obtained.

The GA for SST was extended in the present work to handle multiple independent skins. The term
skin hereby denotes a region of the structure locally blended within the panels in that region. For designs
of a practical-scale like aircraft wings, the structure is usually manufactured in segments before being
joined together. Ensuring complete blending over the entire structure is unnecessary and only restricts
the design space. In a multiple-skin optimization, each skin is characterized by its own genotype, sub-
jected independently to the various GA operators. Such a blended scheme is more appealing from an
industrial perspective, while also enlarging the available design space.

4.2 Modified Shepard’s method - evaluation of panel loads
The present tool uses load approximations to approximate only the panel loads. Vanderplaats et al. [14]
present a similar approach in their optimization of isotropic plates. The motive behind such an approach
is that once the panel loads in the structure are known, in-house analytical tools can be efficiently used
to evaluate a multitude of structural responses, e.g., local buckling, strength at ply-level etc.

The approximated panel load in the kth panel, constructed at a point i can be formulated similar to
Eq. 1 as,

Ñik
=

n∑

j=1
(Ψm

j,k|i : Aj +Ψb
j,k|i : Dj +Φm

j,k|i : A−1
j +Φb

j,k|i : D−1
j +αj,k|i hj)+ cik

(2)

where Ψm
j,k, Ψb

j,k, Φm
j,k, Φb

j,k and αj,k are the sensitivities of the panel loads in the kth panel to the
respective laminate properties of the jth panel and n is the total number of panels in the structure.
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Figure 1: The optimization tool for the discrete optimization step - using GA for SST as the optimiza-
tion method, Shepard’s interpolation for approximation-improvement - assembled within a successive
approximation framework.

The approximation in Eq. 2 is a single-point approximation and as such, is accurate in value and
derivative only at the point i where it is constructed. The modified Shepard’s method presented in
[13] improves the quality of the approximation by constructing a multi-point global interpolant using
information from several previous points. The actual panel loads Ñ are then evaluated using the multi-
point Shepard’s approximation constructed from all previous local approximations as

Ñ =

ni∑
i=1

wi Ñi

ni∑
i=1

wi

(3)

where Ñi is the local approximation constructed at the ith Shepard point (Eq. 2), ni is the total number
of previous design points and wi is the interpolation weight [13].

In effect, the modified Shepard’s interpolation ensures that as more points are added to the global
approximation, the accuracy of the response surface increases over the entire spectrum of previous points
leading to a much faster convergence.

4.3 Optimization process
The optimization tool thus combines two core constructs: a GA for SST and a modified Shepard’s

interpolation. The GA for SST utilizes a multi-point approximation for the evaluation of the panel
loads. The GA itself is positioned within a successive approximation framework to account for load
re-distribution, whereby new single-point local approximations, Eq. 2, are added after each subsequent
global loop to the multi-point Shepard approximation, Eq. 3. The entire optimization procedure can
hence be summarized from Fig. 1 as follows:

1. Perform FE analysis at a starting design to obtain first single-point approximation of the panel
loads.

2. Local optimization - obtain the optimal stacking sequence design of the local problem using the
approximated loads to evaluate the structural responses. The GA for SST is utilized for this step.

3. If the design has not converged, construct a new single-point approximation at the optimal design
obtained from the sub-problem in Step 2, with an FE analysis. Convergence here occurs when there
is no change in the objective of the optimal GA design obtained from two successive global loops.
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Figure 2: Problem definition and comparison of thickness distribution in the panels for the continuous
optimum (CO) and GA optimum (GA).

4. Formulate the multi-point load approximation (Eq. 3) using previous single-point approximations
(Eq. 2). Repeat Step 2.

A converged design in Step 3 corresponds then to the optimal stacking sequence design.

5. Results and discussions
A 4X6 multi-panel analytical problem (Fig. 2) was chosen to study the performance of the proposed
tool. The objective of the optimization was weight-minimization of the blended composite structure,
subjecting the individual panels to buckling, laminate strength and laminate robustness [15] constraints.
The stacking sequence of the individual panels were optimized while the properties of the stiffeners were
kept a constant; E = E1, A = 10−3m2. The material properties of the Carbon/Epoxy listed in Table 1 with
a ply thickness of 0.121mm were used. Ply orientations were restricted to steps of 15◦. Additionally the
following guidelines [7] from the SST were also enforced: laminate balance and symmetry, ply contiguity
with a maximum of 4 contiguous plies, ply-disorientation and outer ±45 plies for damage tolerance.

A two dimensional membrane FE-routine was used to solve for the panel loads and their sensitivities.
The separable approximations were constructed using only sensitivities with respect to the in-plane
stiffness matrix Ψm

i . The local approximation from Eq. 2 is hence reduced to

Ñik
=

n∑

j=1
Ψm

j,k|i : Aj + cik
(4)

For the sake of comparison, the mass of the designs presented have been normalized with respect to
the optimal mass obtained independently using a lamination-parameter based optimizer [16] - 11.351kg.
The design obtained from this continuous optimization can be conveniently termed the continuous op-
timum. As such, the continuous optimum represents the theoretical upper-bound in performance that
can be achieved, since a lamination parameter-based continuous optimization assumes both ply-angles
and thickness as continuous variables, while also not including the required constraint on blending. It is
hence a convenient measure of comparison for the discrete designs obtained.

5.1 Optimal stacking sequence design
The optimal, fully-blended and feasible design obtained from the proposed tool was found to have a
normalized mass of 1.097, after just 14 global iterations. This increase in weight of ∼ 10% over the
continuous optimum is reasonable considering: the discrete stacking sequence design is fully blended,
includes practical design guidelines and is limited by the discrete nature of the ply angles and thickness.
The stacking sequence of this GA optimum can be obtained from its genotype and corresponding SST,
presented in Table 3.

5.2 Optimization with multiple skins
Of particular interest to large-scale problems is the ability to design blended structures, where the blending
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Table 1: Material properties: AS4/3501-6 [17]
E11 (GPa) E22 (GPa) G12 (GPa) ν12 ρ (kg/m3)
142 10.3 7.2 0.27 1570
Xt (MPa) Xc (MPa) Yt (MPa) Yc (MPa) S (MPa)
2280 1440 57 228 71

Table 2: Mass optimization with multiple blended skins - normalized objective and critical constraint
failure (the set of panels within each pair of braces constitute an independent skin)

Independently-blended skins Objective Critical constraint failure
1 - {1-24} 1.097 1.010
2 - {1-12}, {13-24} 1.079 1.004
2 - {1,2,5,6,9,10,13,14,17,18,21,22},

{3,4,7,8,11,12,15,16,19,20,23,24} 1.056 1.005
3 - {1-8}, {9-16}, {17-24} 1.062 1.001

is enforced in segments. The results in Table 2 show the optimal designs when the 24-panel structure is
comprised of 1, 2 and 3 independently-blended skins.

As can be expected, an increase in the number of skins leads to a weakening on the requirement of
blending, since blending is now enforced over a smaller number of panels. The resultant increase in design
space leads to a reduction in mass as the number of skins increases. The term critical constraint failure
here denotes the lowest factor of safety among all constraints. A value greater than 1 would hence imply
a feasible design.

6. Conclusions
This article proposes an efficient optimization tool for blended composite design. The proposed approach
combines two techniques: a GA using stacking sequence tables and multi-point approximations using a
modified Shepard’s interpolation method. A novel approach of directly approximating the structural loads
is presented in this work. Working with panel loads directly is consistent with an industrial quick-sizing
approach, providing the potential to include a large range of stress-based criteria in the optimization
using in-house tools.

The performance of the tool is studied on a 24-panel composite blending problem. The results show
that fully blended, feasible and guidelines-adhering stacking sequence designs can be obtained having
its performance comparable to the theoretical optimum itself. Of equal importance, a low number of
FE analyses required to reach the optimal design also show the computational efficiency of the proposed
method.
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[8] R. T. Haftka and Z. Gürdal. Elements of structural optimization, volume 11. Springer Science &
Business Media, 1992.

[9] K. Yamazaki. Two-level optimization technique of composite laminate panels by genetic algorithms.
In Proceedings of the 37th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and
Materials Conference and Exhibit, pages 1882–1887, 1996.

[10] A. Todoroki and R. T. Haftka. Lamination parameters for efficient genetic optimization of the
stacking sequences of composite panels. In Proceedings of the 7th AIAA/USAF/NASA/ISSMO
Symposium om Multidisciplinary Analysis and Optimization, pages 870–879, 1998.

[11] J. E. Herencia, R. T. Haftka, P. M. Weaver, and M. I. Friswell. Lay-up optimization of composite
stiffened panels using linear approximations in lamination space. AIAA journal, 46(9):2387–2391,
2008.
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Abstract  
In simulation-based design optimization, one of the greatest challenges is the intensive computing burden. In order 
to reduce the computational time, a parallel implementation of the particle swarm optimization (PSO) algorithm on 
graphic processing unit (GPU) is presented in this paper. Instead of executed on the central processing unit (CPU) 
in a serial manner, the PSO algorithm is executed in parallel taking advantage of the general-purpose computing 
ability of GPU in the platform of compute unified device architecture (CUDA). The processes of the fitness 
evaluation, the updating of velocity and position of all the particles of PSO are parallelized and respectively 
introduced in detail. Comparative studies on optimization of three benchmark test functions are conducted by 
running the PSO algorithm on GPU (GPU-PSO) as well as CPU (CPU- PSO), respectively. The impact of design 
dimension, as well as the number of particles and optimization iteration in PSO on the computational time is 
investigated. From test results, it is observed that the computational time of GPU-PSO is much shorter compared to 
that of CPU- PSO, which demonstrates the remarkable speedup capability of GPU-PSO. Finally, GPU-PSO is 
applied to a practical gliding trajectory optimization problem to reduce the computing time, which further 
demonstrates the effectiveness of GPU-PSO. 
Keywords: PSO; GPU; CUDA; Trajectory Optimization 

1. Introduction 
Particle swarm optimization (PSO) developed by Kennedy et. al. in 1995 is an intelligent random global 

optimization algorithm inspired by the social behaviour of bird flocking or fish schooling [1]. In PSO, each particle 
in the swarm adjusts its position in the search space based on the best position it has found so far as well as the 
position of the known best-fit particle of the entire swarm, and finally converges to the global best point in the 
whole search space. Due to its easy implementation and competitive performances, the PSO algorithm has been 
extensively applied to optimization of very complex functions in a wide range of applications [2]. However, since 
the optimizing process of PSO requires a large number of fitness evaluations in the whole search space, it takes a 
long time for PSO to find optimal solutions especially for problems with high dimension or that needs a large 
swarm population for search. This becomes more serious when the performance functions are highly 
computational expensive. Traditionally, the fitness evaluations in PSO are done in a sequential way on the central 
processing unit (CPU). Thus, the computing speed of PSO may be quite slow for practical applications.  

At present, it is difficult to improve the computing speed of PSO from the viewpoint of algorithm. Meanwhile, 
it may reduce the computing accuracy. As a traditional graphics-centric workshop, the graphics processing unit 
(GPU) shows faster float-point operation and higher memory bandwidth in scientific computing fields compared 
to CPU [3]. Through integrating CPU and GPU and taking advantages of both, the heterogeneous computing 
technique has become a research focus for computational speedup in recent years. The compute unified device 
architecture (CUDA) developed by NVIDIA corporation is a famous platform for heterogeneous computing, 
which has greatly simplified programming on GPU and been applied to lots of general computing [4]. In order to 
reduce the computational time of PSO, a parallel implementation of the PSO algorithm based on GPU in CUDA is 
developed, named as GPU-PSO for short in this paper, which  greatly speeds up the computing.  

2. Review of PSO 
PSO is a stochastic global optimization technique inspired by the social behaviour of bird flocking or fish 

schooling. With PSO, each particle in the swarm adjusts its position in the search space based on its best position 
found so far as well as the position of the known best-fit particle of the entire swarm, and finally converges to the 
global best point. The search of the whole design space is done by a swarm with a specific number of particles. 
During each of the optimization iteration, the position and velocity of each particle are both updated according to 
its current best position ( gDbP t ) and best position of the entire swarm ( pDbP t ).  The position ijX  and velocity 

ijV  of each particle on one dimension are updated as follows: 
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 1,2,

1 ,

1 , ..., ;  1,2,..., .
ij ij pDb ij gDb id

ij ij ij

V t wV t c r P t X t c r P t X t

X i n j dt X t V t
     (1) 

where n is the number of particles in the swarm; d is the optimization dimension; c1 and c2 are learning factors, 
which are non-negative constants; r1 and r2 are random numbers uniformly located in the interval [0, 1]; w is the 
inertia weight used to balance the global and local search abilities of PSO, which is a constant lies between 0 and 1; 

max max[ ]ijV V V is the velocity on the jth dimension of the ith particle with Vmax as a constant pre-specified 

according to the objective function. If mij axV V , it will be set as maxijV V or maxijV V . The convergence rate is 
impacted by Vmax, which can avoid premature of PSO. The general procedure of the PSO algorithm is described 
step by step in Figure 1 as below.  

Initialize position Xt and velocities Vt

Evaluate fitness F(Xt)

Update PpDb(t)

Update PgDb(t)

Compute velocity V(t+1)

Compute position X(t)

Terminate?

Result

yes

no

Figure 1: Flowchart of the particle swarm optimization algorithm 

3. Introduction of GPU based parallel computing 
GPU was originally designed especially for the purpose of image and graphic processing on computers, where 

computational intensive and highly parallel computing is required. It has been reported that the floating-point 
computation speed is 10 times of CPU, and the memory bandwidth is 5 times of the general memory compared to 
the cotemporary CPU [3]. Therefore, the GPU has been widely applied to general-purpose computing, such as 
scientific computation, fluid mechanics simulation, molecular mechanics computation etc. [5-6]. 

Grid

Global
Memory

Constant
Memory

Host

Block(0,0)
Share memory

Register Register

Thread(0,0) Thread(1,0)

Local
Memory

Local
Memory

Block(0,0)
Share memory

Register Register

Thread(0,0) Thread(1,0)

Local
Memory

Local
Memory

Texture
Memory

Figure 2: Memory Model of CUDA [7] 

CUDA is a parallel computing platform based on the SIMD (Single Instruction, Multiple Data) [4]. The 
memory model of CUDA is depicted in Figure 2, in which threads are divided into three levels: thread, block and 
grid. Each thread and block has its unique index. Each thread has a small and fast private register, while each block 
has a faster shared memory. The operation of memory read and write can be done by all threads in the 
same block.  Both global memory and constant memory existing in grid are visible to all threads. 

As an extended library in the environment of C/C++, CUDA C/C++ greatly facilitates the fast coding of kernel 
function running on GPU of NVIDIA for developers. Through calling the kernel function by CPU, the program 
can be run on the GPU parallelly. The program execution process of CUDA is divided into three steps: copy data to 
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GPU, execute kernel function and copy data to CPU. 

4. GPU-Based PSO 
Clearly, the evaluation of fitness function and updating of each particle in PSO is independent to each other. 

Therefore, PSO has the basic architecture of parallel computing. The whole process of parallel computing can be 
achieved through the one-one correspondence between each particle in PSO and the thread of GPU. The detailed 
procedure is: (1) thread is set on GPU with the same number as that of particles; (2) storage space is set up for each 
particle to store its velocity, position and other related data; (3) fitness evaluation and updating for all the particles 
are done simultaneously using GPU. Here, the execution model for position updating of particle in Figure 3 is used 
as a demonstration to show the parallel computing procedure of PSO. For the parallel computing of velocity 
updating and fitness evaluation, the procedure is the basically same. 

In Figure 3, each block contains (Nb+1) thread. The smallest unit in CUDA is half-warp (16 threads). Therefore, 
(Nb+1) is generally set as the integer multiple of 16. Pid is the index number of thread, i.e. the serial number of each 
particle in PSO. n is the total number of particles, d is the optimization dimension. Nt is the total number of thread 
block, which is determined by 1 /b bt N NN n .

Figure 3: The execution model based on CUDA 

Based on the procedure of PSO and the parallel scenario introduced above, GPU-PSO is established, of which 
the flowchart is illustrated in Figure 4. Clearly, the processes of initiation, updating and fitness evaluation are all 
paralleled, of which the fitness evaluation is the prime component for parallelization. 

Start

Update Xi,Vi Update Xn,Vn

(GPU Parallel Compute

Trajectory Simulation Trajectory Simulation

Evaluation to meet the standard

Maximum number of iterations

Output result

End

yes

no

Update PpBd,PgBd Update PpBd,PgBd

Initialize Xi,Vi Initialize Xn,Vn

(GPU Parallel Compute

Initialize PpBd,PgBd Initialize PpBd,PgBd

no

Update Fi Update Fn

Hi<100 Hn<100 no

yesyes

no

Figure 4: Flowchart of GPU-PSO 

5. Comparative studies 
In this section, four commonly used functions listed in Table 1 are used to verify the effectiveness of the 

developed PSO-GPU. The PSO algorithm without parallel computing (CPU-PSO) is also employed to optimize 
these functions. The speedup ratio sp of GPU-PSO is calculated by taking the ratio of the computational time cput of 
CPU-PSO and gput of GPU-PSO. 

All the parameters in PSO are set as follows as is commonly done in practice: the inertia weight 0.7298w ,
learning factor 1 2 2.05c c , velocity of updating particle is the right bound of each function. In order to 
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effectively investigate the speedup capability of GPU-PSO over CPU-PSO, the convergent criterion is set as that 
when the number of optimization iterations reaches 5000, the optimization is stopped. The design dimension is set 
as d=50 for all the four functions, and different number of particles n are tested to investigate its impact on the 
speed-up ratio. The computational environment employed in this work is shown as Table 2. 

Table 1: Test functions
Names Functions 

Sphere 2
1

1
, 100 100

d

i i
i

f x x

Rosenbrock 2
2

1
10cos 2 100 , 10 10

d

i i i
i

f x x x

Griewank 2
3

1 1

1 cos 1, 600 600
4000

dd

i i i
i k

f x x i x

Ackley 2
4

1 1
20*exp 0.2* 1 * exp 1 * cos 2 exp 1 20, 8 8

d d

i i i
i i

f sqrt d x d x x

Table 2: The computational environment 
CPU Intel i7-4770k 

GPU NVIDIA GTX TITAN BLACK 
Memory 16G 

OS Windows 7 X64 
Platform Visual Studio 2013 CUDA6.5 

Table 3: The results of Sphere function (d=50) Table 4: The results of Rosenbrock function (d=50)

n
f* t /s 

ps
CPU GPU CPU GPU 

1600 0.775 0.000 11.342 1.638 6.924 
2500 0.000 0.000 18.235 1.703 10.708 
3600 0.000 0.000 24.820 1.841 13.482 
4900 0.000 0.000 40.404 1.888 21.400 
6400 0.000 0.000 59.657 1.950 30.593 

n
f* t /s

ps
CPU GPU CPU GPU 

1600 1.636 11.851 11.996 1.638 7.324 
2500 33.599 5.272 21.606 1.716 12.591 
3600 48.648 3.988 26.645 1.825 14.600 
4900 30.998 2.679 42.295 1.918 22.052 
6400 32.283 0.080 61.261 1.966 31.460 

Table 5: The results of Griewank function (d=50) Table 6: The results of Ackley function (d=50) 

n
f* t /s 

ps
CPU GPU CPU GPU 

1600 0.693 0.000 42.323 1.935 21.872 
2500 0.000 0.000 66.628 1.747 38.139 
3600 0.000 0.000 98.093 1.872 52.400 
4900 0.000 0.000 141.198 1.950 72.409 
6400 0.000 0.000 193.207 1.950 99.081 

n
f* t /s

ps
CPU GPU CPU GPU 

1600 0.031 0.000 43.025 1.310 32.844 
2500 0.000 0.000 75.536 1.342 56.281 
3600 0.000 0.000 98.186 1.389 70.688 
4900 0.000 0.000 143.191 1.435 99.7429 
6400 0.000 0.000 198.465 1.435 138.303 

Table 7: The results of Griewank function (d=100) Table 8: The results of Ackley function (d=100) 

n
f* t /s 

ps
CPU GPU CPU GPU 

1600 0.000 0.000 99.391 3.454 28.776 
2500 0.001 0.000 173.736 3.624 47.940 
3600 0.000 0.000 250.893 3.770 66.550 
4900 0.000 0.000 315.421 3.913 80.681 
6400 0.000 0.000 464.017 4.013 115.628 

n
f* t /s

ps
CPU GPU CPU GPU 

1600 0.018 0.000 86.429 2.449 35.292 
2500 0.003 0.000 168.461 2.538 66.376 
3600 0.000 0.000 221.264 2.620 84.566 
4900 0.000 0.000 341.765 2.701 126.533 
6400 0.000 0.000 434.846 2.767 157.154 

The optimal objective function values (f*), the computing time (t) and the speedup ratio (sp) are listed in Tables 
3-8, from which it is clearly observed that the GPU-PSO runs much faster than CPU-PSO with very high speed-up 
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ratio. Meanwhile, the optimal solutions of GPU-PSO and CPU-PSO are basically the same, which show great 
agreements to the real optimal solutions (f=0), indicating the good convergence property of GPU-PSO. It is also 
noticed that the complexity of test functions has large impact on the speed-up ratio, which can be derived from the 
results in Tables 3-6. Clearly, from the Sphere to Ackley functions, the complexity is basically increasing, and the 
corresponding speed-up ratio is increasing as well. Meanwhile, the speed-up ratio is also increased with the 
increase of the number of particles n. This is self-evident since the evaluation of all particles are executed serially 
in CPU-PSO, thus more particles yields more computational time, while this is done all at once in GPU-PSO. 
However, once n reaches to a certain value, the speedup ratio is increased very slowly. The reason is that GPU only 
contains 2880 CUDA CORE. 

To further study the impact of design dimension on the speed-up ratio, d=100 are also tested. Considering the 
space limit, only results of the last two functions are shown (see Tables 7 and 8). It is found that for all the 
functions, the speed-up ratio with d=100 is larger than that with d=50, indicating that the speed-up ratio is 
improved with the increase of optimization dimension. It can be concluded that generally the higher of the 
dimension and the more of the particles, the larger of the speed-up ratio obtained by GPU-PSO. All these results 
demonstrate the effectiveness and good speed-up capability of GPU-PSO. 

6. Application of GPU-PSO to trajectory optimization 
6.1. Description of trajectory optimization 

Trajectory optimization of aerocraft is actually an optimal control problem, which is generally solved by the 
direct method [8]. As a traditional direct method, the direct shooting method is frequently used for solving 
practical trajectory optimization due to its simplicity and convenience. With this method, the optimal control is 
transcribed into a nonlinear programming problem (NLP) through parameterizing the control on certain time nodes 
and treated as design variables. For engineering applications, it is necessary to generate trajectory as fast as 
possible. However, oftentimes, a large number of discreted nodes are required to parameterize the control variable 
in order to ensure high accuracy especially for complex and long-time flight mission, which may increase the time 
of optimal trajectory generation. Therefore, GPU-PSO is applied to the glide trajectory optimization to save 
computational time. The optimal control of the glide trajectory optimal problem is formulated as [9]: 

° °

)

sin

( ), 0 10
(

. . 1

cos

cos , sin

00
f

x

y

f

Find
Max

dVm C qS mg
d

t
J L

s

t
dmV C qS mg
dt

dL dhV

t

V
d t

h

t d

                                                               (2)

    
where , , ,V L h are respectively velocity, trajectory angle and height, with initial values as V0=542.725m/s,

°
0 10 , L0=0.0m and H0=28541m; , ,x yq C C are the dynamic pressure, drag coefficient and lift coefficient, 

respectively; S=0.126m2 is the reference area; g = 9.8m/s2 is the acceleration of gravity; m=210kg is the mass of 
vehicle. xC and yC are calculated using linear interpolation with respect to h, Ma and .

The design variable of the problem is the law of the angle of attack ( )t , which is constrained during flight due 
to the structural and control requirements. The objective function is to maximize the range of the vehicle )( fL

without any power by control as much as possible. The terminal boundary constraint is 100fh m , i.e. the flight 
task is completed when the flight height is less than 100m. The direct shooting method is employed to solve the 
gliding trajectory optimization in Eq. (2) and GPU-PSO is employed to solve the transcribed NLP. The flight time 

0[ , ]f is divided into N sub-intervals as 0 1 1N N f . Correspondingly, the angle of attack ( )t is
discreted at the N+1discreted time nodes as 0 1 1, , , ,..., ,i N N . The control variable ( )t at anytime point is 
predicted by the spine interpolation over the N+1 discreted time nodes and the corresponding angle of attack. 
Clearly, the flight time f is unknown. In this work, it is not considered as a design variable, and is only used for 

the calculation of trajectory and interpolation of angle of attack. If the flight time f , then
f
.

6.2. Results 
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For this problem, the optimization process is terminated when the variation of the maximum flight range is less 
than 0.01m. The number of particles is set as n=10000 and d=51 (N=50).The parameters in PSO are set as the same 
as those in the above four mathematical examples. The optimal angle of attack is shown in Figure 5. It is found that 
both methods yield almost the same optimal solutions, while GPU-PSO (1464.146s) needs much shorter time than 
CPU-PSO (9.064s), with about 161X speedup. The optimal angle of attack and range of GPU-PSO are slightly 
different from those of CPU-PSO, which is caused by the difference of the floating point computing method 
between CPU and GPU. This can be reduced and even eliminated by screwing up the code [10]. 

Although, the speed-up capability is remarkable, it is necessary to verify the accuracy of GPU-PSO. From the 
theory of lift-to-drag ratio, the maximum range can be approximately obtained when gliding with maximum 
lift-to-drag ratio [11]. Therefore, the trajectory with maximum lift-to-drag ratio is calculated by plugging different 
angle of attack ° °1 ,...,10  into the dynamic model in Eq. (2) and Rung-Kutta numerical integration is used to 
obtain the lift-to-drag ratio and range. It is found that °10  yields the largest lift-to-drag ratio, so as the range. 

Clearly, the optimal angle of attack by GPU-PSO is equal to °10 during almost the whole flight mission, which is 
basically the same as that derived from the lift-to-drag theory. The trajectories of °10 , GPU-PSO and 
CPU-PSO are shown in Figure 6. It is noticed that the three trajectories are almost the same, yielding very similar 
range (129.02, 129.06 and 129.70km). These results demonstrate the effectiveness of GPU-PSO. 

Figure 5: The optimal of both methods          Figure 6: Optimal trajectories 

7. Conclusions 
In this paper, based on the standard PSO algorithm, the parallel computing of PSO is developed using the GPU 

technique in the CUDA platform. Through the comparison of GPU-PSO and CPU-PSO by four mathematical 
functions, it is observed that the developed GPU-PSO can greatly save computational time, while yields good 
accuracy and convergence properties. The application of GPU-PSO to a glide trajectory optimization problem 
further demonstrates the effectiveness and advantage of GPU-PSO, as well as its great potential to practical 
engineering optimization.  
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1. Abstract
The problem of topology optimization based on the density-based approach using gradient optimization methods 
is considered in the paper. The filtering procedure is used to avoid local minima and to control the topology design. 
Commonly this procedure is applied to the sensitivity field, since filtering of the design variables leads to strong 
blur solutions. To overcome these blurring an additional procedure is required. In this paper both sensitivity filter 
and density filter are used. But for the density filter the following new approach is applied. Transformation of 
variables with values from 0 to 1 to new design variables with values from -  to +  is performed. Then simple 
Gauss filtering is applied and reverse transformation to the original variables is fulfilled. The transformation 
function has the following features: for the “grey values” it is nearly linear, and at -  and +  it approaches 
asymptotically to the value 0 and 1, respectively. Variation statement of the problem of finding this transformation 
function is proposed. Also, the change of the properties of transformation function allows controlling topology 
layout. This approach is demonstrated on the problems of topology optimization for minimization of structural 
compliance at a given volume. The advantages of proposed approach and the obtained solutions are discussed. 
2. Keywords: Topology optimization, Conservative filtering, Design variable transformation, Clear boundaries 

3. Introduction 
Topology optimization is a modern tool of structural design. In this method, the distribution of the structural 
material is described by design variables taking the discrete values 0 and 1. For the efficient use of gradient 
optimization methods it is required to switch from integer to real design variables. The general approach is the 
addition of intermediate values between 0 and 1. However, this leads to “gray” solutions that are difficult to 
interpret by designer, and besides, they may significantly differ from the optimal “clear” solutions. In common 
methods of topology optimization with penalization [1] the proportion of “gray” is regulated by penalization 
parameter p. The increase in parameter p enhances the sharpness of the design shape boundaries, but it can also 
increase the risk of sub-optimal design, so this parameter should be limited. One of the ways to avoid the risk of 
stopping the algorithm in a local minimum is to use filtering procedure. On the other hand, filtering also increases 
the proportion of “gray”. It is necessary to find a compromise between the increase in penalization parameter and 
the degree of filtering. There are some methods of filtering, which reduce the side effect of blurring. Firstly, it is 
due to the filtering of the derivative of the objective function with respect to the design variables (sensitivity) 
instead of filtering of design variable values. Secondly, the filtering result is subjected to further processing, for 
example, by application of projection method [2]. This projection filtering method requires additional 
computations and significantly increases computational costs. There is also the problem to satisfy the specified 
constraints. To overcome this difficulty related procedure has become quite complicated [3]. An alternative 
approach is shown in [4]. This approach is accomplished by a transition to an infinitely large penalization 
parameter and by an introduction of new design variables which belong to the range (- , ). Filtering procedure in 
this method is carried out on these new variables. This method allows getting closer to the optimal design with 
clear boundary shape at low computational cost. The problem of finding the best transformation function to the 
new design variables is considered in the paper. 

4. Conservative filtering 
We introduce a new design variables z of the computational domain (- , ), which are associated with the design 
variables y of the physical domain [0, 1] as follows: 

))2(1(
2
1 zfy  , (1) 

)12(
2
1 1 yfz  (2) 

In paper [4] function f(z)=tanh(z) is used. Not formally speaking, this transformation does not change the “gray” 
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values because the mapping is close to the identity, while the “white” and “black” values vary significantly. 
Filtration of the y values is performed in three stages. First, turn to the computational domain, according to Eq.(2), 
then carry out Gaussian filtering of distribution of values z, and return to the physical domain, according to Eq.(1). 
Let us demonstrate the result of filtering in the one-dimensional and two-dimensional cases. Figure 1 shows the 
result of one-dimensional filtering case with the initial stepwise distribution:

  


0,1
0,

max

min

t
t

ty .

With the same Gaussian filter radius rs, three sets of values min and max is considered: 1) min= max= 2, 2) min= 2,
max= 1, 3) min= max= 1. Values 1 and 2 satisfy the inequalities 0< 1<< 2<<1. These examples demonstrate that the 

closer to the boundary values, the less blur. We also call attention to the possibility of shifting the position of step 
without significant blurring (Figure 1b). 
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a) Strong blurring b) Blurring and shifting c) Weak blurring 

Figure 1: Filtering of stepwise distribution in new design variables  

Figure 2 shows the result of filtering in two dimensions with different radii rs. The initial distribution contains three 
sets of values , 0.5, 1-  , <<1 submitted by the shades of gray. The boundaries between these values vary 
significantly in various ways. The boundary between the black and gray, as well as the boundary between gray and 
white is not preserved, it is blurred and shifted so that the gray area is significantly reduced when large radii 
filtration. On the contrary, the boundary between black and white is still the same, it is not blurred and does not 
move. The dashed line is applied for clarity, to emphasize this effect. 

rs = 0 rs = 20 rs = 40 rs = 80 

Figure 2: Conservative filtering with different radii rs

Since this filter keeps formed boundaries of the structure, it can be called conservative filtering. 

5. The choice of transformation function 
The transformation function f, used in the Eq.(1) and Eq.(2), must have the following properties. For simplicity, we 
consider only the antisymmetric functions and therefore we consider the range from 0 to , and for negative values 
of z we redefine the function as follows f(z) = -f(-z). The function must be monotonically increasing, have a linear 
region near zero, asymptotically fast enough approaches the limit values -1 and 1, it is necessary for conservative 
filtering effect. From heuristic reasons, we assume that the best function is the least different from linear in all 
computational domain. A measure of the difference can be written as functional. These requirements lead us to the 
variation formulation of finding the optimum transformation function 
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Meaning of the parameter  is that it allows us to control the speed of the asymptotic approaching, and at the same 
time the value of > 0 guarantees a monotonic increase function. Two cases m=2 and m=3 for =1 are considered. 
In the case m=2 the functional Eq.(3) attains its minimum on the extremal
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  zezf 1  (4) 

This function has a non-zero second derivative; therefore, the redefined function has a discontinuous second 
derivative at zero and is not smooth enough. In examples discussed in [4], it was found that the results of the 
function Eq.(4) are close to f(z)=tanh(z).
Smoother solutions are obtained in the case m=3, the functional Eq.(3) attains its minimum on the extremal  

     z

z

z

e
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ezf 3
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  (5) 

For computational efficiency it is required to calculate quickly the derivative of the function f, but for Eq.(5) the 
derivative is rather cumbersome. It turned out that there is a good approximation with a simple derivative, yielding 
on some test cases indistinguishable results. Five variants of transformation functions are presented in Table 1 with 
their asymptotic rate and values of the functional. The value of the functional on the extremal is a measure of the 
accuracy of approximation for other functions. The function f3 is the best approximation function for both extremal 
f4 and f5 with last it is almost identical: F(f3,2,1) - F(f5,2,1) = 0.2337, max(f3(z)- f4(z)) = 0.1094 F(f3,3,1) - F(f5,3,1)
= 0.04403, max(f3(z)- f5(z)) = 0.005752. 

Table 1: Transformation functions and their properties 
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41 z
ezO  zeO 2 z

eO 2  zeO  zeO 3

 1,2,ifF 1.5708 1.33333 1.2337 1 1.23594 
 1,3,ifF 4.9348 3.2 3.04403 – 3 

In the future, all the calculations are carried out for f = f3, unless otherwise is specified. Then the expressions Eq.(1) 
and Eq.(2) take the form 

 zey arctan2
 ,

 yz
2

tanln1

6. The problem of topology optimization 
Simple and proven method of topology optimization of structure is based on the minimum compliance problem of 
the structure 

  uf T
nxxxC ,,,min 21 

subjected to 

fKu 




n

i i VxxV
1 0)(

where C – the potential strain energy (compliance), xi = 0 or 1 – the design variables, i = 1,…,n, n – the number of 
finite elements, V0 – the given volume, u – the vector of displacements, K – the global stiffness matrix and f – the 
vector of forces. In common method SIMP [1] an artificial power law is used (penalization) with parameter 
penalization p > 1 of the elastic properties of the material from the design variables   0ExxE p

iii  , where – E0 is 
Young modulus. In this case C(y1,y2,…,yn) is minimized and is identical with the initial goal. However, now the 
constraint on the volume is nonlinear function of design variables 
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As for intermediate values yi the inequality



n

i i Vy
1 0  is valid, one can choose a reduced value for the volume 

optimization step, which will lead to the same result as for the optimization step in the initial formulation. Thus, the 
solution obtained with p > 1, coincides with the solution for p = 1 (without penalization), but with the reduced 
value of volume. The idea of using a reduced value of the volume lies in the fact that the gradual removal of an 
important element for the structure comes a moment when the sensitivity of properties of the structure sharply 
increases (a derivative of compliance) with respect to the design variable corresponding to this element. The 
presence or absence of growth of sensitivity is the criterion that this element must be left or removed. 
The problem of minimum compliance with the constraint on the volume is solved by conventional way. The 
Lagrange function is used L=C- (V-V0), where  is the Lagrange multiplier. Initial data is specified for design 
variables and then they are changed on the step h

y
Lhyynew  . (6) 

The sensitivity with respect to the element is 

uKufu
yyy

C TT 2 .

The derivative of volume constraint is  

111
 py

py
V .

Thus

111
 py

py
C

y
L .

This expression can proceed to the p . Dependence on y is simplified to 

yy
C

y
L
 , (7) 

where instead of /p is written simply  because its value is still required to determine. By multiplying by y the 
speed of design variable change is slowed when approaching to y=0 so that instead of Eq.(7) the following 
expression is used 


y
Cy

y
L

delay

 (8) 

Transfer to computational domain z is performed with agreement to Eq.(1) and Eq.(2). Control parameters scale
and shift of linear transformation of argument of derivative. 

shiftzscalezcontrol dz
dy

dz
dy





Instead of Eq.(6) we obtain the following expression: 

controldelay

new

dz
dy

y
Lhzz   (9) 

Control parameters influence on speed of change for design variables on bounds y=0 and y=1. Taking Eq.(8) 
instead of Eq.(9) we use expression, including filtering both sensitivity and design variables: 

 z
dz
dy

y
Cyhzz

control

new )( ,

where  means application of Gaussian filtering. Computational costs are sufficiently reduced, because 100 
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steps of renewing of design variables are performed for one step of renewing of sensitivity values. 
The Lagrange multiplier  is determined for new values of znew. Since the constrain V(y)=V0 is degenerated at  
p , then the value of  can be found from heuristic considerations 02

100
zzz ss

nn



. Here zs=sort(znew) is sorted 

list of new values for design variables znew, the index n0 is equal to the number of removing elements and  z0=y-1(y0),
where y0 is predetermined value (Figure 3). 

remain

Sorted design variables

y0

delete

ndel

Figure 3: The criteria for determination of the Lagrange multiplier from the constraints on given 

7. Numerical optimization results 
Two-dimensional problem is considered, in which the initial structure is modeled by quadrilateral isoparametric 
finite elements of 2D theory of elasticity. All elements have constant thicknesses and equal 1. Initial domain is 
rectangle. All physical values are specified in non-dimensional manner. Poisson’s ratio is 0.3, given volume 
V0=0.5 and nominal Young’s modulus E0= 1. The design domains are given below with boundary conditions and 
loads together with optimization results for typical examples. In first two examples the concentrated force is 
applied. In the third one the distributed structural weight loads are considered. It was shown that it is possible to 
control the topology layout complexity by using parameters y0, rs, scale, shift. The results are presented in ascending 
order of compliance value C. Number of iterations Niter differs significantly for these cases. Note that the last 
structure in each example does not have holes. So, structural topology optimization is equivalent to shape 
optimization. The results for MBB beam for different values of control parameters are given in Table 2. 

Table 2: MBB beam results 

C 94.2125 95.1154 101.275 117.588 285.886 
Niter 436 87 247 122 82 

y0 0.5 0.3 0.5 0.5 0.1 
rs 1. 1. 1. 1. 1. 

scale 0.5 0.8 0.5 0.5 0.5 
shift 0.75 0.5 0.78 0.8 1.3 

The results for cantilever for different values of control parameters are given in Table 3. Note that the 
nonsymmetrical solutions can be obtained for symmetrical formulation (third structure). Also here it is possible to 
control optimization result, if the non-uniform initial distribution of design variables is specified. This is shown in 
the low row for third and last structure. The number of iterations significantly depends on the initial values, e.g. 
only 42 iterations are needed for the last structure, on contrary for the last but one it is needed 765 iterations. 

Table 3: Cantilever results 

C 180.223 183.432 186.639 187.067 195.328 201.315 207.835 254.127 635.884 
Niter 57 84 470 232 377 289 664 765 42 

y0 0.3 0.3 0.0025 0.3 0.3 0.04 0.02 0.02 0.3 
rs 0.25 0.5 0.25 0.6 0.6 0.5 0.3 0.3 0.25 

scale 1. 0.9 0.7 0.7 0.7 0.7 0.5 0.5 0.5 
shift 0.03 0.5 0.7 0.98 1.05 1.4 2. 2.1 1. 

     

The values of compliance in the considered examples are lower than the obtained ones in [4]. The results for beam 
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with hinged movable support (Figure 4a) and hinged immovable support (Figure 4b) under gravity forces for 
different control parameters. 

a) b)

Figure 4: Beam under self-weight  

This example brightly demonstrates a necessity of obtaining clear boundary shape. Here we got significantly 
different structure if compared with the result from paper [5]. It is last picture in Figure 4b. 

7. Conclusion 
New method of variable transformation for topology optimization for obtaining clear boundary shape of structures 
has been proposed. This method was demonstrated on the problems of topology optimization for minimization of 
structural compliance at a given volume. The advantages of proposed approach and the obtained solutions are 
discussed. All obtained solutions have clear boundary shape. Another advantage of the method is its computational 
efficiency in comparison with known SIMP methods with continuation and Heaviside projection filter. 
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1. Abstract
This paper presents a novative method for gradient-based optimization with regard to CAD parameters. This

method allows to respect manufacturing, design and surface quality rules, particularly required in computational

fluid dynamics (CFD). It can be used with any objective function available in adjoint solvers (both in structural and

CFD). To prove the efficiency of the method, the workflow schedule was apply on an air-conditionning duct so as

to maximize the eigen frequency and then to minimize the pressure drop.

2. Keywords: CAD parameters, sensitivity, optimization, CFD, adjoint solvers.

3. Introduction
Thanks to HPC, numerical optimization methods are more and more used to determine an optimal shape at a lower

cost in faster.

Among these methods, both design of experiments and surrogate modeling methods allow to work directly on CAD

parameters with the exception that the design space, i.e. the number of parameters, should be confined enough in

order to be explored within a reasonable computational time. Other methods are based on the gradients provided

by adjoint solvers, that is to say on the sensitivity of a cost function with respect to the displacement boundaries.

The sensitivity is used to know how to change the shape at any node of the mesh to obtain better performance.

They naturally get over the number of degrees of freedom but they are computed with respect to the coordinates of

the vertices of the surface mesh. However, since manufacturing constraints are difficult to express mathematically,

they are not taken into account during the mesh morphing. This drawback can be avoid by using a CAD model

that implicitly includes these manufacturing constraints.

To take advantage of both approaches, this method proposes to extend these gradients to CAD parameters. This

paper presents the developments of this method and its integration into an optimization loop. Applications on

structural and CFD problems will be presented to prove the feasibility of this approach and the possible gains

about the number of resolutions.

4. Shape Sensitivity with regard to CAD Parameters
During an optimization, the shape of the geometry is modified in order to improve its performance regarding an

objective function. Here, it can only be modified thanks to CAD parameters. So, it is necessary to determine the

shape sensitivity of the objective function with regard to CAD parameters (dα J) given by Eq.(1).

dα J = ∂xJ×∂α x (1)

∂xJ represents the shape sensitivity of the objective function J with regard to node displacements. It is given by

adjoint solvers and indicates how to move the nodes of the mesh to improve the objective function. In that scheme,

any objective function available in adjoint solvers can be applied in this equation. The term ∂α x represents the

shape sensitivity with regard to CAD parameters and indicates how the shape is impacted by a CAD parameter

perturbation.

4.1. State of the Art

The bibliography have pesented three ways to compute the sensitivity of the shape with regard to CAD parameters.

The first one is an analytic way that suggests to derivate the CAD surface equations. Yu et al. [10] present the main

advantage of this method, i.e. the accuracy of the results. However, it is necessary to know the explicite definition

of the shape in order to derivate these equations. Mostly, these formal expressions are not available in the CAD

1
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systems that are often proprietary software and that use implicite geometric solvers. It is therefore difficult to

compute shape derivation.

The numerical approach consists in evaluating the gradient by finite differences as proposed by Armstrong et

al. [1]. It compares the initial and perturbed geometries prior to generate the meshes. This approach requires the

disponibility of the geometric representation of CAD models [3] so as to be able to work with u,v coordinates.

Moreover, a parameter variation may result in additionnal patches and different naming [4]. These changes makes

surface identification difficult [6].

Another numerical approach is based on the discretization of the CAD geometry. The evaluation of the gradient

is done by finite differences between both the meshes of the initial shape and the perturbed shape. The main diffi-

culty is to determine the deformation field that projects one mesh on the other and that limits the distorsion of cells.

The deformation of the initial mesh is presented in many methods and Toivanen et al. [9] present one of them but

the cell distorsion is hardly mastered. Robinson et al. [6] propose to project the nodes of the initial mesh on the

deformed one along the normal but it causes difficulties on the process and requires adjustements.

4.2. Proposed Method

When meshes are used to compute the gradient, one of the main problems is the absence of isoconnectivity between

both the mesh of the initial shape and the mesh of the geometry after the variation of a parameter. The evaluation

of the displacement of any node of the mesh is used to compute the sensitivity. To determine this displacement, the

mesh of the initial shape is morphed on the mesh of the perturbed shape. During this operation, it is easy to follow

each node and create an isoconnectivity between the mesh of both geometries. The harmonic projection [2, 5] is

used to project 3D geometries on a 2D parametric domain, it corresponds to a reparameterization in 2D space. The

latter is considered as a reference space for both shapes.

The theoretical process is detailled with a geometry Ωα with one frontier. At each iteration of the optimization,

α0 represents the set of CAD parameters for the initial shape Ωα0
, considered as the reference geometry. The

perturbed geometry Ωαi is obtained after the variation of ith parameter. The respective meshes of the initial and the

perturbed shapes are noted Ω̃α0
and Ω̃αi .

Each mesh is projected by a harmonic transformation on a unit disk, respectively noted D̃α0
and D̃αi . Given Uα0

and Uαi the functions used to obtain respectively these disks and U −1
α0

and U −1
αi

the inverse functions:

Uχ : Ω̃χ ⊂ R
3 −→ D̃χ (0,1)

(x,y,z) �−→
{

uχ(x,y,z)
vχ(x,y,z)

χ ∈ {α0,α1, . . . ,αi, . . . ,αp} (2)

The figure 1 gives an illustration of the previous step. For example, a cube, opened on the lower face, is considered

as the reference shape Ωα0
. The variation of the parameter controlling the height of an edge provides the perturbed

shape Ωαi . The respective meshes Ω̃α0
and Ω̃αi , done separately, are projected onto the disks D̃α0

and D̃αi .

Ω̃α0 D̃α0
D̃αi

Ω̃αi

Uαi
Uα0

Figure 1: Projection of the mesh of the initial and perturbed shapes

The harmonic function is one-to-one, so it is possible to apply U −1
αi

on the disk D̃α0
. The nodes of D̃α0

are

interpolated with ones of D̃αi . So, the initial mesh Ω̃α0
is fitted on the perturbed mesh Ω̃αi . Thus, the new values

of the coordinates of Ω̃α0
are known. The evaluation of the perturbation is given by the finite differences of the old

and new coordinates of each node, as given by Eq.(3).

∂αi Ω � U −1
αi

(
D̃α0

(0,1)
)− Ω̃α0

δαi
i = 1 . . . p (3)

It is now possible to compute the Eq.(1). Nevertheless, the presented method requires that the 3D surface and the

parametric domain are homeomorphic. In this paper, we handle CAD geometries so has to make them be home-

2
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omorphic to a disk D̃χ . Indeed, the surface is cut to obtain a homeomorphic surface to a disk. This solution was

used to verify the feasibility of the proposed approach in an optimization loop.

5. Applications in structure and CFD
The optimization loop uses the result of the Eq.(1) into a gradient descent algorithm. The optimization loop can be

used in structural and CFD domains. In direct optimization, even if the computation time is limited, it is possible

with the gradient to directly improve the solution, particularly in CFD where the computational cost can be very

expensive. This method, breaking away from the usual industrial process, was applied on different academic test

cases. Two of them are detailled after and a summary of specific ones is done in the table 1.

As presented by the figure 2, the initial values of the parameters α0 are given to the CAD software. The outputs

are the initial geometry Ωα0
and every geometries Ωαi corresponding to the variation of each parameter αi. In

this case, the variation of each parameters are chosen arbitrarily at 5% of the initial value. All these geometries

are meshed and the mesh of the initial one is given directly to the primary and the adjoint solvers. During the

resolution, every meshes, corresponding to each perturbed geometries, are compared to the initial mesh by the

processus presented in 4.2. Both information given by the adjoint solver and the sensitivity computation is used in

an optimizer to determine the new values of α0 for the next iterations.

Initialization

CAD generation

Meshing

Primary and adjoint solvers Sensitivity computation

Optimizer

End

α0

Ωα0
Ωα1

· · · Ωαn

Ω̃α0 Ω̃α1
· · · Ω̃αn

J, ∂xJ ∂α x

α ′
0

Figure 2: Scheme of the optimization loop

First, gradients from Nastran (available since 1995) were used to prove the efficiency of the method. The optimiza-

tion problem was to maximize the eigen frequency of an air-conditionning duct. The CAD geometry (figure 3(a))

is a multi-section surface defined by 7 sections. The parameters and the boundary conditions, applied to the first

and the last section, give 13 parameters and a frequency of 300 Hz. After about 40 iterations, the frequency was

more than 1000 Hz. So, the optimization improve significantly the shape regarding this objective function only by

modifying CAD parameters.

Second, the optimization problem was to minimize the pressure drop of the air-conditionning duct. The Star-CCM+

adjoint solver was used to compute the sensitivity of the objective function. The CAD geometry (figure 3(b)) has a

S-bend profile defined by a multi-section surface with 7 sections. The parameters of each section and the boundary

conditions give a model with 25 parameters and an initial pressure drop of 530 Pa. After 14 iterations, the gain

was around 40 percent only by modifying CAD parameters.

3
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(a) Bend (b) S-bend

Figure 3: CAD geometries used in optimization loops

Table 1: Summary of results obtained with the optimization loop in structure and CFD – Structure1: maximizing
the eigen frequency – Structure2: minimizing this displacement due to a force – CFD: minimizing the pressure
drop

Physic Profile Number of Number of Objective function Gain

involved of duct parameters iterations initial final [%]

Structure1 Bend 13 36 306.2 Hz 1007.6 Hz 229

Structure1 Bend 14 52 217.6 Hz 673.9 Hz 210

Structure2 Bend 11 45 9.05 mm 1.21 mm 86.6

Structure2 Bend 30 66 5.68 mm 0.55 mm 90.3

CFD Bend 10 23 4.86 Pa 2.44 Pa 49.8

CFD Bend 25 15 4.32 Pa 1.75 Pa 59.5

CFD S-bend 25 14 532 Pa 302 Pa 43.2

6. Conclusion
Current results are obtained by cutting the CAD geometries in order to make the 3D surface be homeomorphic to

a disk. However, this requires an extra step to the designer to find a cutting surface valid whatever the value of

parameters. Futher developments will avoid this extra step and project multi-boundary surface on the disk.

Results prove the feasibility of the presented method with significant gain regarding the number of resolutions. It

would be interesting to use these gradients in more complex algorithms such as conjugate gradient or quasi-Newton

or in response surface modeling.

In this paper, structural and CFD domains are separately treated. Further developments will allow to apply this

loop on multiphysic cases.
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1. Abstract
Underwater acoustic radiation analysis for the shell structure mainly yields to the coupling of structural vibration 
analysis and acoustic analysis. For example, a weak coupling relay analysis is usually performed by combining an 
ANSYS software-based structural vibration analysis and a SYSNOISE software-based acoustic analysis, and a 
strong coupling analysis for vibration and acoustic is normally based on VAONE software, which is an integrated 
analysis tool. However, it is much easier to use ABAQUS software for the integrated analysis of structural 
vibration and acoustic. On the other hand, constructing surrogate models for the acoustic analysis is the best way to 
simplify the acoustic analysis procedures and formula accuracy and efficient structural acoustic design 
optimization model, where an explicit analytical formulation of the acoustic radiation characteristics regards to the 
structural sizes is provided. Therefore, this paper utilizes the Latin Hypercube Sampling method to select sampling 
points, and considers three types of surrogate models, polynomial response surface approximation, Kriging, and 
radial basis neural network, to approximate the acoustic radiation of a double cylindrical shell structure. Through 
comparison of the approximation accuracy of three types of surrogate models, the appropriate surrogate models 
are chosen to construct the optimization model, and the optimization model is solved by using Matlab optimization 
toolbox. This research provides references for predicting the acoustic radiation of underwater structures and 
performing acoustic design. 
2. Keywords: underwater cylindrical shell, acoustic radiation, acoustic design, surrogate model, structural 
optimization 

3. Introduction 
The probing for underwater structures is mostly about the water sound. How to reduce the sound radiation of 
underwater structures becomes the key point of improving the invisibility of underwater objectives. It is also 
significant for the acoustic optimization design of the naval structures. Reducing the underwater sound radiation of 
naval structures cannot only improve the invisibility, but also increase the reaction distance of their sound 
navigation and raging (SONAR) system. The sound-solid interaction characteristic of underwater structures is 
currently the main consideration regarding to the coupling of structural vibration and sound radiation. Because of 
the complexity of underwater structures, analysing approaches for structural vibration and sound radiation include 
analytical method and numerical method. The numerical method can be used to solve sound radiation problems of 
relative complex structures and structures with complex boundary conditions.  However, it is impossible to obtain 
the characteristics of structural vibration and sound radiation for complex structures by using the analytical method. 
Transfer matrix method (TMM), finite element method (FEM), boundary element method (BEM), FEM combined 
with BEM (FEM/BEM), and FEM combined with infinite element method et al. [1] are numerical methods often 
used. With the developments of computing techniques and large calculation softwares, FEM/BEM is the most 
popular method. For example, a weak coupling relay analysis is usually performed by combining an ANSYS 
software-based structural vibration analysis and a SYSNOISE or Virtual. Lab software-based acoustic analysis, 
and a strong coupling analysis for vibration and acoustic is normally based on VAONE software, which is an 
integrated analysis based on FEM/BEM. 

The sound radiation characteristic of an underwater double cylindrical shell structure is studied in this paper. 
Although the double cylindrical shell structure is used widely in naval engineering, such as submarine, oil platform, 
the sound radiation caused by the internal vibration is hardly predicted precisely, and normally underestimated in 
the process of noise control. In order to simplify the computing procedure and improving calculating efficiency, 
this paper utilizes a large commercial software ABAQUS for the coupling analysis of structural vibration and 
acoustic. The acoustic medium is adopted to describe the fluid. The boundary impedance technology is used to 
simulate sound wave spreading in the infinite water and to provide underwater sound radiation results of the 
double cylindrical shell structure.

The factors that infect the structural sound radiation of double cylindrical shell structure are complicated, such 
as structural shaping, inner and outer shell thicknesses, and number of ribs et al. [2]. Calculation for the 
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relationship between structural design parameters and sound radiation is complicated and time-consuming. If this 
numerical calculation is performed directly in optimization design, it is impossible to be carried out smoothly due 
to numerous calculations. An effective solution for this issue is to use surrogate models [3]. The thicknesses of 
inner and outer shells of the double cylindrical shell structure significantly effect on structural vibration models 
and underwater radiation noise. In this paper, the effects of the shell thicknesses on the structural sound radiation
are studied by utilizing surrogate modeling method. Three surrogate models, Polynomial Response Surface 
approximation (PRS), Kriging, and Radial Basis Neural Network (RBNN), are employed to approximate the 
function expression of the sound pressure level in near field regarding to the inner and outer shell thicknesses. The 
optimization model of minimizing structural mass with the near field sound pressure level constraint is constructed 
at the end. The “fmincon” function in MATLAB is utilized to solve the optimization model, and the optimal shell 
thicknesses are obtained.  

4. ABAQUS-based integrated analysis for acoustic-solid interaction of double cylindrical shell structure 

4.1. Finite element model of double cylindrical shell structure 
The double cylindrical shell structure is 10m long along the axial direction. It has ribs between the inner and outer 
shells, and the distance between two ribs is 1m. The ribs are round with constant sections, height of 0.06m, and 
thickness of 0.01m. The diameters of the inner and outer shells are, respectively, 1.0m and 1.12m. The excitation 
force is 50N and applied at the centre point of the outer shell along the circumferential direction. As shown in 
Figure 1, both the inner and outer shells have round ribs, and both ends have seal plates.  

Figure 1: Intersection of the double cylindrical shell structure 

For the material properties of the cylindrical shell structure, Young’s modulus is 2.05×1011Pa, the Poisson’s 
ratio is 0.3, and the density is 7800kg/m3. The initial design of the cylindrical shell structure is that, the thickness of 
inner shell is 0.015m, and the thickness of outer shell is 0.01m. For the material properties of the fluid, the speed of 
the sound is 1460m/s, the density of water is 1000kg/m3, and the volume modulus is 2.1204×109N/m2.

According to paper [4], when the space distance for mesh, x , is 6/1/ <x , where is the wave length, 
the discrete meshes would satisfy the requirement of accuracy. It means that, in the fluid, there are at least 6 nodes 
in a wave length. The S4R elements are used for meshing the structure, which is shown in Figure 2. 

Figure 2: Finite element model of the double cylindrical shell structure 

ABAQUS software has special acoustic elements for the acoustic-solid interaction model. In order to assure 
the computing accuracy, the second order tetrahedron acoustic element, AC3D10, is used for meshing fluid. Zero 
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impedance is set along the boundaries of the outside fluid to achieve the no-reflecting boundary condition. 
Therefore, the infinite fluid field can be simulated, and the sound waves can be absorbed by the fluid boundaries in 
distance field. In order to get a better result, the outside boundaries should be far from the structure as much as 
possible. Generally, it requires a distance that is larger than 1/3 of a sound wave length. A fluid area that is 10 times 
of the structural overall dimensions is built for the fluid field, which is shown in Figure 3.

Figure 3: Finite element model of the fluid field 

4.2. Average Sound Pressure Level
The acoustic module in ABAQUS is utilized for structural sound radiation analysis. The node that is 1m far from 
the outer shell under the initial design, Node 7078, is selected as the designated point, and the sound pressure 
frequency response curve at this node from 0 to 350Hz is obtained and shown in Figure 4. 

Figure 4: Sound pressure frequency response curve at Node 7078 

The sound pressures (SP) of the designated point at the center frequencies of 1/3 oct frequency band within 
300Hz are observed in this paper. The sound pressure level (SPL) can be obtained according to the following 
formula 

0
lg20

p
pLp =                                                                            (1) 

where pL  is the sound pressure level (SPL) (unit: dB), p  is the sound pressure, and 0p  is the standard sound 

pressure, which equals to 10-6Pa in the water. Table 1 shows SP and SPL values at Node 7078. 

Table 1: Sound pressure and sound pressure level values at middle frequencies of 1/3 octave 

Frequency/Hz SP/Pa SPL/dB 
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16 0.295 89.406 
20 0.166 84.417 
25 0.486 93.738 

31.5 0.836 98.446 
40 17.659 124.939 
50 4.201 112.467 
63 0.434 92.747 
80 41.944 132.453 

100 12.341 121.827 
125 3.135 109.925 
160 20.180 126.098 
200 2.125 106.547 
250 5.815 115.291 
315 2.311 107.275 

Then, the average sound pressure level (APL) at Node 7078 is calculated based on the flowing formula 

=

=
N

k

L
AP

kpL
1

1.010lg10                                                                              (2) 

where APL  is the APL value, which is also called the structural synthetic sound pressure level. “k” is the number 
of the sound pressure, and N is the total number of sound pressures that are observed, which equals to 14 according 
to Table 1. 

kpL  is the k-th sound pressure.  Therefore, the APL value for the structure under the initial design is 

134.32bB.
Since different thicknesses of inner and outer shells will yield different underwater sound radiation 

characteristics, the APL value at the designated point is considered as a designated indicator, and it should be no 
more than 125dB. Based on this constraint, optimization design for the cylindrical shell structure will be 
performed in the following sections to seek the lightest structure and a lower sound radiation pressure at the same 
time. 

5.  Optimization model 
The thicknesses of the inner and outer shells are considered as the design variables, and t1 and t2 are for the 
thicknesses of the inner and outer shells separately. They range from 0.01m to 0.05m. The mass of the shell 
structure is the objective, and the APL value at the designated point is the constraint. Therefore, the optimization 
model for sound radiation of the cylindrical shell structure is formulated as below 

05.00.01      
05.00.01      

125   s.t.
min

2

1

t
t

L
Mass

AP                                                                                       (3) 

where Mass is the structural mass, and it is expressed as below 
Mass= 21 7800076.98195 tt +                                                                           (4) 

Because the expression of APL  regarding to the design variables is unknown, a well-established method, the 
surrogate modeling method is employed to construct an explicit expression of APL . Then, the optimization model 
in Eq. (3) can be solve smoothly based on the surrogate model of APL .

6. Surrogate modeling for APL 

6.1. Design of experiment 
The Latin Hypercube Sampling (LHS) method is an effective way to select sampling points in the process of 
design of experiment (DOE). Compared to the random sampling method, LHS can make sure the range of each 
design variable is completely covered, and sampling points are distributed at each level as much as possible. So the 
LHS method is used here to select sampling and test points. 

In order to decrease the approximation error, 4 corner points in the design area are firstly selected as sampling 
points. Then, another 16 points are selected from the design area by using the LHS method. A total of 20 sampling 
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points are selected for approximating surrogate model and their distribution in the design area is shown in Figure 5. 

Figure 5: Distribution of 20 sampling points 

 Based on the finite element analysis in Section 3, the responses at each sampling point are obtained from 
ABAQUS, where the script language Python is used for pre- and post-process of the FE model. Programming is 
coded to change the thicknesses of inner and outer shells, submit FEA job for calculation, and read results from 
result files. Therefore, 20 APL values of sampling points are obtained automatically and quickly.  

Because of the large differences between the values of design variables and APL, it is necessary to normalize 
the data. All variables are normalized such that ‘0’ corresponds to the minimum value and ‘1’ corresponds to the 
maximum value of the variable. The normalization is carried out with the following formulations 

minmax

min

ii

ii
i tt

tt
x =   (i=1, 2)                                                                             (5) 

minmax

min

APAP

APAP

LL
LL

y =                                                                                    (6) 

where “i” is the number of design variable. it  and ix  are, respectively, the design variables before and after 
normalization. minit  and maxit  denote, respectively, the minimum and maximum values of design variables 
among 20 sampling points. APL  and y are, respectively, the APL values before and after normalization. minAPL
and maxAPL  denote, respectively, the minimum and maximum values among 20 APL values.

In order to test the accuracy of surrogate models, 9 more points are selected as testing points by using the LHS 
method, and they are used to calculate the error of the approximation. The Root Mean Square Error (RMSE) is 
used to test the approximate accuracy, and it is expressed by the following formula 

=

=
n

j
jj yy

n 1

2)ˆ(1RMSE                                                                        (7) 

where “j” is the number of test points. n  is the total number of test points and 9=n . jy  and jŷ represent,
respectively, the approximated and true values of normalized APL. A lower RMSE value indicates a surrogate 
model with a higher accuracy. 

6.2. Surrogate modeling 
Three types of surrogate models, polynomial response surface (PRS), Kriging, and radial basis neural network 
(RBNN), are utilized in this paper to approximate the APL function. The best surrogate models from each type will 
be used as the constraint function in Eq. (3).  

All of three types of surrogate models are obtained by using the “SurrogateToolbox” integrated within 
MATLAB, which was developed by Haftka and Viana. The tool box includes several types of surrogate models, 
and it can be used for regression analysis of surrogate models, multiple errors calculation, and figure plotting [5-6]. 
It is easily to be used and conducted.

In this paper, 2nd order, 3rd order and 4th order polynomials (represented by order2, order3, and order4 
separately) are considered for PRS approximation; zero order, 1st order, and 2nd order polynomial regression 
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functions (represented by regpoly0, regpoly1, and regpoly2 separately) with Gaussian correlation function are 
considered for Kriging approximation; three values of the spread constant, 0.2, 0.5, and 1.0 for the radial basis 
function (represented by spread_0.2, spread_0.5, and spread_1.0 separately) are considered for RBNN 
approximation. RMSE values for each observed surrogate models are shown in Table 2. 

Table 2: Comparison of surrogate models in RMSE 

PRS RMSE KRG RMSE RBNN RMSE 
order2 0.309 regpoly0 0.342 spread_0.2 0.386 
order3 0.307 regpoly1 0.347 spread_0.5 0.427 
order4 0.530 regpoly2 0.343 spread_1.0 0.524 

The RMSE values in Table 2 indicate that the 3rd order PRS, “regpoly0” Kriging, and “spread_0.2” RBNN are 
three nominations of the APL function. Therefore, three optimization models based on three approximations of 
APL functions are constructed, and the solutions are carried out in MATLAB with “fmincon” function.  

6.3. Optimization results 
Based on the 3rd order PRS, the optimal point is ]01.0,01.0[],[ *

2
*

1 =tt  (/m), and structural total mass is 
Mass=5.535×103kg. At the optimal point, the APL value from surrogate model is APL =124.83dB, and the true 

value of APL is *
APL =129.80dB. The relative error between them is 3.83%. 

Based on the “regpoly0” Kriging, the final results are ]0240.0,0348.0[],[ *
2

*
1 =tt  (/m), Mass=1.661×104kg,

and APL =125.00dB. The true value of APL is *
APL =122.43dB. The relative error between them is 2.10%. 

Based on the “spread_0.2” RBNN, the final results are ]0231.0,0349.0[],[ *
2

*
1 =tt  (/m), Mass=1.661×104kg,

and APL =125.00dB. The true value of APL is *
APL =122.31dB. The relative error between them is 2.20%. 

The results indicate that, the relative errors between the approximated and surrogated APL at the optimal points 
are less than 5%, and the “regpoly0” Kriging and “spread_0.2” RBNN yield better results than the 3rd order PRS. 
Therefore, both Kriging and RBNN can approximate the APL function very well. Their results demonstrate the 
validity and effectiveness of the employed methods in the optimization design for structural sound radiation. 

7. Conclusions 
This paper uses the ABAQUS-based integrated analysis method for acoustic-sold interaction problems to compute 
sound radiation of the underwater double cylindrical shell structure. The surrogate modeling method is employed 
successfully to obtain the approximation of average sound pressure level at the designated point. Fine results are 
achieved in the multidisciplinary design optimization of structural sound radiation. This research provides 
references for predicting the acoustic radiation of underwater structures and performing acoustic design. 
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1. Abstract 
The present paper aims to address a long-standing and challenging problem in structural topology optimization: 
explicit feature control of the optimal topology. The basic idea is to introduce feature control constraints which are 
closely related to structural skeleton, which is a key concept in mathematical morphology and a powerful tool for 
describing structural topologies. Benefit from the ability of structural skeleton in geometrical and topological 
properties of the shape, the feature control constraints can be represented as local and explicit scheme without any 
post-processing. To illustrate the effectiveness of the proposed approach, the feature control problem is solved 
under level set and SIMP framework, respectively. Numerical examples show that the proposed approach does 
have the capability to give a complete control of the feature size of an optimal structure in an explicit and local 
way. 
2. Keywords: Topology optimization; Feature control; Level-set; SIMP; Structural skeleton. 

3. Introduction 
Topology optimization of continuum structures, which is, in its mathematically nature, a discrete optimal control 
problem of the coefficients of partial differential equations in infinite dimensional space, is the most challenging 
structural optimization problem [1].
One long standing problem in structural topology optimization, which is closely related to regularization, is feature 
control of optimal structural topology [2-6]. More recently, Guo and Zhang et al.[7,8] proposed two explicit and 
local approaches for feature control in optimal topology designs. 
In the present paper, we intend to discuss how to carry out local and explicit feature control in structural topology 
optimization under level-set and SIMP-based computational framework, respectively.  

4. Mathematical foundation 
In order to give a precise feature control of a structure, it is necessary to define the minimum/maximum length 
scale in a mathematical rigorous way. In the following, this will be achieved by introducing the concept of 
structural skeleton of a given structure. 
Definition 1. The minimum/maximum length scale of a structure under level set framework 
In the present paper, the minimum length scale of a domain  is defined as 

where  is the set of closest points off  on  and  denotes 
the line segment with two end points   andd , respectively.  is the medial surface of a closed and bounded 
domain . Accordingly, the maximum length scale of a domain  is defined as 

Under level set framework and based on the above definitions, we have the following propositions which 
constitute the mathematical foundation of the proposed approach. 
Proposition 1. If  then 
Proposition 2. If  then 
Here,  is the so-called signed distance level set function. 
Based on the above definitions and propositions, it becomes clear that the minimum and maximum length scale of 
a domain  can be completely controlled by imposing lower and upper bounds on the values of its signed distance 
function associated with the points in 
Definition 2. The minimum/maximum length scale of a structure under SIMP framework 
In order to differentiate between level set and SIMP description, the structural skeleton is defined as  under 
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SIMP framework. Then the minimum length scale  and maximum length scale  of  can be 
defined as 

 
and

 
respectively, where  is defined as 

In Eq.(3),  denotes a closed ball centered at  with radius .
If the topology of a structure can be represented by a binary bitmap, numerous well established image processing 
techniques can be employed to extract its skeleton.  

5. Problem formulation with feature control 
Armed with above facts, the following problem formulation is proposed for topology optimization of 

continuum structures with feature control under level set-based framework: 
Find

s.t.

In Eq. (6),  is a prescribed design domain in which optimal material distribution is sought for. and  denote the 
body force density in D and the traction force on Neumann boundary , respectively.  is the prescribed 
displacement on Dirichlet boundary The symbol denotes the second order linear strain tensor. 

( and denote the fourth and second order identity tensor, 
respectively) is the fourth order isotropic elasticity tensor of the solid material with  and  denoting the 
corresponding Young’s modulus and Poisson’s ratio, respectively.  and are the displacement field and the 
corresponding test function defined on  with  The function  is such that 

 and  are the objective functional and prescribed upper 
bound of the solid material. They are all functional of  and As discussed in the previous section, the 
constraints imposed on the signed distance  play the role of feature control. With use of these constraints, the 
minimum and maximum length scales of the obtained structure will be greater than  and less than 
respectively.
In the SIMP framework, the optimization problem can be formulated as follows:

 Find
Min 
s.t.

In Eq. (7), is the vector of the design variables with  and  denoting the density and volume of the i-th
element. The symbol  denotes the total number of finite element used for discretizing the prescribed design 
domain .  (  is the penalization index and  is adopted in the present study) is the global 
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stiffness matrix with representing the element stiffness matrix corresponding to  is the lower 
bound of the element density.  and  are the minimum and maximum length scale constraint, 
respectively.  and  are the external load and the displacement field, respectively. In Eq. (3.1),  and  are 
two index sets such that 

and

respectively.

6. Numerical solution aspects 
In this section, numerical solution aspects of the proposed method will be discussed in detail. 

4.1. The Identification of  and 
From the above discussions, it is obvious that the key point for solving the optimization problem in Eq. (6) and (7) 
is to identify the medial surface of  i.e,  and In the present work, as suggested in [9], the 
following approximated Laplacian and then a line sweeping algorithm are applied to  sequentially to identify 
the points in  approximately as

with 

Taking the possible numerical error into consideration,  defined as 

where  is a small positive number, is used in numerical implementation to guarantee the robustness of the solution 
process. In fact,  constitutes a narrow band around 
In SIMP framework, we propose to introduce the following projection operator to transform the gray-valued 
density field (i.e., ) into a pure black-and-white density field (i.e., ) used for extracting the structural 
skeleton:

where  is a threshold value for density projection. In the present work, we will make use of Otsu method [10] to 
determine  in every optimization step adaptively in order to avoid misrecognition. Once the binary density field is 
identified, the iterative skeleton algorithm [11] can be adopted to identify the structural skeleton. 

4.1. The sensitivity analysis 
In Eq.(6), the existence of a large number of point-wise feature control constraints makes the direct solution 
approaches computationally intractable. In the present paper, the technique proposed in [12] is employed to 
transfer the local feature control constraints into a global one in a mathematically equivalent way. This can be 
achieved as follows. By defining 

 with 

The basic assumptions behind shape sensitivity analysis are such that both  and are spatial invariant, i.e., 
and  It is also assumed that on  as well as the part of the Neumann boundary  where 

are non-designable. For , we have
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where  and  are the outward normal vector and curvature of  respectively. In Eq. (18),   is 
the outward normal velocity of 

Since

where 

Since  and  we finally arrive at the result that 

At this position, it is worthy of noting that  is not an independent quantity that can be chosen freely. In fact, it 
is dependent on  in an implicit way. Therefore, it is somewhat difficult to determine the descent ensuring 
velocity field of  or  in the same way as in traditional level set methods. In our numerical implementation, 
is employed to control the minimum structural feature length scale. Under this circumstance, by neglecting the 
second term in Eq.(20). Numerical experiments showed that the above treatment is effective to deal with the 
feature control constraints. 
The velocity fields associated with  is only defined on  which is only a subset of  (i.e., 

). The evolution of , however, requires the velocity field on all points in  In the present 
study, the PDE-based velocity extension method proposed is employed to extend the velocity fields associated 
with  defined primarily on  to 
Under SIMP framework, by assuming that the index sets  and , do not change before and after the 
perturbations of design variables, it holds that  and 

 respectively. 

7. Numerical examples 
In this section, the proposed approach is applied to several benchmark examples of topology optimization to 
illustrate its effectiveness for feature control. In the following tested examples, the Young’s modulus and 
Poisson’s ratio of the solid material are taken as  and  respectively unless otherwise stated. Under 
SIMP framework, the lower bound of the density variable is  in numerical implementation. Unless 
otherwise stated, the relaxation parameters  and  are set to be  initially and reduced to 1 within 20 iterative 
steps.
First we test the feature control capability of Eq.(6) under level set framework. As shown in Fig. 1, the design 
domain is 2 1 rectangular sheet with its left side clamped. A unit vertical load is applied at the middle point of the 
right side of the sheet. The design domain is discretized by an 120 60 FEM mesh. 

he structure is optimized to minimize the mean compliance of the structure under the available solid material 
constraint  The parameters for the feature controlled optimization are 

 and  respectively. Fig. 2 shows the optimal topologies without and with feature 
control constraints. The obtained numerical results indicate that the proposed approach does have the capability of 
complete feature size control and the optimal solution obtained with feature size constraints may be quite different 
from that obtained without considering feature size constraints. The value of the objective functional of the feature 
controlled optimal design is  with solid volume  while the corresponding values of the no 
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controlled design are  and  respectively. 

2

1

Fig. 1  The design domain of the short beam example 

(a)                                                       (b) 

Fig.2. The optimal design of the short beam example
(a) without feature control (b) with feature control 

Under SIMP framework, the heat conduction problem shown in Fig. 3, where the objective is to maximize the heat 
transfer capacity, is examined under minimum length scale control constraint. The design domain where 
distributed unit thermal loading uniformly applied is discretized with a  FEM mesh and the temperature 
of left-middle side is set to 0, as shown in Fig. 3. When the upper bound of the available solid material volume is 

 the optimized structure without length scale constraints is shown in Fig. 4a. It can be seen that this 
optimal design is unfavorable for manufacturing due to the existence of a large number of fins with small 
thickness. Next, the same problem is reconsidered with length scale constraint being taken into consideration. It is 
required that the minimum length scale of the thermal fins should be greater than . The 
optimized design and the corresponding structural skeleton are shown in Fig. 4b. From Fig. 4b, it can be seen that 
compared with the design shown in Fig. 4a, several main heat transfer paths are still retained in the optimal design 
subjected to length scale constraint. However, the fins with small widths have been eliminated. The optimal design 
shown in Fig. 4b is more reasonable from manufacturability point of view. Accordingly, the value of the objective 
function has been decreased from 186.63 to 133.35, due to the existence of length scale constraint. 

1

1100 100 mesh 0.1 

Fig. 3  The design domain of the heat conduction example. 
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(a)                                               (b) 

Fig. 4 The optimized design of the heat conduction problem: 
(a)without feature control (b) with with control 

8. Concluding remarks  
In the present paper, two problem formulations and the corresponding numerical solution algorithm for feature 
control in optimal topology designs are proposed under level set framework and SIMP framework, respectively. 
Our methods are established based on the concept of structural skeleton, which has been well addressed in the field 
of image processing. Compared with the existing feature control approaches, the advantages of the proposed 
methods are such that they are local and explicit feature control schemes without resorting to any post-processing 
or continuation treatment. Numerical examples show that the proposed methods can give a complete (i.e., 
minimum and maximum length scales) control of the feature sizes in the optimized structures.
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1. Abstract
Reducing weight of off-shore wind turbine nacelles is currently a key driver of innovation within the wind turbine

industry. Weight reduction will not only lead to smaller loads and thus smaller towers of the turbine, but also reduce

logistic costs during the turbine’s installation. This holds even more so for off-shore turbines, the costs related to

installing a turbine is a substantial investment compared to the operational cost. A reduced nacelle weight will,

subsequently, lead to reduced cost of wind energy.

For direct-drive turbines, the generator is one of the heaviest parts of the wind turbine nacelle. Due to the low

rotational speed of the generator, the loads are especially high in this type of turbine, which increases the necessary

structural mass of the rotor. Recently, designed flexibility has been identified as one approach to achieve weight

reduction. However, reducing the weight of the support structure has proven difficult, due to the complex pattern

of dynamic excitation forces.

Until now, density based topology optimisation has hardly been employed for the design of wind turbine parts.

This publication investigates the possible weight reduction which results from applying this method to the support

structure of the generator rotor. As a first step, crucial excitation frequencies and spatial force distributions that

are generated by the magnetic field are presented. Then the topology optimisation is executed using a modal and a

harmonic approach, applying the identified force distributions.

Keywords: density based structural topology optimisation, direct-drive wind turbine generators, modal participa-

tion factors

2. Introduction
In multi-megawatt direct-drive wind turbines the operating conditions of the generator are influenced by the design

choice to omit the gear box between hub and generator rotor. The rotational speed of the hub, and hence of the

generator rotor, is determined by the tip speed ratio and thus by the length of the blades. The huge nominal power

that is generated in such a machine leads to a large torque that needs to be transformed into electrical power in

the generator. The torque is proportional to the squared of the magnetic flux density, which is limited to a certain

magnitude in radial flux electric machines. An increased air gap surface least and increased total flux in the machine

and thus also to an increased total torque. This leads to large generator diameters, which requires heavy structures

to transfer the electro magnetic forces to the bearing of the rotor. In the past optimisation of the structural elements

of a wind turbine with the goal of weight reduction has been at the focus of several publications. [1, 2] investigate

direct-drive wind turbine generators and how their weight can be optimised. [3] explores designed flexibility as a

solution for weight reduction for this type of generator. [4] optimises a slip ring permanent magnet generator.

Topology optimisation was identified as one technique to compute the optimal topology for the rotor structure

that supports the electro-magnetic active parts of the generator. The technique has been used before in combination

with forces originating from magnetic fields. [5] uses the technique to minimise vibrations generated by magnetic

harmonic forces. [6] uses topology optimisation in a magneto-mechanical coupled system to minimise compliance

of the yoke structure.

All of the above studies lack either the focus on electric machines, or the focus on structural dynamical be-

haviour of the system. This paper will investigate the optimal distribution of material to minimise dynamic reso-

nance for the rotor of a permanent magnet direct-drive wind turbine generator. The forces considered include static

as well as dynamic forces that are generated by the magnetic field in the air gap.

The paper follows two approaches for the optimisation process. The first approach uses an harmonic analysis

to calculate the dynamic energy within the structure at certain frequencies. The second approach calculates the

vibration modes and uses mode sensitivities to optimise the mode shapes to minimise participation factors of modes

in a certain frequency range. In both approaches the ’Method of Moving Asymptotes’ [7] was used.
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(a) (b) (c)

ca. 5 m

ca. 3 m

(d)

Figure 1: The XD-115 feature a direct-drive generator (a). The force distribution is depicted in (b) for the static

case and in (c) for the dynamic case in N
m2 . The domain for the topology optimisation ca be described by a hollow

cylinder (d). The red line indicates the edge that is clamped in three directions. The grey surface indicates the

barrel surface of the cylinder where the magnetic forces are applied.

3. The XD-115 – The System to Optimise
The XD-115 is a 5MW wind turbine by XEMC-Darwind [8]. It incorporates a direct-drive topology that is com-

monly found in off-shore wind turbines, and a permanent magnet generator. The diameter of the generator is about

5 m and its axial length is about 1 m. The single bearing supporting the rotor has a diameter of about 2 m less than

the diameter of the air gap. The bearing is located between the generator and the hub of the rotor. That location

reduces bearing torques and leads thus to small bearing loads. Fig. 1 a shows the current structure. The rotor part

that is of interest for this study is highlighted in blue.

3.1. The force distribution

In electric machines the main source of dynamic excitation is the torque ripple, which is created by the interaction

of the permanent magnets with the stator slots and the space harmonics which are cause by the distribution of the

winding. The force distribution encountered in the air gap only depends on the number of poles and the winding

distribution. These parameters do not change during the operation of the machine. The force distribution is, thus,

constant for any operating point of the machine. Contrary to this, the magnitude and the frequency of the excitation

forces depend on the relative position of the rotor to the stator and does thus depend on the rotation frequency. This

is especially important for variable speed wind turbines where the operation rotational speed depends on the wind

speed and thus changes significantly during operation. Therefore, the generator should be designed in such a way

that the amplitude of the dynamic response does not depend on the frequency of the exciting force.

The magnitude of the dynamic and static forces can be estimated from the rotational speed and the nominal

power of the turbine. The rotational speed of the turbine is at maximum power about 18 rpm. The torque that

needs to be transmitted from the hub to the electro-magnetic active parts in the generator is thus 2.6 MNm. The

force is distributed around the circumference of the rotor. Due to the design of the generator, the force distribution

is fixed and rather well known. It can be described by

fff mag,stat(xxxmag) = f̂mag

⎡⎣ 50(1− sin(npolesθ))
(1− sin(npolesθ + π

2 ))
0

⎤⎦ (1)

in cylindrical coordinates, where θ denotes the circumferential coordinate in cylindrical coordinates, npoles the

number of poles of the machine and f̂mag the amplitude of the force distribution. At full load, the force in radial

direction is about 50 times higher than the tangential force.

Additionally, there is a much smaller dynamic force that excites the structure dynamically. This force acts at

the same location as the static force. It can be described by

fff mag,dyn(xxxmag) =
f̂mag

50

⎡⎣ (1− sin(npolesθ))e jθshi f t

(1− sin(npolesθ + π
2 ))e jθshi f t

0

⎤⎦e j
npoles

2 ωmecht

with θshi f t = θnsym

(2)

where j is the imaginary unit. Previous research showed that the dynamic force in radial direction was about 50

times smaller that the static force. The same was assumed for the dynamic forces in tangential direction. θshi f t
denotes the phase shift of the magnetic force. This is caused by the cyclic symmetry within the machine. The

value depends on nsym, the number of symmetric sections of the electro-magnetic active part of the generator. The
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π
2 originates from the fact that the radial force peak has a phase shift with respect to the tangential force peak of

a quarter of a pole. xxxmag is the subset of xxx that includes all points, where the magnetic force fff mag is applied. To

make sure that the total torque is equivalent to the 2.6 MNm∫∫
Ωmag

eeeθ · fff mag,stat dΩmag = 2.6MNm (3)

where Ωmag denotes the surface of the cylinder barrel, where the magnetic force is applied and eeeθ a vector pointing

in tangential direction. Solving Eq. 3 for f̂mag yields the amplitude of the magnetic force distribution.

3.2. The Optimisation Approach

The goal of the topology optimisation is to find a design that shows the smallest displacement of the structure

at the air gap und the excitation of the dynamic magnetic forces described in Eq. 2. The excitation frequencies

are determined by the operating speed of the turbine. As a result, the optimisation can be restricted to a certain

frequency range.

To make the design magnetically feasible, a magnetically conducting connection needs to be established be-

tween the magnets. This is usually accomplished by placing the magnets on a magnetically conducting hollow

cylinder. To ensure that the solution of the optimisation problem satisfies this, s constraint is introduced that limits

the minimal mass of the outer surface of the optimisation domain. Further, it is necessary to ensure that the solution

of the optimisation limits the maximal displacement for the statically applied forces described in Eq. 1. This is

done by introducing a constraint that limits the strain energy at the barrel surface of the design domain.

Fig. 1d shows the design domain that is defined for the topology optimisation. At the red edge the degrees of

freedoms are clamped in all directions. The grey surface indicates the barrel surface of the domain at which the

electro magnetic forces defined by Eq. 1 and Eq. 2 are applied.

A penalty function was introduced for the stiffness and density of the structure to ensure regions with full or

zero density are more beneficial. Further, the density of the structure was lowered to avoid unphysical local modes

with low resonance frequencies. A solid isotropic material with penalisation model is used [9]. Using this model,

the young modulus and density of the material can be described by

E = 200 109(0.1+0.9ρ3
f ) (4)

ρ =

{
ρ f for ρ f > 0.1

ρ10
f for ρ f < 0.1

(5)

Two approaches are followed in this paper to minimise the displacement in the air gap of the generator due

to dynamic excitation. The harmonic approach solves the system of equations in the frequency domain at certain

predefined frequencies. The modal approach uses a modal analysis of the system to calculate the participation

factors for the modes within the frequency range of interest.

The selection of which method to use is based on the size of the numerical system and the frequency range

that is relevant for the optimisation. Larger frequency ranges should be optimised by the ’modal’ approach while

smaller frequency ranges should be optimised using the ’harmonic’ approach. In this paper both methods are used

separately.

3.2.1. Harmonic Approach

For the Harmonic approach a set of frequencies ω f req has been chosen for which the displacements of the system

as a result of the dynamic forces are calculated. In order to do this, the system of equations is transformed to the

frequency domain. The result can be written as

(−MMMω2 + jωCCC+KKK)uuu = fff mag (6)

For this approach, the optimisation problem can be described by

min
ρ f (xxx)

∑
ω f req

fff mag(xxxmag) ·uuu(xxxmag,ω f req)

subject to

∫
Ω

ρ f (xxx)dΩ < mmax ;

∫
Ωmag

ρ f (xxx)dΩ > mmag,min

uuu(xxxmag) · fff mag(xxxmag)< wmax

10−2 ≤ ρ f ≤ 1

(7)
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where mmax denotes a maximal mass of the rotor structure, fff mag(uuumag) the force distribution originating from the

magnetic field in the air gap and ρ the density of the structure. Ωmag denotes the barrel surface of the domain

where the magnetic forces are applied and wmag the maximal strain energy associated with the displacement at the

barrel surface. To make sure that mass is placed at the barrel surface to create a ring that connects the magnets, a

constraint is introduced that limits the minimal mass at the barrel surface. mmag,min denotes this minimal mass.

This approach has the disadvantage that the number of frequencies ω f req has a direct influence on the cal-

culation cost of this method. The more frequencies are included the more often Eq. 6 needs to be solved. The

frequencies in ω f req should not be too close to each other, because this increases the computational costs. Choosing

the distance between them too large could entail that a resonance frequency is not captured by the algorithm and

is thus not included in the optimisation function.

The harmonic optimisation was conducted with 8 frequencies within the frequency range of interest. The

distance between the frequencies was about 20 Hz. The model consists of approximately 318000 degrees of

freedom it contains 106000 design variables for the topology optimisation, one for each node of the finite element

model.

3.2.2. Modal Approach

The modal approach minimises the displacement caused by the harmonic excitation forces by minimising the

participation factors of the mode within the frequency range of interest. To do that, it solves the eigenvalue

problem to calculate the mode shapes

(KKK −ω2
r MMM)Φr = 0 (8)

where ωr denotes the rth eigenvalue of the system and Φr the corresponding eigenvector. The optimisation problem

can then be written

min
ρ f (xxx)

∑
k
( fff mag(xxxmag) ·ΦΦΦk(xxxmag)( fff ∗mag(xxxmag) ·ΦΦΦk(xxxmag))

subject to

∫
Ω

ρ f (xxx)dΩ < mmax

∫
Ωmag

ρ f (xxx)dΩ > mmag,min

uuu(xxxmag) · fff mag(xxxmag)< wmax

0 > ρ f > 1

(9)

where the asterix denotes the complex conjugate of the load vector and ΦΦΦk denotes a set of eigenvectors that is

chosen from all solutions of Eq. 8 by choosing the eigenvectors with the highest values within a certain frequency

range. This means that the objective function can change abruptly when a the eigenfrequency of a vibration

mode changes and the mode is no longer considered in the objective function. This approach harbours the danger

that the optimisation algorithm does not converge but instead is caught in a loop of evaluating the same sets of

design parameters. This can happen when a mode is no longer considered for the objective function due to an

eigenfrequency that is too low or too high and the optimisation subsequently change the set of design parameters,

so that the mode is considered again.

The ’modal method’ has the advantage that the system has to be solved less often than for the harmonic method.

The eigenvalue solver will identify the resonance frequencies which are not specifically calculated in the harmonic

method. The drawback is that the optimisation function is not self adjoint. The adjoint variables need to be

calculated for every mode that is included in the objective function. For that a linear system of equations of the

size of Eq. 8 is solved.

The model for the modal method consists of about 154000 degrees of freedoms. The density field was described

per element, leading to a total number of 44352 design variables.

4. Results
To be able to compare the optimised design with the original design the maximal strain energy resulting from

the static forces and the maximal weight of the structure were set to the same values that the original design has.

This way the optimisation yields results that exhibit the same displacement and weight as the original design. The

participation factors indicate to what extend the new design is better or worse than the old design.

4.1. Harmonic Optimisation Approach

Fig. 2 shows the results of the harmonic approach. The participation factors associated with this design are listed

in Tab. 1. It is apparent that the resulting participation factors are higher than the ones of the original design. The
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Mode Type
harmonic approach modal approach original analysis

norm freq part factor norm freq part factor norm freq part factor

tilting
0.83+0.01i 0.54+0.1i 0.58 −0.07+0.01i 0.68 0.13−0.02i

0.82+0.01i 0.09+0.2i 0.6 0.01−0.07i 0.68 0.01−0.18i

1st bending
1.61+0.02i −0.38−0.43i 1.17 0.05−0.04i 1.2 0.02−0.04i

1.61+0.02i 0.54−0.11i 1.19 0.07−0.04i 1.2 −0.02−0i

axial 1.15+0.014i −0.04−0i 1.27 −0.07−0.02i 1.29 0.01+0.01i

2nd bending
- - 1.83 0.03+0.04i 3.18 −0.8+1.55i

- - 1.85 0.04−0.03i 3.2 2.33+0.74i

torsional 2.3+0.03i 0.04−0.12i 1.47 0.06+0.06i 3.24 −0.04+0.02i

shear
1.91+0.02i 0.71+0.23i 1.61 −0.04+0.06i - -

1.91+0.02i −0.05+0.17i 1.66 0.03+0.02i - -

Table 1: The participation factors for selected modes and the two approaches. The participation factor for the

current design are stated as reference

(a) Structure optimised by harmonic method (b)

Figure 2: The result of the harmonic approach. On the left the, half of the optimised structure in 3D is depicted.

On the right, a cut through the structure optimised by harmonic method is depicted. The magnetic force is applied

at the right hand side. The fixed constraint is located in the bottom left corner

here presented design, does violate the maximal mass constraint and the maximal strain energy constraint slightly.

The structure is thus slightly heavier and slightly less stiff in the static case than the original design.

4.2. Modal Optimisation Approach

Figure 3: The result of the modal approach. On the left, half of the optimised structure is depicted. On the right,

a cut through the structure. The magnetic force is applied at the right hand side. The fixed constraint is located in

the bottom left corner

The results of the modal method are depicted in Fig 3. The participation factors are given by Tab. 1. The

participation factors are for most of the relevant modes lower than for the original design. However it should be

noted that the constraint limiting the static compliance is violated for this result. Fig. 3 also shows that the density
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at the barrel surface is not high enough to satisfy the second constraint. The high participation factors and the

not satisfied boundary conditions for the modal approach result can be explained by the coarse mesh. The density

is described element wise. One element has a side length of 10 cm. This yields a minimal wall thickness of 10

cm. The static compliance constraint cannot be satisfied with this coarse mesh. Likewise the constraint that the

outer ring is solid and filled with elements of full density cannot be satisfied without violating the maximum mass

constraint for the whole structure.

5. Discussion
Topology optimisation of such a large structure that requires a high resolution for the density field is difficult. The

results are thus at the lower resolution limit that is barely able to describe the structure and the modes. The results

have to be used with caution as the finite element approximation for the stiffness of thin walled structures might

not be accurate when the structure is only one element wide. This is the case at several location in the solution. A

shape optimisation, whose topology is based on the results of this study could increase the confidence in the results

that are presented here.

Methods to overcome the problem, that the limit of degrees of freedom imposes on the model, include the

application of a cycle symmetric eigenvalue solver, employing flocked theory [10]. This approach requires further

research to what extend the flocked theory can be included in the optimisation algorithm.

The result of the harmonic method also show higher participation factors than the one of the original solution.

This might be caused by a gap that is too large between consecutive frequencies at which the displacement was

calculated. Better results are expected when a finer frequency resolution is chosen.

6. Conclusion
Topology optimisation was used to analyse and improve the design of a direct drive wind turbine generator. Special

emphasis was given to the dynamic behaviour of the structure, that is excited by the magnetic force in the air gap.

Various methods resulted in similar topologies. However, the optimised results did not perform better than the

original design. Further research is necessary to identify why the performance could not be improved.
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1. Abstract
Topology optimization offers a means to leverage the advancement in manufacturing technologies that in recent

years have made it possible to fabricate cellular materials with complex but prescribed topologies. Topology op-

timization has previously been used for unit cell design of materials with elastic properties and herein we look

to extend these approaches to design materials with properties that are governed by nonlinear mechanics, such as

energy absorption. One of the primary challenges in this setting is the lack of unit cell upscaling techniques for

nonlinear behaviour, including both material and geometric nonlinearities. In its absence, we turn instead to the

assumption of finite periodicity. The proposed formulation uses existing nonlinear sensitivity analysis schemes

as the backbone of the design algorithm. Two new topologies optimized for energy absorption are presented and

experimental results of actual fabricated samples are discussed.

2. Keywords: Topology optimization, nonlinear mechanics, cellular materials.

3. Introduction
In recent years manufacturing techniques and controls have improved significantly, making it possible to fabricate

cellular materials with increasingly complex topologies. Cellular materials herein refers to materials that are

periodic and porous. This technological advancement makes two questions relevant: (1) how does the topology

influence the bulk material properties (the forward problem); and (2) what is the unit cell topology that optimizes

these effective properties? (the inverse problem). The focus of this work is to use topology optimization to

solve the inverse problem and hence to design cellular materials with optimized effective properties. Specifically

we seek to design an effective material of Bulk Metallic Glass with a maximized energy absorption. This is

a nonlinear property and will therefore require both geometric and material nonlinearities to be included in the

problem formulation.

Several researchers have used topology optimization to design materials with optimized effective (homoge-

nized) properties, including elastic properties such as negative Poisson’s ratio [1], thermoelastic [2], fluid perme-

ability [3, 4], and stiffness- thermal conductivity [5]. These works, however, all consider linear properties, enabling

analysis (and design) of a single unit cell to estimate effective bulk properties through homogenization.

In this paper we will discuss elastic cellular material design and how the design problem changes when design-

ing for nonlinear mechanical properties. This is all done using a density based topology optimization approach

with the well-known SIMP [6, 7] penalization scheme to give preference to 0-1 solutions and the Method of Mov-

ing Asympotes [8] as the gradient-based optimizer.

?
(a) (b) (c)

Figure 1: (a) discretized unit cell, (b) optimized unit cell topology and (c) unit cells in cellular material.

4. Design of Cellular Materials with Elastic Properties
Topology optimization for design of cellular materials can be illustrated by the schematic in Fig. 1, where Fig.

1a shows how the characteristic unit cell is defined as the design domain Ω. The problem is posed formally as an

optimization problem whose solution gives the optimized unit cell topology, as seen in Fig. 1b. Finally, Fig. 1c

illustrates the periodic arrangement of the unit cell to form a cellular material, and underscores the need to estimate

1

704

Leo
Rectangle



effective material properties from analysis of the unit cell structure. When designing for linear elastic properties,

the topology optimization problem is often posed as:

minimize
φ

f (φ ,CH)

subject to K(φ)d(i) = f(i) ∀ i

g
(
CH(φ ,d(i))

)≥ gmin

Vmin ≤ ∑
e∈Ω

ρe(φ)ve ≤Vmax

φmin ≤ φn ≤ φmax ∀ n ∈ Ω

d(i) is Ω-periodic

(1)

Here f is the objective function that can be chosen as some (negative if maximizing) effective property such

as Young’s-, shear or bulk modulus or Poisson’s ratio. Further, φ is the design variables and stress and strain

are denoted by σ and ε under the small strain assumption. K(φ) is the global stiffness matrix and constraints are

defined by g with allowable magnitude gmin. A typical constraint, for example, is elastic symmetry, which is usually

chosen as either square symmetric or isotropic. The bounds on the volume fraction or relative density are defined

by Vmin and Vmax and φmax and φmin describes the design variable bounds that in this work are taken as 0 and 1. The

element volume is denoted ve and ρe(φ) is the element density of element e. CH is the homogenized constitutive

matrix computed using numerical homogenization and hence by applying test strain fields ε0(i) to the unit cell. In

Eq.(1), d(i) and f(i) are the displacements and force vectors for the test strain field i. The homogenization follows

the description in [9]:

CH
i j =

1

|Ω| ∑
e∈Ω

(
de(i)

0 −de(i))TKe(φ)
(
de( j)

0 −de( j)) (2)

Here de(i)
0 is the vector of nodal displacements for element e corresponding to the test strain field ε0(i) and

Ke(φ) is the element stiffness matrix.

4.1. Penalization of intermediate values

The element stiffnesses are related to the topology using the Solid Isotropic Material with Penalization (SIMP)

method [6, 7] and the Young’s modulus of the element therefore expressed as

Ee(φ) =
(
(ρe)η +ρe

min
)
Ee

0 (3)

where η ≥ 1 is the exponent penalty term, Ee
0 is the Young’s modulus of a pure solid element and ρe

min is a small

positive number to maintain positive definiteness of the global stiffness matrix.

4.2. Heaviside Projection Method

To improve the manufacturability of the topology-optimized designs we herein control the minimum length scale

of the topological features. The length scale is generally defined as the minimum radius or diameter of the material

phase of concern, here the solid phase. It is well established that controlling the length scale has the additional

advantage that it circumvents numerical instabilities, such as checkerboard patterns and mesh dependency.

Several methods for controlling the length scale of a topology optimization design exist. Herein, the Heaviside

Projection Method (HPM) [10] is used, since the operator of this method is capable of yielding 0-1 designs in which

the minimum length scale is fulfilled without adding constraints to the problem. In HPM, the design variables are

associated with a material phase and projected onto the finite elements by a Heaviside function. The problem is

thus separated into two spaces; a design variable space, where the optimization is performed, and a finite element

space, where the physical equilibrium is solved. The connection between the two spaces is the projection which

typically is done radially. Therefore, the projection radius can easily be chosen as the prescribed minimum length

scale rmin. Computationally a neighborhood Ne that records the design variables within the distance rmin is set up

for each element. The design variables are mapped onto the elements by computing a weighted average μe(φ),
often called linear filtering, and to obtain binary solutions, the average design variables μe(φ) are passed through

a Heaviside function to obtain the element volume fraction ρe.

ρe = 1− e−β μe(φ) +
μe(φ)
φmax

e−βφmax (4)

Here β ≥ 0 dictates the curvature of the regularization which approaches the Heaviside function as β approaches

infinity. For full algorithmic details please see [10].
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4.3. Sensitivities

The sensitivities of the objective function are calculated as follows:

∂ f
∂φi

= ∑
e∈Ω

∂ f
∂ρe

∂ρe

∂φi
(5)

The partial derivative of the objective function f with respect to the element volume fraction ρe is problem depen-

dent and calculated using the adjoint method. The partial derivative of the element volume fraction with respect to

the design variables follows the chain rule. By differentiating Eq.(4) the following expression is found:

∂ρe

∂φi
=

(
βe−β μe(φ) +

1

φmax
e−βφmax

)
∂ μe

∂φi
(6)

5. Design of Cellular Materials with Nonlinear Properties
Topology optimization for energy absorption requires considering the fully nonlinear response of the designed

structure. This thus includes material nonlinearities and geometric nonlinearities. In this research we optimize for

both types of nonlinearities by combining the existing sensitivity formulations for material and geometric nonlin-

earities under displacement controlled loading from [13] and [12], respectively. This means that finite deformations

are included and that we describe the nonlinear material behavior by Von Mises yield function with isotropic hard-

ening. An elasto-plastic material model is used and we assume linear hardening. The SIMP approach is extended

as in [12], however, we have used the same SIMP exponent for all the material parameters.

Topology optimization for nonlinear effective properties is a far more challenging task than for linear proper-

ties. Homogenization of nonlinear mechanics from unit cell analysis is not yet established, and thus we perform

the optimization of a sample with finite periodicity. Effective elastic properties and symmetries are estimated us-

ing elastic homogenization as dictated by the problem formulation, leading to a unit cell topology optimization

problem with analysis conducted over two different domains: the unit cell for elastic properties and structure with

finite periodicity for the nonlinear properties. The problem formulation used herein is as follows:

minimize
φ

f (φ ,CH ,S,E)

subject to KE(φ)d
(i)
E − f(i)E (φ) ∀ i

Rt(φ ,d) = Kt(φ ,d)dt − ft(φ) = 0 ∀ t

gE
(
CH(φ ,d(i)

E )
)≥ gE,min

gNL
(
σ(φ ,d),ε(φ ,d)

)≥ gNL,min

Vmin ≤ ∑
e∈Ω

ρe(φ)ve ≤Vmax

φmin ≤ φn ≤ φmax ∀ n ∈ Ω

d(i)
E is Ω-periodic

(7)

where the subscript E refers to the elastic and NL to the nonlinear parts. The superscript t refers to the current

load step and dt is hence the displacement vector at the current load step and d the displacement vector unto t. The

elastic unit cell equilibrium is given by the first constraint, and constraints gE include the effective elastic property

constraints such as the symmetry conditions. The nonlinear equilibrium constraints are given in the second set

of constraints, and constraints gNL comprise nonlinear property constraints as needed. In Eq.(7) the equilibrium

condition is described in terms of R(φ ,d) which is the residual force vector. This equilibrium condition must

be solved using an iterative nonlinear FE solver. For the designs presented in the following we have taken total

absorbed energy as given by as the objective:

f =−
∫

Ω

∫
σT dεdΩ (8)

5.1. Solids-Only Modeling in the Physical Space

It is well established that the modelling of void elements required by the density based topology optimization

approach introduces numerical instabilities such as excessive distortions under finite deformations. In addition
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the elements of negligible volume fraction are quite detrimental to analysis as they maximize the system to be

solved and thus computational expense. They are, however, needed in the optimization process for reintroduction

of material as the design evolves. It can therefore be said that they are necessary for the design portion of the

optimization process, not the analysis.

Different methods for circumventing these instabilities such as re-meshing [14], modified nonlinear conver-

gence criteria [13], and stabilizing the stiffness matrix following Gaussian elimination [15] have been proposed.

These methods require a threshold ρt to be set below which element stiffness is considered negligible. In this work,

we simply introduce artificial boundary conditions to degrees of freedom that are surrounded completely by void

elements. This is achieved by marking the nodes of elements whose stiffness is to be modeled (ρe > ρt ). Nodes

that are unmarked receive a temporary boundary condition. Equation numbering and finite element assembly pro-

ceed in the standard manner, although it is noted the assembly routine need not check the equation numbers of

void elements (including along the structural interface). This process is performed at each design iteration where

the solids-topology changes.

It should be noted that the solids only finite element modeling makes the ρmin parameter in Eq.(3) unnecessary.

Herein we have therefore used ρmin = 0.

6. Design of a Cellular Bulk Metallic Glass
The cellular material topology optimization design problem stated in Eq. (7) for maximizing the absorbed energy

considering both geometric and material nonlinearities has been used to design a cellular bulk metallic glass mate-

rial. Bulk metallic glasses (BMGs) are a class of amorphous structural materials with high strength and elasticity.

However, they typically exhibit a brittle failure mode in bulk form. It is therefore desirable to design a cellular

material that introduces ductility to BMG material systems.

We have considered a number of maximum volume fractions, and report on solutions found using Vmax = 10%

and Vmax = 12.5% herein. An elasto-plastic uniaxial behavior (based on a small strain formulation) is assumed

for the solid phase and the following material properties are assumed: E = 86.9 GPa, ν = 0.375, σy0
= 1.475 GPa

and H0 = 0.84 GPa. Square symmetry conditions were applied and the minimum length scale of the topological

features specified herein was 1.2h where h is the side length of the finite element mesh. The results presented

herein have h = 0.005 mm.

As mentioned above, finite periodicity has been used in the lack of a recognized upscaling method for nonlinear

mechanical properties. The finite sample is considered fixed horizontally and vertically at its bottom and at the

top a downward displacement is applied vertically while horizontal movement is restricted. The presented unit

cell designs were arrived at using a 5x5 unit cell sample. The effect of the sample size on the response has been

investigated and 5x5 was found to have a reasonably converged response without an excessive computational effort.

The stopping criterion for the topology optimization problem is collapse initiation of a unit cell and contact is

hence not considered.

(a) 10% new unit cell (b) 10% new design (c) 10% honeycomb

(d) 12.5% new unit cell (e) 12.5% new design (f) 12.5% honeycomb

Figure 2: (a,d) unit cell and (b,e) 6x6 periodic samples of cellular materials optimized for energy absorption. (c,f)

are 6x6 samples of honeycomb topologies.

In the proceeding, the numerical and experimental analyses are conducted on 6x6 samples. The design solu-
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tions are shown in Fig. 2 where both unit cells (a,e) and periodic samples of 6x6 unit cells (b,f) are given for the

two considered volume fractions.

6.1. Numerical Analysis of the Stress-Strain Behavior

Samples of 6x6 unit cells are FE analyzed and compared to analyses of samples with the same volume fractions

of Vmax = 10% and Vmax = 12.5%, respectively, and a more traditional honeycomb topology (Fig. 2c,f). Figure

3 contains the the stress-strain responses of these analyses and the absorbed energies are indicated in the plots.

We clearly see from the plots that the unit cell topology has a large effect on the response and absorbed energy

of the effective bulk material. As expected, it is seen that the topology optimized designs has a higher level of

energy absorption when measuring until instability that causes unit cell collapse is seen. These instabilities are

found at different strains for all four considered samples. If comparing to the typical honeycomb topology the

energy absorption is seen to be about 66% and 2% higher for the 10% and the 12.5% designs, respectively. It is

interesting to note the difference in the deformation mechanisms used by two optimized the designs to achieve this

improved energy absorbance. For the 10% volume fraction a soft material that can undergo large deformations

before unit cell failure occurs is designed, whereas the 12.5% design has both higher strength and stiffness than

the conventional honeycomb topology although this was not an objective of the optimization.

0.542 MJ/m3

0.204 MJ/m 3

(a) 10% volume fraction

0.239 MJ/m3

0.242 MJ/m 3

(b) 12.5% volume fraction

Figure 3: Stress-strain responses obtained from the FE-analyses of the considered sample topologies. The energy

absorbed by each of the samples is indicated on the plot.

6.2. Experimental Results

A 6x6 unit cell sample of the designed topology with Vmax = 12.5% was fabricated in BMG and tested. A honey-

comb sample with the same volume fraction was also fabricated and tested for comparison. The performed tests

were uniaxial in-plane compression tests with quasi-static displacement control and the samples were tested till

full densification. This is well beyond the stopping criterion of the optimization, but will enable the test to identify

deformation mechanisms that would be beneficial to include in future optimization formulations.

 [-]
0 0 .2 0.4 0 .6 0.8

 [M
Pa

]

0
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Topology Optimized
Honeycomb

12.8 MJ/m
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3
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Figure 4: Stress-strain response from the experimental analysis of 6x6 samples with Vmax = 12.5%.

In the plot in Fig. 4 the experimental results are given and the amounts of energy absorbed by each of the

two tested topologies are indicated. As expected, the energy absorption is significantly higher for the new de-
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sign; an increase of about 38% is seen. This is higher than the improvement found by the numerical analysis,

however a difference was expected as the two stopping criterions not are the same. Further, as in the numerical

analysis the new design is seen to have a much higher initial stiffness and strength than the honeycomb topol-

ogy. However, for both the honeycomb and the newly proposed topology the post initial peak behavior is seen

to fluctuate and hence contain a series of peaks and drops. The amplitude of this cyclic behavior is most severe

for the topology-optimized unit cell design. A future research focus is to alleviate this cyclic effect in the response.

7. Conclusion
The rapid improvement of manufacturing technologies presents a significant opportunity going forward in topology

optimization for cellular material design. The design for elastic effective material properties is well understood,

including optimization considering manufacturing constraints. Topology optimization-based design for nonlinear

response properties of cellular material topologies, however, is significantly more challenging. As demonstrated,

however, it also offers tremendous opportunities in designing materials with new capabilities.
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1. Abstract
In a previous research, we proposed a consistent grayscale-free topology optimization method using the level-

set method and zero-level boundary tracking mesh. In this method, the shape and topology of the design target

are represented using the level-set method and the state variables are computed using a mesh tracking the zero

iso-contour of the level-set function, which we call the zero-level boundary. Because of the characteristics of

the level-set method and zero-level boundary tracking mesh, essentially grayscale-free representation is achieved.

Furthermore, a double-well potential based regularization technique is employed in the proposed method to regu-

larize the structural optimization problem. Because of these enhancements, we realize essentially grayscale-free

topology optimization where the design variables are updated on the basis of the standard framework of mathemat-

ical programming. In the present research, we apply the proposed grayscale-free topology optimization method

to several structural optimization problems in industry, such as the minimum compliance and invehicle reactor

design problems. Through the application to these design problems, we investigate the potential of the proposed

grayscale-free topology optimization method.

2. Keywords: Topology optimization, Level-set method, Grayscale-free method, Design problem

3. Introduction
Topology optimization is a design approach for yielding superior structural designs while considering the shape and

topology. There are two basic ideas in topology optimization: one is replacing the original structural design prob-

lem with a material distribution problem in a given design domain, and the other is updating the design variables

representing material distribution by using mathematical programming. Because of mathematical programming, it

is expected that the optimal solution, i.e., the optimal structure, is obtained.

While homogenization or density based topology optimization [1, 2] has achieved great success, topology

optimization based on the level-set method has recently gained attention from many researchers. The level-set

method [3] is a shape representation method for different two phases; the distribution of these two phases is

represented by the sign of a scalar function called the level-set function. On the basis of this shape representation

method, the material distribution of the target structure is represented using the level-set function in level-set based

topology optimization [4, 5, 6].

Because the structural boundary is always clearly represented by the level-set method, grayscale elements

seems to be suppressed in level-set based topology optimization. This is a great advantage when comparing

with homogenization or density based topology optimization. However, grayscale elements cannot be completely

suppressed even in level-set based topology optimization when the state variables are computed using a fixed mesh

such as the Eulerian mesh for maintaining the level-set function. To realize completely grayscale-free topology

optimization, we have proposed a level-set based topology optimization method [7]. In the proposed method, the

shape and topology of the design target are represented using the level-set function, and the state variables are

computed using a mesh that conforms to the structural boundary, i.e., the zero iso-contour of the level-set function.

In this paper, we further investigate the usefulness of the proposed method by applying it to several design

problems, concretely, the minimum compliance problem and an invehicle reactor design problem. In Section 4,

we briefly explain the grayscale-free topology optimization method that we previously proposed. In Section 5, we

discuss how apply the proposed method to the two design problems. In Section 6, we provide several numerical

examples to confirm the validity of the applications. Finally, we conclude the discussion in Section 7.

4. Proposed Grayscale-free Topology Optimization Method
In this section, we briefly explain the grayscale-free topology optimization method proposed in Reference [7].

1

710

Leo
Rectangle



4.1. Shape Representation Based on the Level-set Method

In the proposed method, the shape and topology of the target structure are represented using the level-set function

φ x , which is defined as

φ x > 0 for ∀x ∈ Ω\ ∂Ω\∂D ,

φ x 0 for ∀x ∈ ∂Ω\∂D, (1)

φ x < 0 for ∀x ∈ D\Ω,

where D is the design domain, Ω is the material domain, ∂D and ∂Ω are, respectively, the boundaries of D and Ω,

and x is a position in D. Furthermore, the smoothness of φ is ensured by solving the following equation [8]:

−R2∇2φ φ ψ in D,
∂φ
∂n

0 on ∂D, (2)

where ψ is a function that governs φ , and R is the length scale parameter.

In the implementation, φ and ψ are discretized using the Eulerian mesh, and the discretized φ and ψ are

represented by the respective nodal value vectors ΦΦΦ and ΨΨΨ. ΨΨΨ are the design variables in the proposed method,

and these are bounded as follows:

−1 ≤ Ψi ≤ 1 for i 1, . . . ,npsi (3)

where Ψi is the ith component of ΨΨΨ and npsi is the component number of ΨΨΨ.

4.2. State Variable Computation Using the Zero-level Boundary Tracking Mesh

As explained in Section 4.1, the material domain Ω is represented by ΦΦΦ in the discrete system. Then, the Eulerian

mesh that maintains ΦΦΦ does not conform to the zero iso-contour of the level-set function (hereafter, we call it the

zero-level boundary) in usual cases. Therefore, grayscale elements are yielded around the zero-level boundary

when the state variables are computed using the Eulerian mesh. To completely suppress such grayscale elements,

a mesh that accurately tracks the zero-level boundary is generated at every optimization iteration in the proposed

method. This zero-level boundary tracking mesh is generated by moving the nodes of the Eulerian mesh, and used

to compute the state variables. For the details of the mesh generation procedure, see Reference [7].

4.3. Sensitivity Analysis

In the proposed method, it is assumed that the objective and constraint functions are computed using the zero-level

boundary tracking mesh. On the other hand, the nodal level-set functions ΦΦΦ are maintained at each node of the

Eulerian mesh. Therefore, the relationship of sensitivities between the Eulerian and zero-level boundary tracking

meshes should be known to derive the sensitivities with respect to ΦΦΦ. Fortunately, this relationship has been clearly

given in Reference [7], therefore, the sensitivities with respect to ΦΦΦ can be successfully derived if the sensitivities

with respect to the nodal coordinates of the zero-level boundary tracking mesh. Furthermore, the sensitivities with

respect to the design variables, i.e., ΨΨΨ can be clearly derived using the sensitivities with respect to ΦΦΦ as shown in

Reference [7].

As a result, the sensitivities with respect to the design variables are derived using the framework proposed in

Reference [7], if the sensitivities with respect to the nodal coordinates of the zero-level boundary tracking mesh

are derived.

4.4. Double-well Potential Based Regularization

In the proposed method, a double-well potential based regularization technique is used to regularize the structural

optimization problem. That is, the structural optimization problem is formulated as follows:

minimize
ΨΨΨ

f0 w freg,

subject to fi ≤ fi max, for i 1, . . . ,ncns, (4)

where f0 is the original objective function, fi and fi max are, respectively, the ith constraint function and the cor-

responding allowable upper limit, ncns is the number of constraints, and w is the weighting coefficient. freg is the

double-well potential based regularization term that is computed with the Eulerian mesh as follows:

freg

nD⋃
e 1

∫
V e

(
φ ∗ 2 −1

)2
dv, (5)

where
∫

V e dv represents the volume integral in an element, φ ∗ is the level-set function in that element, and
⋃nD

e 1

represents the union set of the elements in D. Because of the regularization term freg, the level-set function tends
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Figure 1: Analysis models: (a) minimum compliance problem; and (b) invehicle reactor design problem.

to move 1 or -1 except around the zero-level boundary.

4.5. Optimization Flow

On the basis of the discussions in Sections 4.1, 4.2, 4.3, and 4.4, the optimization flow of the proposed method is

described as follows:

(i) Provide an Eulerian mesh and initialize the design variables ΨΨΨ.

(ii) Compute the nodal level-set functions, i.e., ΦΦΦ, by solving Equation (2) in the discrete system.

(iii) Generate the zero-level boundary tracking mesh as explained in Section 4.2.

(iv) Compute fi with the zero-level boundary tracking mesh while computing freg with the Eulerian mesh.

(v) Terminate the optimization successfully if the termination condition is satisfied.

(vi) Compute the sensitivities with respect to ΦΦΦ and ΨΨΨ as explained in Section 4.3.

(vii) Update the design variables using nonlinear programming to solve the optimization problem formulated in

Equation (4), and return to (ii).

Note that, the proposed method assumes the Eulerian mesh consisting of linear triangular elements because of the

mesh generation procedure.

As explained in Section 4.3, the sensitivities with respect to the nodal coordinates of the zero-level boundary

tracking mesh must be derived for applying the proposed method to respective structural design problems. We

derive them in the next section.

5. Applications to Several Design Problems

5.1. Minimum Compliance Problem

In the minimum compliance problem, we assume a two-dimensional analysis model shown in Figure 1(a). As

shown in this figure, the design domain D is displayed in gray, a surface load t is applied in a part of the boundary,

and the displacement is fixed on a part of the boundary. Then, our objective is minimizing the mean compliance

while constraining the volume of the structure. That is, f0 and f1 in Equation (4) are computed with the zero-level

boundary tracking mesh as follows:

f0 U�T, (6)

f1

nΩ⋃
e 1

∫
V e

dv, (7)

where
⋃nΩ

e 1 represents the union set of the elements in Ω, U and T are, respectively, the discretized displacement

field and surface load. Furthermore, U is computed by solving the following equation:

T−KU 0, (8)
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where K is the total stiffness matrix.

From Equations (6) and (8), we obtain

f0 U�T V�{T−KU} , (9)

where V is the adjoint variable vector. Therefore, the sensitivities of f0 with respect to the nodal coordinates of the

zero-level boundary tracking mesh are derived as follows:

∂ f0

∂Xi

{
∂U
∂Xi

}�
T V�

{
− ∂K

∂Xi
U−K

∂U
∂Xi

}
−V� ∂K

∂Xi
U, (10)

where Xi is the x coordinate of the ith node of the zero-level boundary tracking mesh, and V is the solution of the

following adjoint equation:

T−K�V 0. (11)

By denoting the y coordinate of the ith node as Yi, the corresponding sensitivity is similarly derived as

∂ f0

∂Yi
−V� ∂K

∂Yi
U. (12)

The sensitivities of f1 with respect to the nodal coordinates of the zero-level boundary tracking mesh are simply

derived as

∂ f1

∂Xi

∂
∂Xi

{
nΩ⋃

e 1

∫
V e

dv

}
,

∂ f1

∂Yi

∂
∂Yi

{
nΩ⋃

e 1

∫
V e

dv

}
. (13)

By incorporating Equations (10), (12), and (13) into the topology optimization method explained in Section 4, we

can obtain the optimized structure that minimizes the mean compliance.

5.2. Invehicle Reactor Design Problem

Invehicle reactor is a component of the DC-DC converter, which is used in hybrid and electric vehicles. Because

the invehicle reactor contributes to performances of those vehicles, it is important to design superior invehicle

reactors. In this paper, we assume a two-dimensional analysis model shown in Figure 1(b). This analysis model

is a quarter model where the left and bottom edges are the symmetric boundaries. ΩA is the domain filled with

air, ΩF is the domain filled with ferrite, ΩC represents coils, and D is the design domain where ferrite and air are

distributed. Electric current density J is imposed in the coil domains ΩC.

Here, our objective is minimizing the eddy-current loss in the coils while maintaining sufficient inductance.

Then, f0 and f1 in Equation (4) are given as follows:

f0 A�FA, (14)

f1 A�G, (15)

where A is the discretized magnetic potential for computing the magnetic flux density Bx,By , F is the matrix for

integrating B2
x B2

y in ΩC, and G is the vector for integrating By on Γ1. A is computed by solving the following

equation:

HA L 0, (16)

where H is the magnetic stiffness matrix and L is the vector representing the imposed current. From Equations

(14) and (16), the sensitivity of f0 with respect to Xi is derived as

∂ f0

∂Xi

{
∂A
∂Xi

}�
FA A�F

∂A
∂Xi

V1
�
{

H
∂A
∂Xi

∂H
∂Xi

A
}

{
∂A
∂Xi

}�{
FA F�A H�V1

}
V1

� ∂H
∂Xi

A

V1
� ∂H

∂Xi
A, (17)

where the adjoint variable vector V1 is obtained by solving the following adjoint equation:

FA F�A H�V1 0. (18)
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Figure 2: Initial and Optimized structures: (a) minimum compliance problem; and (b) invehicle reactor design

problem.

Similarly, the sensitivity of f0 with respect to Yi is derived as

∂ f0

∂Yi
V1

� ∂H
∂Yi

A. (19)

From Equations (15) and (16), the sensitivities of f1 with respect to Xi and Yi are derived as

∂ f1

∂Xi
V2

� ∂H
∂Xi

A,
∂ f1

∂Yi
V2

� ∂H
∂Yi

A, (20)

where the adjoint variable vector V2 is obtained by solving the following adjoint equation:

G H�V2 0. (21)

In the same manner as the minimum compliance problem, we can obtain optimized invehicle reactors by

incorporating Equations (17), (19), and (20) into the topology optimization method explained in Section 4.

6. Numerical Examples
In this section, we provide two numerical examples for the minimum compliance and invehicle reactor design

problems. First, we consider the analysis domain shown in Figure 1(a) for the minimum compliance problem. Its

total size is 0.75×0.5 and it is discretized with triangular elements whose maximum length is 0.005. The young’s

modulus and poisson’s ratio of the structural material are set to 1 and 0.3, respectively. The surface load t is set

to 0,−0.01 . The parameter R in Equation (2) is set to 0.01. The maximum allowable volume, i.e., f1 max, is set

to 0.15. The optimizer is sequential linear programming (SLP) and its move limit is set to 0.05. On the above

problem settings, we provide the initial structure shown in Figure 2(a), and as a result of optimization, we obtain

the optimized structure shown in Figure 2(a) at iteration 493. Because the obtained optimized structure is very

similar to optimized structures obtained in many relevant studies, we consider that the application to the minimum

compliance problem is successfully achieved.

Next, we consider the analysis domain shown in Figure 1(b) for the invehicle reactor design problem. Its

total size is 0.08m×0.08m and it is discretized with triangular elements whose maximum length is 0.001m. The

relative permeability of ferrite is set to 150. The electric current density in the coils, i.e., J, is set to 3× 106 A
m2 .

The parameter R in Equation (2) is set to 0.002m. f1 max is set to −0.058T ·m, that is, the minimum allowable

magnetic flux through Γ1 is set to 0.058T ·m. The optimizer is SLP and its move limit is set to 0.05. On the

above problem settings, we provide the initial structure shown in Figure 2(b), and as a result of optimization, we

obtain the optimized structure shown in Figure 2(b) at iteration 109. Note that, ferrite distribution is displayed in

gray in Figure 2(b). As shown in Figure 2(b), left and right bottom parts are clipped in the optimized structure.

By eliminating ferrite in neighborhood of the coil domains ΩC, leakage flux in ΩC can be effectively decreased.

Furthermore, such elimination does not deteriorate the inductance so much. Because physically appropriate ferrite

distribution is obtained, we consider that the application to the invehicle reactor design problem is also successfully

achieved.

7. Conclusion
In this paper, we applied our previously proposed method to the minimum compliance and invehicle reactor design

problems. Our previously proposed method is a consistent grayscale-free topology optimization method and it is

5
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promising because of its grayscale-free property. Furthermore, because the optimization framework has already

been established, only the nodal coordinate sensitivities of the objective and constraint functions are required when

applying our previously proposed method to design problems in industry. To demonstrate the potential of our

previously proposed method, we investigated two applications, i.e., the applications to the minimum compliance

and invehicle reactor design problems. Especially, the invehicle reactor design problem is important in an industrial

view point because it is a great objective in industry to realize high performance hybrid and electric vehicles. As

shown in the numerical examples, physically valid optimized structures were obtained in both two design problems,

therefore, we consider that the applications to these design problems are successfully achieved. In future works,

we will investigate applications to further design problems in industry and propose functional structures which

have superior performances.
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1. Abstract 
Nowadays in the field of globalized production and service industry the significance of the tightly integrated 
logistic systems are increasing. In the service industry the technical inspection and maintenance systems has a 
great importance, because they provide safety and reliable operation of production and service facilities. The 
reliable, accident free, and economic operation require periodic technical inspections and maintenances. In these 
systems the inspection generally require specialized knowledge, sometimes it even requires special certificate. At 
elevators, which inspection and maintenance are very important from the aspect of life protection, there are 
governmental regulations available.
The paper describes a single phase algorithm for the fixed destination multi-depot multiple traveling salesman 
problem with multiple tours (mmTSP). This problem widely appears in the field of logistics mostly in connection 
with maintenance networks. In the first part we show the general model of the technical inspection and 
maintenance systems, where this problem usually emerges. We propose a mathematical model of the system’s 
object expert assignment with the constraints like experts minimum and maximum capacity, constraints on 
experts’ maximum and daily tours. In the second part we describe the developed evolutionary programming 
algorithm which solves the assignment, regarding the constraints introducing penalty functions in the algorithm. In 
the last part of the paper the convergence of the algorithm and the run times are presented.
2. Keywords: heuristics, optimization, evolutionary programming.

3. Introduction
The significance of the technical inspection and maintenance systems are increasing in the field of globalized 
service industry. These systems ensure the safe and reliable operation of the production and service systems and 
they are important in the field of residential services like communal services, water, sewage, electricity, 
telecommunication services, monitoring and measuring devices, critical network control device or even elevator 
maintenance systems. The reliable, accident free and economical operation of these types of systems requires 
periodical inspections and maintenance requirements on site. The technical inspection tasks and maintenance in 
most cases require special knowledge and specially trained people. For example of the elevator inspection and 
maintenance systems where the technical inspection and maintenance are vital, and the proper operation can save 
lives; thus there are governmental regulations available [1].
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Figure 1: General structure of a technical inspection and maintenance system
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2

The network like technical inspection and maintenance systems (Figure 1) can extend a city, a region, a country, 
continent wide, or even worldwide. The duties of these systems are a regular supervision of the objects in a defined 
time period and maintenance and/or repair the parts of the objects [2]. The effective realizations of the 
maintenance tasks is ensure by one or more scattered raw material and tool warehouses and repair facilities.
The role of the logistic system is to ensure the availability of the resources - experts, raw materials, tools- required 
by the technical inspection and maintenance tasks.
The system is controlled by a virtual logistic center [3] (Fig. 1.), but in smaller scale – regional or country wide
systems – the core of the system, the controller facility could be a logistic center where the information processing 
and the material flow is simultaneously present. The virtual logistic center which controls the system uses complex 
mathematical models and optimization processes, where it minds the operational requirements, governmental 
regulations and many other conditions as constrains [4].

4. Mathematical model and the optimization problem
The main optimization problem in these systems is the assignment of the object have to be supervised and the 
experts who is doing the supervision. The system main parameter is the path matrix L, which shows the distances 
between the system elements. In our case the path matrix is an integrated matrix, built up from several 
sub-matrixes, the sub-matrices defined by the number of elements in the system. = , (1)

The assignment matrix Y is one of the main output parameter of the model. The assignment matrix: = (2)

where
- = 10 according to the system elements are assigned together (1) or not (0),

Defining the yij is the assignment task which has to be solved in this complex system.

4.1 Objects
The main parameters of the objects are:

- p: is the number of the objects, it is constant in this model,
- L matrix defines the location of the objects, and the distance from the other system elements,
-  ( .. ) is the mandatory inspection number per object, 

The number of the technical inspections and maintenances could be prescribed by the maintenance plan or even 
law or governmental regulations in some cases where human life is endangered, like at elevators. The 
maintenances can’t happen in an arbitrary period, there is a time period which has to be defined to every object 
when the next maintenance task could perform. = [ ] .. (3)
The interval of the inspections fulfil the constraint ( 1) , (4)
where:

: is the number of the maintenance tasks of object i, and : is the examination period.
In real life of these systems the inspection and maintenance tasks are performed usually by the same expert so the 
special knowledge collected at the previous inspections is well utilized, so the maintenance times could be 
shortened.

3.1 Experts
The parameters for the mathematical description of the experts are the following:

- s: is the number of the experts, this is constant in most cases and in this model we modelled as constant,
The time required to travel between object i and j:

, = ,  ;       = 1. .= 1. . , (5)

where:

, : is the distance between the object i and j,
p : is the number of the objects,
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is the average speed of the expert.
P: is the performance of the experts, it shows how much maintenance task is performed by the expert. 

Constraints:
The performance of the expert has to be between the defined minimum and maximum values:

 < <  , (6)
where:

 = , (7)
max) - generally one day – is also a constraint, in one cycle the expert visit the objects do the 

inspection and return to his base location: = , + + + , + , < , (8)
where:

: is the interval when the expert start from his base location, visits the objects and return, it is generally one day 
at the regional or countrywide maintenance systems and: = ,, (9)
where:

T: is the number of cycles in the interval,
: time interval of a cycle,

:: the number of objects has to visit in the cycle t,, : the travel time to the first object from the start location,, : the travel time from the last object (q) to the experts base location,
: the average inspection time of the object i.

The set of objects can be defined which have to inspect by the expert c:| , = 1; = 1. .  , (10)= , (11)
and the subsets, the objects have to be inspected in one cycle: , (12)
where:

: is an ordered set, the objects assigned to the given expert, the ordering function is:; ; <   < , (13)
where:  is the inspection time of op, and is the inspection time of oq,
so the set is ordered by the visiting time. |  | = , (14)= , (15)
and = . (16)
However the expert performs more than one inspection on an object so the object is counted in the sets defined at 
(12) as many times as the number of inspection has to be performed.

To determine the interval of the inspections the following distance functions can be applied:; ; = , (17)
so based on the constraint in eq. (4): ; ; . (18)
So the path travelled by the expert i in a cycle t can be describe as:= , ( ) + ( ), ( ) + ( ), , (19)
and the total path travelled by the expert i can be described as:
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= , ( ) + ( ), ( ) + , = . (20)
The expenditures (C) of the experts (S) in a given period (T) can be described as:= + (21)
where:

: is the specific cost for one kilometer,
: the specific cost for an object.

Further in the article the specific cost is calculated with the multiplier 1, so only the distance is considered.
The target of the optimization is: ,, (22)
the expenditures has to be minimal. 

4. The evolutionary algorithm
The algorithm we developed solves the fixed destination multiple depot multiple route multiple travelling 
salesman problem and optimize the number of salesman in one phase and can be used for large or very large 
problems. The one phase algorithms not common in this area, there are only two phase algorithms were presented 
since then [5, 6], most of them using clustering [7] or partitioning [8] as one phase. As there are multiple salesmen: 
the experts, multiple depot: all the experts have different locations, fixed destination: all the expert start and return 
to their initial location, and all the experts do the travel (generally) in one day cycles.
The developed solution method based on a multi chromosome technique [9] which is not widely used in genetic 
algorithm but it could simply implement in the evolutionary programming. The data structure of the optimization 
is built as a cascaded structure. The biggest container is the population which consists of defined constant number 
of individuals, which is an input parameter of the optimization.
The algorithm is an evolutionary programming algorithm which has the following pseudo code:
1. generate the first population, in most cases it is random generated,
2. calculate the population fitness values,
3. while not done

3.1. copy the population into a temporary population,
3.2. run the mutation operators on the temporary population,
3.3. select the survivors for the next population,

4. end while.
In the computer solution first initialize the data, random generator, etc. Then initialize the first population. In 
heavily constrained problems there are two cases:

the randomly generated population individual is invalid: it violates the constraints,
the individual is in the feasible region: but this is a very rare case.

There are several methods to get valid individual from simply dispose invalid individuals to create special 
operators which retain the individual’s integrity. But the simplest solution is using penalty function. In the penalty 
function one can regulate the algorithm which solutions are preferred.

After the creation of the initial population it has to be copied into a temporary population then the mutation 
operators run on the temporary population. In most cases the high impact mutations have less chance to run and the 
low impact operators have a bigger chance. After the mutation we have to compute the mutated individuals’ fitness 
value and then choose the survivor individuals to the descendant population which happens with a tournament. 
One simple way to perform the tournament is choose two random individuals one from the original and one from 
the mutated population and that will survive which has less (or bigger if the fitness not normalized) fitness value, 
we have to repeat this until the new population not filled.

4.1. Penalty functions
The penalty function is one of the simplest and fastest way to rate the individual, so the goodness of the actual 
solution. In this algorithm there are two different levels of penalty functions as it follows the multichromosome
paradigm: 

local: the penalty function is applied to the expert,
global: the penalty function is applied to the whole individual.

4.2 Local penalties
There are three different local penalty functions:

Number of cycles penalty: when the expert do more route cycles than allowed,
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Few penalty : the expert has to get a minimal number of maintenance events,
More penalty: the expert cannot get more maintenance events than his maximum capacity,

4.4 Global penalties
There are three different global penalty functions, which calculated after the local penalties:

Near penalty: the maintenance events of one object cannot be arbitrarily close to each other.
Scatter penalty: This applied when maintenance events of an object are scattered among several experts.
Number of expert penalty: The employment of the expert has a fixed cost in this model. The algorithm 
tries to minimize the number of employed experts due to these penalty functions [10].

5. Results
We present the convergence of the algorithm on two test instances as the paper limits us. In these instances there 
are three experts and the objects are around them in a perfect circle. This instance can be easily solved by a human 
but it is hard to solve perfectly with a computer algorithm.

Figure 2: Test instance with 3 experts

Table 1: Running times of the optimization

Iteration 
number

35457

Run time 48 min 33 sec
Penalty 0
Cost 4484,47
Iteration 
number

35457

Figure 3: Convergence of the solution

Figure 4: Test instance with 3 experts
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Table 2: Running times of the optimization 

Iteration 
number

50000

Run time 1 h 11 min 9 sec
Penalty 5
Cost 760731,64
Iteration 
number

50000

Figure 5: Convergence of the solution

6. Conclusion
The algorithm we designed and presented in this paper is great to solve this kind of problems, like the scheduled 
inspection and maintenance of any equipment or machines and it is even usable at waste collection systems. The 
algorithm can take the constraints of these types of systems into consideration and give result even if there are no 
optimal solution according to the constraints, it will give the least bad solution. The convergence of the algorithm 
is good and it performed well on large scale instances but at large scale a very high computing capacity computer 
or computer cloud needed.
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1. Abstract
This paper presents a topology optimization method using the lattice Boltzmann method for the design of a flow

channel considering two-phase fluid flows. This approach enables the design of fluidic devices such as two-phase

microchannels that achieve a desired flow with maximal performances such as mixing and reaction, and extraction

efficiencies. The optimization problems are formulated using the continuous Boltzmann equation, and the design

sensitivities are derived based on the adjoint lattice Boltzmann method. In the adjoint lattice Boltzmann method,

based on a novel discretization strategy similar to that of the lattice Boltzmann method, the adjoint equations can

be implemented as simple time evolution equations. Based on the above formulations, we construct a topology

optimization method incorporating level set boundary expressions for the design of a two-phase microchannel that

aims to maximize extraction efficiency while minimizing the pressure drop. A numerical example is provided to

confirm the utility of the proposed method.

2. Keywords: Topology Optimization, Lattice Boltzmann Method, Two-Phase Flow, Level Set Method

3. Introduction
The aim of this research is to construct a topology optimization method for the design of a flow channel considering

two-phase fluid flows. Using this approach, fluidic devices such as two-phase microchannels can be designed so

that they achieve a desired flow and accomplish maximal mixing and reaction, or extraction efficiencies.

These performances strongly depend on the design of the channel configuration, so that each process, such as

mixing, reaction, or extraction, is finished as quickly as possible (Fig. 1). In addition, to prevent damage to the

microchannels, minimizing the pressure drop in the microchannel system is an important factor. Thus, to meet

the most important design requirements of a two-phase microchannel, the maximization of the above efficiencies

and the minimization of the pressure drop must be simultaneously considered. Designer intuition alone, however,

seldom yields an optimal channel configuration that sufficiently satisfies these requirements.

To overcome this problem, topology optimization [1] is a particularly powerful approach for obtaining use-

ful designs for the channel configuration of the devices under consideration here. The basic concept of topology

optimization is the introduction of an extended design domain, the so-called fixed design domain, and the replace-

ment of the optimization problem with a material distribution problem, using the characteristic function. Borravall

and Petersson [2] pioneered a topology optimization method for a dissipation energy minimization problem under

Stokes flow, in which the material distribution in the fixed design domain is represented as consisting of either fluid

or solid domains.

Based on this methodology, Okkels and Bruus [3] proposed a topology optimization method for the design of a

micro reactor in which the reaction effect is mathematically modeled, and the aim was to achieve maximal reaction

efficiency in the microchannel system given a uniform concentration of reactants. Andreasen et al. [4] proposed

a topology optimization method for the design of a micro mixer in which maximization of mixing performance

was the aim. And Makhija et al. [5] applied the lattice Boltzmann method (LBM) [6] in mixing performance

maximization problem and investigated the relationship between the mixing performance and the pressure drop.

The basic idea of the above optimization methodologies for multi-component fluid flows is the introduction

of concentration, governed by a convective-diffusion equation, into the formulation of the optimization problem.

That is, since the fluid flow is not affected by concentration (one-way coupling), the above research cannot treat

fluid flows of immiscible liquids in which the interface effect between the two phases must be considered. In

particular, since the extraction process strongly depends on the difference between molecular diffusive coefficients

1
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Figure 1: Schematic diagram of typical experiments in microchannel device.

in two-phase fluid flows [7], the conventional approach must be extended so that flows can be treated in extraction

efficiency maximization problems.

Here, we construct a new topology optimization method for an extraction efficiency maximization problem,

in which two-phase fluid flows are analyzed based on the two-phase LBM proposed by Inamuro et al. [8]. Since

special treatments for tracking an interface are unnecessary in this method, the LBM is suitable for the computation

of multi-phase fluid flows. In addition, since the LBM is an explicit scheme based on a simple time evolution equa-

tion, the adjoint equation can be formulated with this equation that is discretized using the LBM [9]. Previously,

we investigated the applicability of this adjoint lattice Boltzmann method to topology optimization problems, and

verified that this approach enables the design sensitivity to be quickly obtained at each optimization step [10].

In the following section, the basic concept of the two-phase LBM is discussed and the topology optimization

problem is formulated for the extraction efficiency maximization problem. The numerical implementations and

optimization algorithms are then explained and, finally, we provide a numerical example to validate the utility of

the proposed method.

4. Formulation
4.1. Two-Phase Lattice Boltzmann Method

We now discuss the concept of the two-phase LBM [8] that will be applied here to incompressible fluids while

considering two-phase fluid flows under identical density conditions. In the following, we use non-dimensional

variables, as used as in [8]. In the LBM, a modeled fluid, composed of identical particles whose velocities are

restricted to a finite set of N vectors ccci, is considered. We use the two-dimensional nine-velocity model (N = 9)[6]

and three particle velocity distribution functions, fAi, fBi, and fCi. The function fAi is used as an index function

for computation of the interface profile in phase X and phase Y , fBi is used for computation of the pressure and

velocity of the two-phase fluid flows, and fCi is used for computation of the concentration.

The evolution of the particle distribution functions fσ i(xxx, t) (σ = A,B,C) with velocity ccci at point xxx and at time

t are computed with the following equation:

fσ i(xxx+ ccciΔx)− fσ i(xxx, t) =
1

τσ

{
fσ i(xxx, t)− f eq

σ i (xxx, t)
}
, (1)

where f eq
σ i are equilibrium distribution functions, τσ represents non-dimensional single relaxation times, Δx is the

spacing of the grid, and Δt is the time step.

The index function ψ(xxx, t), pressure p(xxx, t), velocity uuu(xxx, t), and concentration T (xxx, t) are defined as follows:

ψ =
9

∑
i=1

fAi , p =
1

3

9

∑
i=1

fBi , uuu =
9

∑
i=1

fBi ccci , T =
9

∑
i=1

fCi . (2)

The equilibrium distribution functions f eq
σ i (xxx, t) are given by

f eq
Ai = Hiψ +Fi

(
p0 −κ f ψ∇2ψ

)
+3Eiψccci ·uuu+Eiκ f GGG : (ccci ⊗ ccci), (3)

f eq
Bi = Ei

{
3p+3ccci ·uuu− 3

2
|uuu|2 + 9

2
(ccci ·uuu)2

}
+EiκgGGG : (ccci ⊗ ccci), (4)

f eq
Ci = EiT (1+3ccci ·uuu) , (5)

2
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Figure 2: Schematic figure of fixed design domain D in the extraction efficiency maximization problem.

where parameters Ei, Hi, and Fi are defined so that E1 = 4/9, E2 =E3 =E4 =E5 = 1/9, E6 =E6 =E8 =E9 = 1/36,

H1 = 1, H2 = H3 = · · ·= H9 = 0, F1 =−7/3, and Fi = 3Ei (i = 2,3, · · · ,9). κ f and κg are parameters with constant

values that determine the width of the interface and the strength of the interfacial tension, respectively. The tensor

GGG(xxx, t) is defined as follows:

GGG =
9

2
∇ψ ⊗∇ψ − 3

2
|∇ψ|2δδδ , (6)

where δδδ represents the Kronecker delta. In addition, p0(xxx, t) is given by

p0 = ψT̄
1

1−bψ
−aψ2, (7)

where a, b, and T̄ are parameters for determining the profile of index function ψ .

Applying the asymptotic theory to Eqs. (1)–(7), we find that the macroscopic variables, p and uuu, satisfy the

Navier-Stokes equations with relative errors of O(Δx2). Note that the pressure is given by p+(2/3)κg∇|ψ|2 in

the interface [8]. In addition, the concentration T satisfies the convective-diffusion equation, and the extraction

process is represented based on the values of T . The details of the extraction process will be described in the next.

4.2. Topology Optimization Problem

We now formulate the topology optimization problem for the design of a flow channel considering two-phase fluid

flows. A schematic diagram of this problem is shown in Fig. 2, with fixed domain D composed of fluid domain Ω
and solid domain D\Ω. The inlet boundary condition includes a prescribed velocity, uuu = uuuin at Γin, and the outlet

boundary condition includes a prescribed pressure, p = pout at Γout. At the inlet boundary Γin, the order parameters

ψ and concentrations T are respectively set to ψ = ψX
in at ΓX

in, ψ = ψY
in at ΓY

in, T = T X
in at ΓX

in, and T = TY
in at ΓY

in,

where Γin = ΓX
in ∪ΓY

in and ΓX
in ∩ΓY

in = /0. In addition, the boundary condition for ψ and T at Γout ∪Γwall is set to a

Neumann condition, with ∂ψ/∂nnn = 000 and ∂T/∂nnn = 000.

To simultaneously evaluate the extraction efficiency and pressure drop, we define an objective functional, J,

based on the weighted sum method, as follows:

J = w1

∫ t1

t0

∫
Γ
−nnn ·uuu

(
p+

1

2
ρ|uuu|2

)
dΓdt +w2

∫ t1

t0

∫
Ωobs

(T −〈T 〉in)
2

2〈T 〉2
in

dΩdt, (8)

where t0 and t1 represent the time step of the LBM calculation, w1 and w2 are the weighting parameters, ρ is the

fluid density given by 3p due to the characteristic of the LBM, and 〈T 〉in is the average value of T at the inlet

boundary. In the above equation, the second term represents the relative error of T with respect to 〈T 〉in in the

observation domain, Ωobs ⊂ D. The phase X and phase Y concentrations are set to different values, i.e., T X
in �= TY

in .

Thus, the second term in Eq. (8) seldom becomes equal to zero during the optimization process. Here, we assume

that the extraction process is completely finished when the value of this term does become equal to zero. In

addition, since the molecular diffusive coefficient, k = 1/3τCΔx, is depend on the kind of fluid, the relaxation time

τC is defined as follows:

τC(ψ) =
ψY

in −ψ
ψY

in −ψX
in

τX
C +

ψ −ψX
in

ψY
in −ψX

in

τY
C , (9)
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where τX
C and τY

C represent the relaxation time in phase X and phase Y , respectively.

Based on the above objective functional in Eq. (8), we formulate a topology optimization problem based on

our previous research [10], in which the Boltzmann equation is employed when applying a continuous adjoint

sensitivity analysis, as follows:

inf
γ∈A

J [ fσ i ; γ ], (10)

subject to

⎧⎪⎨⎪⎩
Sh ∂ fσ i

∂ t + ccci ·∇ fσ i =− 1
τσ i

(
fσ i − f eq

σ i

)
+3Eiccci ·FFFγ δσB (Boltzmann equation),

fσ i(xxx, t0) = f 0
σ i (initial condition),

fσ i(xxx, t) = f bc
σ i (xxx, t) (boundary condition),

(11)

where γ(xxx) represents the design variable belonging to the function space A = {γ ∈ L∞(D) |0 � γ � 1 in D, Vγ �
0}, where Vγ (:=

∫
D γ dΩ−Vmax) is the volume constraint that restricts the maximum fluid volume to Vmax. We

let γ vary between zero and unity, with γ = 0 corresponding to a solid domain and γ = 1 to a fluid domain. In

Eq. (11), Sh is the Strouhal number, and f 0
σ i and f bc

σ i represent the initial and boundary values for the Boltzmann

equation, respectively. We note that the above Boltzmann equation is the so-called discrete Boltzmann equation
that is not the original equation, since the discrete particle velocities ccci are used. The reason why we use this

equation to formulate the optimization problem is that the boundary conditions for adjoint equations can be easily

derived based on the adjoint sensitivity analysis.

In addition, FFFγ is an artificial force, based on the design variable γ , defined as

FFFγ =−α(γ)uuu, where α(γ) = αmin +(αmax −αmin)Ĥ(γ). (12)

In this equation, α(xxx) is the local inverse permeability based on Darcy’s law [2], and αmin and αmax are parameters

constant value that determine the profile of α . In this study, these parameters are set to αmin = 0 and αmax = 1.0,

respectively. The profile of Ĥ is defined as a convex interpolation whose formulation will be described later.

4.3. Level Set-Based Topology Optimization Method

Based on the previous study [11], we use the level set function, φ(xxx), to express the boundary, ∂Ω, between fluid

and solid domains, as follows: ⎧⎪⎨⎪⎩
0 < φ(xxx)� 1 for xxx ∈ Ω\∂Ω,

φ(xxx) = 0 for xxx ∈ ∂Ω,

−1 � φ(xxx)< 0 for xxx ∈ D\Ω.

(13)

The level set function has upper and lower limits imposed for the regularization term used to regularize the op-

timization problem. In addition, Ĥ is replaced by a smoothed Heaviside function Ĥφ (φ) that is defined so that

0 � Ĥφ � 1, as used in the previous study [11].

In a level set-based approach, the optimization problem is replaced with a problem to find an optimal dis-

tribution of the level set function. We explore the optimal distribution of φ using a time evolution equation, as

follows:

∂φ(xxx,ς)
∂ς

=−K
{

J′(xxx,ς)− τ∇2φ(xxx,ς)
}
, (14)

where K > 0 is a constant parameter, τ > 0 is the regularization coefficient that is set to an appropriate value so

that the smoothness of φ is maintained during the optimization process, and ς is a fictitious time corresponding to

a time step in the optimization. The design sensitivity J′ is defined based on the Fréchet derivative.

5. Optimization Algorithm
The optimization algorithm of the proposed method is the following.

Step 1. aThe initial level set function is set.

Step 2. bThe two-phase lattice Boltzmann equations are calculated until a steady-state condition is satisfied.

Step 3. cIf the criteria of the objective functional and inequality constraint are satisfied, an optimal configuration is

obtained and the optimization is finished, otherwise the design sensitivity is calculated based on the adjoint

sensitivity analysis [10].
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Figure 3: Design settings, optimal configuration, and the distributions of order parameter and concentration.

Step 4. dThe level set function is updated using the finite element method, after which the optimization procedure

returns to Step 2 of the iterative loop.

6. Numerical Example
Here, we provide a numerical example using the proposed method. Figure 3(a) shows the design settings in the ex-

traction maximization problem. The analysis domain is discretized using 200Δx×50Δx grids, and the volume con-

straint is set with Vmax = 0.5. The optimization parameters are set so that K = 1, τ = 8.0×10−3, Δς = 0.5, w1 = 1.0,

and w2 = 0.01. The initial distribution of the level set function is set to φ(xxx,0) = sin(6πx/200Δx)sin(2πy/50Δx),
so that several holes are present in D at the initial optimization step, ς = 0. The Reynolds number is set as

Re = 10, with the reference length using the inlet width and the reference velocity using the inlet velocity. The

kinematic viscosity is given by ν = 1/3(τB − 1/2)Δx. The parameters for the two-phase LBM are set so that

κ f = κg = 1.0× 10−2, a = 9/49, b = 2/21, T̄ = 0.55, T X
in = 1.0, TY

in = 0.0, ψX
in = 1.0, τX

C = 0.503, τY
C = 0.553,

and ψY
in = 0.5. Thus, the Schmidt number and the Péclet number are given by Sc = 10 and Pe = 100, respectively.

As shown in Fig. 3(b), a sinuous channel is obtained as an optimal configuration, a suitable form that suf-

ficiently diffuses the concentration of the two phases, whose distribution is shown in Fig. 3(d). In addition, we

can confirm that the interface between phase X and phase Y is expressed by the order parameter value, whose
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distribution is shown in Fig. 3(c). We note that the obtained optimal configuration is similar to the results of

previous studies [5,12], in which the interface effect is not treated while the concentration is calculated based on

the convective-diffusion equation.

7. Conclusion
This paper proposed a new topology optimization method using a two-phase LBM for the design of the channel

configuration in a microchannel device. In this research, the extraction process was modeled using concentration

values that are governed by a convective-diffusion equation. The presented method was applied to an extraction

maximization problem and a numerical example demonstrated the validity of the proposed method.
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1. Abstract

New fiber reinforced composite fabrication technologies, such as tailored fiber placement or continuous fiber print-

ing technology, enables realization of arbitrary orientation distribution of reinforcement fiber in a structure. Thus,

building structures with optimal shape, topology and fiber orientation is now possible with aid of these technolo-

gies. In order to design such optimal strucures, we propose a general topology optimization method, which is

capable of simultaneous design of topology and orientation of anisotropic material, by introducing orientation de-

sign variables in addition to the density design variable. The proposed method supports not only discrete fiber

orientation but also continuous fiber orientation design by using a Cartesian style orientation vector as the design

variable combined with a projection method using isoparametric shape functions. The proposed method is less

likely to be trapped at unwanted local optima when compared with classic continuous fiber angle optimizations,

CFAOs, which directly uses orientation angle as the design variables; this is because vector representation offers

more paths from one design solution to another, including an orientation vector with smaller norm, which repre-

sents weaker orientation. Another advantage of the proposed method is that it is compatible with filtering methods,

especially design variable filtering, so that designers can control the complexity of the orientation angle distribu-

tion. The proposed method is built upon modern topology optimization technique, thus, it is versatile and flexible

enough to solve multiload problems or even multiphysics problems.

2. Keywords: Topology optimization, Orientation design, Isoparametric projection, Tailored fiber placement,

3D printing

3. Introduction

Fiber orientation is the most important factor for demanding the mechanical properties of fiber reinforced com-

posites such as carbon fiber reinforced plastics, CFRPs. In the past, fiber orientation design for such materials

was rather limited. The composite is either unidirectional or woven fabric and the designers have to choose one

option and can only determine the combination of given composites. These days, there are several new fabrication

technologies that have became reality such as tailored fiber placement, TFP [1, 2], based on automated stitching

machines, or continuous fiber printing systems [3] based on 3D printing technology. These technologies drastically

expand the degree of freedom in orientation design of anisotropic composites, however, the design methodology to

elicit maximum performance out of these technologies is not well established, yet. Topology optimization [4] looks

to be the most forward thinking option to support this goal. Topology optimization was originally developed under

consideration of anisotropy in material properties in the intermediate state by the homogenization design method

with anisotropic microstructure, and there still has been enormous effort made for solving anisotropy topology

optimization problems [5, 6, 7, 8]. In fact, solution of this anisotropic material layout problem has been demanded

by the aerospace industry for a long time, and a large amount of effort has been made using a variety of numerical

strategies [9, 10]. However, due to the difficulty in avoiding local optima [7, 11], a general optimization method

has not been established yet, especially for the simultaneous optimization of topology and material orientation.

In this study, we propose a general topology optimization method, which is capable of simultaneous design of

topology and orientation of anisotropic material, by introducing orientation design variables in addition to the

density design variable by expanding the idea of design variable projection methods.
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4. Formulation

In this paper, the formulation of the design variable is briefly summarized to focus the discussion. Readers are

referred to the complete formulation as provided in a journal paper by the authors [12].

4.1. Topology design representation

Assume that a fixed design domain, D, is given, and inside of D, the following characteristic function is defined to

indicate the object domain to be designed, Ωd ;

χ(x) =

{
0 for ∀x ∈ D\Ωd ,

1 for ∀x ∈ Ωd .
(1)

Here, χ(x) is defined by an implicit function, φ , and Heaviside function such that

χ(x) = H (φ(x)) =

{
0 for ∀x ∈ D\Ωd ,

1 for ∀x ∈ Ωd .
(2)

For regularization of the function space, a Helmholtz filter is used[13, 14],

−R2
φ ∇2φ̃ + φ̃ = φ , (3)

where Rφ is the filter radius and φ̃ is a filtered field. The regularized Heaviside function is introduced to relax χ(x)
to the material density field ρ(x)

ρ(φ̃) = H̃(φ̃), (4)

where H̃(φ̃) is a regularized Heaviside function.

The constitutive tensor, e.g. the stiffness tensor for a structural problem, is interpolated between void and solid

state using ρ
Cρ = Cv +ρ p(Cs −Cv), (5)

where Cρ , Cv, Cs are the interpolated tensor, void tensor, and solid material tensor, respectively, and p is the

density penalty parameter. In the following discussion, Cs is extended to anisotropic materials with a material

physical parameter orientation design variable.

4.2. Orientation design representation with Isoparametric projection

For simplicity, this discussion is focused on a two-dimensional case, hereafter. A Cartesian representation is chosen

for the design variable, and the orientation field in a given fixed design domain is declared as follows;

ϑ(x) =
[

ς(x)
ζ (x)

]
, (6)

where

|ϑ(x)|� 1 for ∀x ∈ D. (7)

Let the υ(x) be the precursor design vector field having natural coordinate values, ξ and η , as its elements

υ(x) =
[

ξ (x)
η(x)

]
, (8)

where

ξ ∈ [−1,1] and η ∈ [−1,1]. (9)

We then define the orientation vector field as follows;

ϑ(x) = N
(
υ(x)

)
=

[
Nx
(
ξ (x),η(x)

)
Ny
(
ξ (x),η(x)

)] , (10)
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Figure 1: The eight node bi-quadratic serendipity element. Left: natural coordinates. Right: real coordinates.

where N is an appropriate shape function whose boundary forms a unit circle. If the element is in the unit circle,

then ‖ϑ‖� 1 is naturally fulfilled. There are various options in choosing an isoparametric shape function, N, and

the eight node bi-quadratic quadrilateral element [15, 16], namely the “serendipity” element, is used and defined

as follows; {
Nx(ξ ,η) = ∑8

i=1 uiNi(ξ ,η)

Ny(ξ ,η) = ∑8
i=1 viNi(ξ ,η),

(11)

where vi = {ui,vi}T is the coordinate of the i-th node in the real coordinate system, as shown in right side image

of Figure 1. The function Ni(ξ ,η) is defined as follows;⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N1(ξ ,η) =− (1−ξ )(1−η)(1+ξ +η)
/

4

N2(ξ ,η) = (1−ξ )(1−η)(1+ξ )
/

2

N3(ξ ,η) =− (1+ξ )(1−η)(1−ξ +η)
/

4

N4(ξ ,η) = (1+ξ )(1−η)(1 +η)
/

2

N5(ξ ,η) =− (1+ξ )(1+η)(1−ξ −η)
/

4

N6(ξ ,η) = (1−ξ )(1+η)(1+ξ )
/

2

N7(ξ ,η) =− (1+ξ )(1+η)(1+ξ −η)
/

4

N8(ξ ,η) = (1−ξ )(1−η)(1 +η)
/

2 .

(12)

The relationship between ϑ and υ is analogous to the relationship between ρ(x) and φ(x). Similarly, a Helmholtz

filter is used to regularize υ , which resides in L∞ space projected to H1 space. However, this time, the regularized

field is a vector field

υ̃(x) =
[

ξ̃ (x)
η̃(x)

]
, (13)

where υ has a box bound, but υ̃ does not have explicit bounds.

The regularization is enforced with the following equation

−Rυ ∇2

[
ξ̃
η̃

]
+

[
ξ̃
η̃

]
=

[
ξ
η

]
, (14)

where Rυ = R2
υ I and Rυ is the filter radius for the vector field, and I is the identity matrix. Then, unbounded υ̃ is

projected into −1 � ξ̃ � 1, −1 � η̃ � 1 in a manner similar to the φ̃ to ρ projection.

ῡ =

[
ξ̄ (x)
η̄(x)

]
=

[
2H̃
(
ξ̃ (x)−1

)
2H̃
(
η̃(x)−1

)] . (15)
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t

wc

hc

x

y

Figure 2: Geometry settings for the short cantilever problem.

In concert with equation (10), the regularized orientation field ϑ̃ is obtained as follows;

ϑ̃(x) = N
(
ῡ(x)

)
=

[
Nx
(
ξ̄ (x), η̄(x)

)
Ny
(
ξ̄ (x), η̄(x)

)] for ∀x ∈ D. (16)

Finally, the constitutive tensor is transformed according to ϑ̃

Ca = Ci + T̂−1(ϑ̃) · (Cu −Ci
) · T̂′(ϑ̃), (17)

where Ca is an interpolated tensor in terms of anisotropy, Cu is a given unrotated anisotropic tensor, Ci is an

isotropic component subtracted from Cu, and T̂ and T̂′ are transformations to rotate a tensor to a direction given

by ϑ ; refer to the detailed description in a paper[12].

With this formulation, the following three states are continuously interpolated. When ‖ϑ̃‖ = 1, this equation is

equivalent to simple rotation of given Cu, that is,

Ca = T−1(θ) ·Cu ·T′(θ), (18)

where θ = ∠ϑ̂ , and T(θ) and T′(θ) are rotation tensor for the stress tensor and strain tensor, respectively. This

relationship holds owing to distributive property of tensor algebra and the isotropic nature of Ci, that is, Ci =
T−1(θ) ·Ci ·T′(θ). Therefore, if the design is converged to ‖ϑ̃‖= 1, it provides a purely orientation design result.

When 0 < ‖ϑ̃‖ < 1, this allows the change of magnitude of anisotropy according to ‖ϑ̃‖, in addition to rotation

according to ∠ϑ̃ . This provides a solution with orientation with various magnitude of anisotropy, that extends

flexibility in change of design to help dynamic change during the optimization procedure to avoid local optima.

One major advantage is that this interpolation accepts the design variable υ = {0,0}T that represents isotropic

state. Therefore, the optimization procedure can be started from almost isotropic state to avoid influence of initial

design orientation. Another important advantage of this approach is its bijective nature. This guarantees that design

variables can be continuous if actual orientation distribution is continuous. Therefore, it works well with projection

schemes without unphysical smear.

Substituting Cs from (5) into the previous expression, the complete material interpolation function is finally defined

as

C(ρ,ϑ) = Cv +ρ p (Ci + T̂−1(ϑ̃) · (Cu −Ci
) · T̂′(ϑ̃)−Cv

)
. (19)

5. Numerical example

A short cantilever benchmark problem where the left side is fixed and the middle of the right side is subjected

to a surface loading is solved. The analysis geometry and boundary condition settings are as shown in Figure 2.

The wc ×hc rectangular domain is given as the analysis domain and the entire area is designated as a fixed design

domain, D. The geometric parameteres wc and hc are 3 and 1, respectively. The entire left side is fixed as ∂D u,

and ∂Dt is defined at the middle of the right side. The −y directional surface load, t,on ∂Dt is set to unity and the

length of ∂Dt is hc/10. A square grid mesh with a side length of d = 0.02 is used in combination with Lagrange

linear quadrilateral elements. The upper bound of volume fraction is set to 0.5.
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Figure 3: Optimization results for short cantilever problem with volume fraction 0.5. Configurations at various

iteration steps are shown to describe evolution of the design. Gray scale image, stream line and color of the

streamline indicate density, orientation direction and norm of orientation vector (blue: weak orientation, red:

strong orientation), respectively

Figure 3 shows the obtained design solution. The figure shows eight configurations with various iteration steps

to depict evolution of the topology and orientation distribution by the proposed method. The gray scale image

on the background shows topology density, the stream line shows direction of orientation vector and the color of

the stream line shows the norm of the orientation vector. Blue stream line shows that the orientation vector has

small norm so that it has weak orientation, while red stream line shows that the orientation is strongly defined

to a line direction. At the beginning, indicated as “initial” in the figure, the orientation vector design variable

is uniform so that there is no stream line. At the second iteration, the stream lines appear and it is along with

the principal stress direction of rectangular cantilever. At 10th step, non-uniform distribution of the density and

orientation vector norm is recognized, but, it is still smooth except for the middle line and there is no large change

in topology. At the 20th iteration, a site with different orientation direction is generated at the middle bean region

with smallest density. At the 30th iteration, the number of discontinuous angle sites increases with and a hole is

initiated at the tip of the cantilever. At the 40th iteration, the topology evolves to double cross configuration and the

orientation distribution shows more complexity. Finally, at iteration 100, the topology becomes clear and the fiber

reinforcement orientation angle is aligned with the small bars comprising the cantilever structure. Since it is single

load problem, the obtained topology is almost identical to the one obtained by isotropic material optimization

supporting empirical knowledge that the optimal orientation should coincide with the principal stress direction.

Note that the orientation vector smoothly rotates as the topology progresses, and sometimes the change of the fiber

orientation angle occurs prior to the topological change.

6. Conclusion

A topology optimization method which is capable of simultaneous design of topology and orientation vector us-

ing isoparametric projection method was reviewed. The method is based on density filter topology optimization
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methods and an orientation vector is used for orientation representation along with a projection method using

isoparametric shape functions. A benchmark example is provided and it shows a reasonable result.
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1. Abstract
Electromagnetic levitation melting is a containerless technique to obtain material properties of reactive, electrically

conductive materials that would otherwise result in sample contamination when in contact with a container at high

temperatures. The levitation coil geometry, and the magnitude and frequency of the alternating current determine

the sample sizes of a specific material that can be levitated as well as the temperature of the levitated sample.

The levitation cell is modelled using a one-dimensional analytical approach. This model requires the material

properties of the sample and surrounding atmosphere as input variables. Since there is a large amount of uncertainty

in measuring these properties they are regularized using experimental data from a known coil design and current.

The levitation cell model with regularized material properties is then used in a gradient-based optimization scheme

to design a coil for the levitation melting of specified sample size and material.

The consequences of using a multistart, gradient-based optimization scheme are reported. Coils are designed

to minimize the temperature of the levitated sample or maximize the stability of the sample during levitation.

2. Keywords: gradient-based, multistart, electromagnetic levitation

3. Introduction
Measuring the physical properties of metals at high temperatures present some challenges especially for containing

the sample, since many materials have a corrosive nature at high temperatures. Experiments often result in the con-

tainer being destroyed or the sample being contaminated by container material while in contact with the container

at high temperatures. Electromagnetic levitation melting is an alternative non-contact experimental approach to

measure physical properties including viscosity and surface tension.

Trial and error methods are common practice for levitation coil design [1], [2]. However, this often results in

levitation cell experiments being complicated by coil designs that are very sensitive to sample position in the coil

and/or small changes in coil geometry. There also exists a need to use levitation melting for an increased variety

of materials while accessing a larger range of temperatures with more precise control [2].

The sample sizes of a specific material that can be levitated and the temperature of the levitated sample are

determined by the levitation coil geometry, and the magnitude and frequency of the alternating current. Royer et

al. [2] use a genetic-like algorithm to design a levitation coil that would minimize the temperature of the levitated

sample for a large range of currents. In this paper we use a gradient-based, multistart optimization algorithm to

design similar coils. We specifically investigate formulating levitation coil design as an optimization problem to

develop a design tool based on a levitation cell model that would allow the design of robust and reliable coils for

the levitation melting of specified sample materials and sizes. In the process we also use optimization to regularize

the material properties in the Royer et al. [2] model and to minimize the difference between two functions. In all

three instances the constrained optimization function (fmincon) in Matlab’s optimization toolbox is utilized.

4. Electromagnetic levitation melting process description
An electromagnetic levitation cell basically consists of a water-cooled coil supplied with high frequency alternating

current. The coil has an associated high frequency alternating magnetic field around it since a magnetic field is

generated around any current-carrying conductor. Faraday’s law states that a changing magnetic field induces an

electric field [3]. Therefore the alternating magnetic field will induce eddy currents in any electrically conductive

body placed inside the coil.

The magnetic field of the induced eddy currents opposes that of the coil [2]. The interaction of the magnetic

field of these eddy currents with the magnetic field of the coil current results in a Lorentz force [1], [2], [4]. If a

position exists inside the coil where the Lorentz force is equal and opposite to the weight of the body, the body will

be levitated in that position inside the coil. Additionally, the induced eddy currents in the body will cause resistive
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heating (Ohmic / Joule heating) [1], [4]. If this causes the body to melt, the Lorentz force will cause flow inside

the molten droplet [1], [5].

In order to create a region inside the coil where stable levitation is possible, the current in a part of the coil

has to flow in the opposite direction to the current in the rest of the coil [1]. This can be achieved by adding a

stabilizing part to the coil that is connected in series to the main coil and wound in the opposite direction.

5. Levitation cell model
The analytical one dimensional levitation cell model proposed by Fromm and Jehn [6] and used by Royer et al. [2]

has been implemented. The current induced in the sample is modelled using the concept of mutual inductances.

This results in a nonlinear expression for the Lorentz force on a sample in terms of the sample position. The

sample levitation position is found where the Lorentz force is equal and opposite to the weight of the sample.

The temperature of the sample is solved from another nonlinear equation resulting from the energy balance of the

induced heating of the sample and the convection and radiation heat losses to the environment. The electromagnetic

and thermal parts of the problem are coupled because the heat induced in the sample is a function of its levitated

position.

The model approximates the helical coil as a set of axisymmetric circular loops (Fig.1). It is further based on

the assumptions that the sample size is small relative to the coil, the sample is spherical, the coil is operating at

high frequencies and the alternating magnetic field over the sample position is uniform in space.

Figure 1: Axisymmetric approximation of a levitation cell coil with the sense of the current in the loop and the

sample levitation position indicated. Crosses and dots indicate opposite alternating current senses.

The magnetic field predicted by the Fromm and Jehn model [6] is highly nonlinear around the sample. To

compensate for this and the spatial distribution of the sample mass within the coil, Royer et al. [2] suggests

discretizing the sample into a number of disks, computing the induced heat in each disk using the method of

Fromm and Jehn [6] and then using a volume weighted average to find the total heat induced in the sample.

Fromm and Jehn [6] compute the induced heat as

q̇L = 3

(
π3μ f

γ

)
R2H2 (1)

where H is the originally assumed uniform magnetic field strength. In our implementation of the model we

replace H with a volume average H̃, computed numerically from the non-uniform magnetic field strength H(z) as

H̃ =
1

V

∫
H(z) dV. (2)

6. Regularization
Royer et al. [2] report uncertainty in the sample emissivity and temperature dependent material properties (the

sample conductivity and the properties of the fluid surrounding the sample) as possible sources of error in their

model.

We attempt to address this problem with regularization. The experimental results from a known coil design

and electrical current is used to adjust the uncertain material properties in such a way that the difference between

2
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the model predictions and experimental results are minimized while penalizing large variations in the material

properties. The experimental results reported by Royer et al. [2] for their seed coil geometry is used for regulariza-

tion. An equality constraint requires the Lorentz force to be equal to the sample weight to ensure levitation takes

place and the inequality constraint dF/dz < 0 ensures that the levitation position is stable. Analytical gradients

are supplied to the optimization algorithm to reduce the computational time requirement.

The regularized material properties are given in the table below.

Table 1: Regularization results

Material property Original value Regularized value % change

Sample emissivity, ε 0.1 0.0934 -6.5

Sample electrical conductivity, γ 4252890 4252890 0.0

Fluid thermal conductivity, k f 0.0177 0.0287 61.8

Fluid density, ρ f 0.1625 0.1797 10.6

Fluid kinematic viscosity, η 1.9900×10−5 1.9089×10−5 -4.0

Fluid specific heat, Cp 520.3 520.3 0.0

In Fig.2 sample temperature predictions at various currents given by the model with and without the regularized

material properties are compared to the experimental results reported by Royer et al. [2]. It can be seen that the

model is improved by including the regularized material properties but the model still has difficulty predicting the

gradient of the experimental results.
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Figure 2: Model results with and without regularization compared to experimental results reported by Royer et al.

[2].

7. Coil design using gradient-based optimization
A gradient-based multistart optimization formulation with a Sequential Quadratic Programming (SQP) algorithm

is used to design coils for various experimental requirements. The variables used as design variables are: the total

number of loops in the coil, the number of loops in the stabilizing part of the coil, the magnitude and frequency of

the current supplied to the coil and the radial and axial positions of each of the coil loops.

The total number of loops in the coil and the number of loops in the stabilizing part of the coil are discrete

variables. The optimization algorithm is therefore repeated for every possible permutation of these two variables

and the permutation that obtains the lowest value of the objective function at its optimum is selected.

All the design variables are bounded. The number of coil loops are between five and seven of which either two

or three loops have the opposite current sense to form the stabilizing part of the coil. Current magnitude can vary

between 150 A and 400 A and current frequency is in the range 100− 200 kHz. The maximum radius of the coil

is 95 mm and the minimum radius of any coil loop is 10 mm to allow enough space for the sample inside the coil.

The axial position of the coil loops can be anywhere between 0 mm and 20 mm. Constraints are applied to prevent

any of the 3mm tubes that form the coil loops from overlapping. Further constraints ensure that the Lorentz force

is equal to the sample weight for levitation and that the levitation position is stable, dF/dz < 0. Fig.3 illustrates

the last two constraints. The constraints applied to the coil design optimization is kept at a minimum to allow us

3
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to investigate which coil design properties produce specific levitation cell characteristics. This could result in coil

designs that are difficult to manufacture and it might later be necessary to add manufacturing constraints to the coil

design optimization formulation.

The shape of the Lorentz force curve in Fig.3 is determined by the coil geometry and the electrical current in

the coil. Since these are design variables, some combinations will not satisfy the equality constraint that requires

the Lorentz force to be equal to the sample weight (e.g. Sample weight 1 in Fig.3a). If this is the case the analysis

will minimize the square of the difference between the sample weight and the Lorentz force within the coil and

return the corresponding sample position to the optimization algorithm. In this way the optimization algorithm still

receives information that will allow it to determine in which direction to search for a solution which would satisfy

the equality constraint.

(a) Possibilities of stable, unstable and no levitation.

(b) Effect of dF/dz on stability and the range of sample

weights that can be levitated.

Figure 3: Typical variation of the Lorentz force along the z-axis of a coil.

7.1. Minimizing the temperature of the levitated sample

For some comparison with the results obtained by Royer et al. [2] who minimize the temperature of the levitated

sample for a large range of currents, the first objective function that is investigated, is to minimize the temperature

of the sample during stable levitation.

It is found that the minimum value obtained with this objective function varies significantly depending on the

initial design vector supplied to the algorithm. A multistart optimization formulation with ten starts for each of

the six discrete variable permutations is therefore used. The initial design vector for each start is a random value

within the lower and upper bounds. Fig.4 shows the sorted objective function values obtained at the optima of the

various starting points that yielded feasible coil designs.
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Figure 4: Sorted objective function values for multi-start coil design optimization to minimize temperature.
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It can be seen from Fig.4 that there are nine designs that are significantly better than the rest. The three coil

designs that yield the lowest sample temperatures as well as the design proposed by Royer et al. [2] for minimizing

the sample temperature for a wide range of currents are given in Fig.5.
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(a) Lowest temperature design.
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(b) Second lowest temperature design.
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(c) Third lowest temperature design.
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(d) Royer et al. [2] optimized coil for lowest sample tem-

perature over a range of currents.

Figure 5: Sorted objective function values for multi-start coil design optimization to minimize temperature.

These results cannot be directly compared to that of Royer et al. [2], since we include current magnitude and

frequency as design variables, which Royer et al. [2] does not, and we are minimizing the sample temperature at

any specific current while Royer et al. [2] minimize the sample temperature over a range of currents. However,

some similarities can be observed between the first two designs obtained and the design obtained by Royer et al.

[2]. In all three cases the bottom three coil loops have a very small equal radius while the top two loops form a

conical shape. An interesting difference is that we get a result where the sense of coil current changes twice from

the bottom to the top of the coil as opposed to most coils in literature that report only one change in the sense of the

current. We also obtain larger maximum coil radii than Royer et al. [2]. These might be trends in the coil designs,

but a larger number of different starting points is required to show this definitively.

7.2. Maximizing the stability of the sample position

We are interested in designing levitation cell coils with which experimental work would be as easy, reliable and

repeatable as possible. One factor that determines this is the stability of the sample levitation position. Therefore

the objective function in the optimization problem is now changed to make the slope of the Lorentz force-position

curve, which has to be negative for stability, as steep as possible

max

∣∣∣∣dF
dz

∣∣∣∣ . (3)

Once again a multistart optimization formulation with ten starts for each permutation of the discrete design

variables is used. Of all the results that are obtained, the four designs given in Fig.6 have significantly larger values

for |dF/dz| than the rest. These four designs all have a loop with a small radius directly below the sample levitation

position. All except the third coil have at least three closely spaced small radius loops around the sample position

and two or three large radius loops. The first two coil designs both have small overall heights.

Fig.7 shows the variation of the Lorentz force along the z-axis of the four coils designed for maximum stability.

It is evident from this figure that a consequence of maximizing |dF/dz| is that the part of the coil where stable
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Figure 6: Multistart coil design optimization to maximize stability. Coil designs sorted according to objective

function value.
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(b) 2nd largest |dF/dz|.
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(c) 3rd largest |dF/dz|.
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(d) 4th largest |dF/dz|.

Figure 7: Multi-start coil design optimization to maximize stability. Variation of the Lorentz force along the z-axis

of the coil.

levitation is possible becomes small - around 5 mm for these four designs. The fourth design also shows multiple

peaks in the force curve which is not desirable. Fig.3b shows that by maximizing |dF/dz| we are increasing the

range of sample weights that can be levitated, while the part of the coil where stable levitation is possible becomes

smaller. It can therefore be recommended to add a constraint to specify the minimum size of the part of the coil

where stable levitation is possible.

8. Conclusion
We show that a multistart, gradient-based optimization algorithm can be used to design levitation cell coils for

different experimental applications.

We are learning how to develop a design tool for repeatable and reliable levitation cell experiments through

experimentation with different formulations of the optimization problem. Future work will include replacing

the one dimensional levitation cell model with a more accurate one and experimentally validating the optimized

levitation cell designs.
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1. Abstract
Nonlinear Energy Sinks (NESs) are a promising technique for passively reducing the amplitude of vibrations,

especially for use as energy pumping devices for buildings under seismic loading. Through nonlinear stiffness

properties, a NES is able to passively and irreversibly absorb energy. Unlike the traditional Tuned Mass Damper

(TMD), the NES has no inherent natural frequency, allowing the NES to absorb energy over a wide range of

frequencies. The efficiency of the NES, however, is extremely sensitive to small perturbations in design parameters

or initial conditions. In many cases, it has been observed that the most efficient NES designs are in fact very close

to low efficiency regions in the design space.

This work will present an optimization technique for NESs. In order to optimize NES devices, the high sen-

sitivity of NES to uncertainty, with almost discontinuous behaviors, requires specific reliability-based design op-

timization (RBDO) techniques. In this work, a support vector machine classifier, insensitive to discontinuities, is

used to construct the boundaries of the failure domain (low efficiency regions) through adaptive sampling and clus-

tering. Several RBDO results for various NES configurations will be provided. In particular, NES configurations

in parallel will be investigated.

2. Keywords: Nonlinear Energy Sinks, RBDO, SVM, Clustering.

3. Introduction
Nonlinear Energy Sinks (NESs) are an emerging technique for passive and irreversible reduction of amplitude of

vibration [3]. NESs have a wide variety of applications, such as energy pumping away from a building under

seismic loading [8, 9] or in aeroelasticity [4]. NESs rely on a nonlinear, typically cubic, stiffness property which

is at the origin of the irreversible transfer of energy. Two NES configurations are typically used in the literature:

Configuration I—NES coupled to a vibrating system through a weak linear spring, and connected to the ground

via a nonlinear spring—and Configuration II–NES with small mass directly coupled to linear system through non-

linear spring [7]. The effectiveness of a NES with small mass makes the configuration II NES ideal for use in a

building under seismic loading [9].

NESs are often proposed as an alternative to Tuned Mass Dampers (TMDs) that are widely used to absorb and

dissipate energy from a vibrating main system. NESs act passively, like TMDs, but unlike TMDs, they do not have

to be tuned to a specific natural frequency to effectively dissipate energy from the vibrating main system. Instead,

NESs absorb energy over a wide range of natural frequencies, which is particularly attractive in designing a system

with a changing natural frequency.

It has been observed that NESs are very sensitive to perturbations in design parameters or loading conditions,

leading to a near discontinuous behavior of performance metrics such as the amount of absorbed energy. This

discontinuous behavior allows one to identify two distinct regions: one where energy pumping occurs and another

one where it does not [7, 2].

4. Configuration II NES
The Configuration II NES consists of a small mass directly coupled to a linear system through a nonlinear spring.

A simple two DOF system can be used to illustrate the principles of NES behavior and is depicted in figure 1a.

It is composed of a main system 1 (with angular eigen-frequency ω1, damping λ1) and a sub-system 2 (the NES)

with nonlinear stiffness α , damping λ2 and mass ratio (NES mass divided by main system mass) ε . The system is

excited through an initial velocity (ẋ0) applied to the main system. The full system behavior is calculated through

equation 1. The efficiency of the NES is quantified by the percentage of initial energy that the NES dissipates

(ENESin f ), expressed in equation 2 [7].{
ẍ+λ1ẋ+λ2(ẋ− ẏ)+ω2

1 x+α(x− y)3 = 0

ε ÿ+λ2(ẏ− ẋ)+α(y− x)3 = 0
(1)

ENESin f = lim
t→∞

λ2

∫ t
0(ẏ(τ)− ẋ(τ))2dτ

1
2 v2

1

(2)

1
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(a) (b)

Figure 1: One (a) and Two (b) Configuration II NES systems

This article also details a 3 DOF case where two NESs in parallel are coupled to a main system as in figure 1b. The

equations of motion in this case are given in equation 3 [6]. The efficiency of the two NES system is measured as

the combined percentage of energy dissipated by the two NESs.⎧⎪⎨⎪⎩
ẍ+λ1ẋ+λ21

(ẋ− ẏ1)+λ22
(ẋ− ẏ2)+ω2

1 x+α1(x− y1)
3 +α2(x− y2)

3 = 0

ε1ÿ1 +λ21
(ẏ1 − ẋ)+α1(y1 − x)3 = 0

ε2ÿ2 +λ22
(ẏ2 − ẋ)+α2(y2 − x)3 = 0

(3)

5. Discontinuities and activation thresholds
The sensitivity of the efficiency of the NES to small perturbations can be very marked [7], [2]. Figure 2a provides

an example where ENESin f is plotted as a function of ẋ0. A discontinuity occurs at ẋ0 =0.15 m/s, but there is also a

relatively steep decay of ENESin f as ẋ0 is further increased. These jumps can be seen as activation energy necessary

for energy pumping to occur [6]. At the threshold of the activation energy, the NES performance will be extremely

efficient, but beyond the threshold the performance deteriorates. Each NES has a relatively narrow range of initial

energies where energy dissipation is high. Similar marked changes in behavior appear when studying ENESin f as

a function of design parameters α and ε (figure 2b ). Once again a discontinuity appears between the regions

of energy pumping and no energy pumping. Due to this high sensitivity to design and excitation perturbations,

techniques for the design optimization of NESs must be tailored to stay away from the inefficient regions (non

energy pumping as well as low ENESin f values).
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Figure 2: Discontinuities in ENESin f metric. (a) ENESin f response to variations in ẋ0, with ε=0.1, α=1, λ1=0.004,

λ2=0.008, ω1=1. (b) ENESin f response to variations in α and ε , λ1=0.01, λ2=0.01, ω1=5 and ẋ0=5 with clustering

on ENESin f values.

6. Identification of failure regions
6.1. Clustering

The first step in reliability based design optimization is to segregate efficient and inefficient NES behaviors.

The discontinuity illustrated in the previous section enables such a classification, however the location of the

discontinuities is often difficult to obtain, especially in high dimensional space. For this reason, a clustering

technique such as K-means constructed from a design of experiments can be used without any a priori knowledge
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of the location of the discontinuities. However, the clustering technique does not always identify properly the

clusters as there can be a wide range of energy values over the design space. In order to help the clustering

algorithm, samples corresponding to “low” energy levels are removed. This low level energy is found by setting α
to its minimum value while maintaining the other parameters at their mean value. Although this approach is rather

heuristic, it was shown for the problems treated to provide a proper clustering. An example of clustering in the ε
and α space using the proposed technique is depicted in figure 2b.

6.2. SVM

Beyond clustering of the system’s responses, we would like to identify the region of the parameter space where the

efficiency of the NES is “acceptable”. In other words, we would like to find the region of the space corresponding

to the cluster of better efficiency, using the ENESin f metric. For this purpose, we will use a technique referred to

as explicit design space decomposition (EDSD) [1]. The basic idea is to construct the boundary separating two

classes of samples (e.g., belonging to the two clusters) in terms of chosen parameters. This is achieved using a

Support Vector Machine (SVM) which provides an explicit expression of the boundary in terms of the parameters.

The SVM boundary is trained using a design of experiments.

6.3. Refinement of the SVM boundary. Adaptive sampling.

Because the approximated SVM boundary might not be accurate, an adaptive sampling scheme is used to refine

the boundary. The sampling algorithm is described in detail in [1]. A fundamental aspect of the algorithm is the

selection of samples in the sparse regions of the space (i.e., as far away as possible from existing samples) and also

in the regions of highest probability of misclassification by the SVM. The latter criterion is obtained by locating

the samples on the SVM. These samples are found by solving the following global optimization problem (side

constraints omitted):

max
x

||x−xnearest ||
s.t. s(x) = 0 (4)

The results section will provide examples of two and three dimensional boundaries constructed using both de-

sign and aleatory variables.

7. Reliability Based Design Optimization
The efficient calculation of probabilities with SVM using Monte-Carlo simulations can be used towards the so-

lution of a reliability-based design optimization (RBDO) problem [5], which in the case of a NES, could be

formulated as follows:
max

μd
E(ENESin f (X

d,Xa)) (5)

s.t. P((Xd,Xa) ∈ Ω)≤ PT

μd
min ≤ μd ≤ μd

max

where E is the expected value, μd is the vector of means of the distributions of the random design variables Xd .

Xa are aleatory random variables which contribute to the expected value of the objective function as well as the

probabilistic constraints, but whose hyper-parameters are not to be optimized. Ω is the failure region as defined by

the SVM boundary, PT is a target probability.

Note that the probabilistic constraint in the previous problem cannot be used as such because of the noise

introduced by the Monte-Carlo simulations which would make the constraint non-differentiable. For this reason,

this constraint is typically approximated using a response surface or a metamodel such as Kriging. To regularize

the problem further, the reliability index β is approximated instead of the probability Pf itself [5]. β can be defined

using the standard cumulative distribution function Φ:

β =−Φ−1(Pf ) (6)

To further reduce computational time and make this RBDO problem tractable, the objective function (i.e., the

expected value) as well as the energy are both approximated using a Kriging metamodel.

8. Results
The first two RBDO problems solved use NES parameters as random design variables and main system initial

velocity ẋ0 as an aleatory variable. The parameters of the main system (ω1, and λ1) are fixed. In the first problem,

only α and ε are random design variables while λ2 is fixed. In the second problem all three NES design parameters

are random design variables. These problems focus on optimally tuning a NES for a given main system so that the

expected value of the efficiency is maximized for a range of initial main system velocities. In both cases the failure
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domain Ω is defined by the SVM constructed using the clustering technique described in Section 6.1. In all cases

106 Monte-Carlo samples are used.

8.1. 1 NES. 3D RBDO with α ,ẋ0,and ε

max
μα ,με

E(ENESin f (μα ,με , ẋ0)) (7)

s.t. P((α ,ε, ẋ0) ∈ Ω)≤ 0.15

−2 ≤ log(μα)≤ 5

0.01 ≤ με ≤ 0.2 1 ≤ ẋ0 ≤ 10

where log(α) and ε follow normal distributions: log(α)∼ N(μlog(α),0.072) and ε ∼ N(με ,0.00192). The standard

deviations correspond to 1% of the range of log(α) and ε respectively. The excitation follows a uniform distribution

ẋ0 ∼U(1,10). The fixed parameters are λ1=λ2=0.01 and ω1=5.

The failure region Ω (i.e., the SVM) is presented in Figure 3. The Kriging approximations Ẽ(ẼNESin f ) and β as

well as the training points are depicted in Figures 4a and 4b. It is noteworthy that the approximation of the energy

is built using the cluster with highest values only. Approximation error metrics are provided in Table 2.

Figure 3: SVM separating the two levels of NES efficiency identified through clustering of ENESin f for α , ε , and

ẋ0.
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Figure 4: Training and approximations of (a) E(ẼNESin f ) and (b) β for RBDO problem varying α , ε , and ẋ0.

The RBDO results are given in Figure 5 and summarized in Table 1. The actual probability of failure (as

opposed to the approximated one) calculated based on the SVM is also provided in the table.
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Table 1: Results table for 1 NES RBDO problem

varying α , ε , and ẋ0.

Probabilistic Optimum

α 1.32

ε 0.099

Pf from β̃ 0.15

Pf from SVM 0.19

Ẽ(ẼNESin f ) 84.9 %

E(ENESin f ) 77.6 %

Table 2: Error metrics table for 1 NES RBDO prob-

lem varying α , ε , and ẋ0.

Approximation RMAE R2

ẼNESin f 1.11 0.91

β̃ 0.171 0.99
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Figure 5: Results plot for 1 NES RBDO problem varying α , ε , and ẋ0.

8.2. 1 NES 4D RBDO (α ,ẋ0,λ2, and ε)

This RBDO problem adds λ2 as a random design variable with a normal distribution. In this problem all three NES

parameters are treated as random design variables, while ẋ0 is still treated as an aleatory variable.

max
μα ,με ,μλ2

E(ENESin f (μα ,με ,μλ2
, ẋ0)) (8)

s.t. P((α ,ε,λ2, ẋ0) ∈ Ω)≤ 0.2

−2 ≤ log(μα)≤ 5 0.01 ≤ με ≤ 0.2

0.001 ≤ μλ2
≤ 0.1 1 ≤ ẋ0 ≤ 10

where log(α), ε , and λ2 follow normal distributions: log(α) ∼ N(μlog(α),0.072), ε ∼ N(με ,0.00192), and

λ2 ∼ N(μλ2
,0.000992).

Error metrics for this four dimensional problem are used to check the quality of the Kriging approximations

(Table 4).

Table 3: Results of 1 NES 4D RBDO problem with

α , ε , λ2, and ẋ0 varied.

Approximation RMAE R2

ẼNESin f 1.61 0.76

β̃ 1.61 0.97

Table 4: Error metrics of 1 NES 4D RBDO problem

with α , ε , λ2, and ẋ0 varied.

Probabilistic Optimum

α 2.76

ε 0.16

λ2 0.09

Pf from β̃ 0.00

Pf from SVM 0.00

Ẽ(ẼNESin f ) 95.7 %

E(ENESin f ) 96.1 %
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8.3. 2 NES RBDO (α1,α2, and ẋ0). Comparison to 1 NES.

The final RBDO problem demonstrates the efficiency of a two NES system as compared to a single NES system.

For the single NES problem, the nonlinear stiffness α of the NES and the initial velocity ẋ0 are varied and the

corresponding optimization problem is:

max
μα

E(ENESin f (μα , ẋ0)) (9)

s.t. P((α , ẋ0) ∈ Ω)≤ 10−3

−2 ≤ log(μα)≤ 5 1 ≤ ẋ0 ≤ 10

where log(α) follows a normal distribution: log(α) ∼ N(μlog(α),0.212). The standard deviations correspond to

3% of the range of log(α). ẋ0 ∼U(1,10) and λ1=λ2=0.01, ε=0.1, and ω1=5. The two dimensional SVM is given

in Figure 7a. The problem does not have a feasible solution with one NES. In fact, the minimum probability of

failure is over 20%. The approximated Ẽ(ẼNESin f ) value at this point is 82.4%. The error metrics for the Kriging

fits for this problem are given in table 5.
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Figure 6: SVM for 1 NES problem varying α and ẋ0.

Table 5: One NES problem error metrics.

Approximation RMAE R2

ẼNESin f 0.42 0.96

β̃ 0.047 0.99

For the 2 NES case, the optimization problem becomes:

max
μα1

,μα2

E(ENESin f (μα1
,μα2

, ẋ0)) (10)

s.t. P((α1,α2, ẋ0) ∈ Ω)≤ 10−3

−2 ≤ log(μα1
)≤ 5 −2 ≤ log(μα2

)≤ 5 1 ≤ ẋ0 ≤ 10

where log(α1) and log(α2) follow normal distributions: log(α1)∼ N(μlog(α1),0.212) log(α2)∼ N(μlog(α2),0.212).
The standard deviations correspond to 3% of the range of log(α), ẋ0 ∼U(1,10) , λ1=λ21

=λ22
=0.01, and ω1=5. In

addition, the mass of each NES is 5% (i.e., ε1=ε2=0.05) of the main system total mass, adding to a total NES mass

of 10%, which is the value used in the one NES problem. The three dimensional SVM approximation of the failure

domain is depicted in Figure 7a. The SVM appears symmetric because the fixed NES parameters are identical for

the two NESs. The approximation Ẽ(ẼNESin f ) and the training points are given in figure 7b. The error metrics for

all Kriging approximations are given in Table 7. The β approximation is given in Figure 8a. Finally, the RBDO

results are given in Figure 8b and Table 6. The actual value of the probability of failure as calculated from the

SVM is given in Table 6.

The two NES system gives a more robust optimum, successfully achieving a probability of failure of 10−3. The

E(ẼNESin f ) value is also larger in the two NES case. The distributions of ENESin f over the ẋ0 space for the optimal
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Figure 7: (a) Three dimensional SVM and (b) E(ẼNESin f ) approximation for two NES RBDO varying α1, α2, and

ẋ0.
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Figure 8: (a) β approximation and (b) RBDO results for two NES RBDO varying α1, α2, and ẋ0

Table 6: Results table for 2 NES RBDO problem

varying α1, α2, and ẋ0.

Probabilistic Optimum

α1 11.9

α2 1.08

Pf from β̃ 1.00∗10−3

Pf from SVM 9.0∗10−4

Ẽ(ẼNESin f ) 90.3 %

E(ENESin f ) 90.6 %

Table 7: Error metrics table for 2 NES RBDO prob-

lem varying α1, α2, and ẋ0.

Approximation RMAE R2

ẼNESin f 0.00 0.99

β̃ 0.080 0.99

NESs are given in figure 9. The two NES system has a higher ENESin f value for most of the excitation range. The

two NES system is more robust and the decline in ENESin f is slower as ẋ0 increases.
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Figure 9: Variation of ENESin f with respect to ẋ0 for the optima found through RBDO of one and two NESs varying

α and ẋ0.

9. Conclusion
This paper introduces a new methodology for the optimization under uncertainty of a Configuration II NES. The

methodology stems from the realization that the efficiency of a NES might be discontinuous and highly sensitive

to uncertainty. For this reason, specific tools such as SVM and clustering are used to perform the optimization

and propagate uncertainty. In addition a one NES and a two NES system were compared. The two NES system is

more robust and gives a higher expected performance than the one NES system with an equal total NES mass. The

next steps of this research will continue to increase the dimensionality for both the single NES and the multi NES

systems. A transition towards more realistic simulations will be explored, particularly through the use of finite

element modeling.
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1. Abstract 
This paper presents multi-objective topology optimization of composite structures manufactured by resin transfer 
molding. The problem is formulated as minimizing both structural compliance and resin filling time. The empirical 
model of resin filling process is constructed by mining the results of numerical process simulations of massively 
sampled structural topologies within a fixed bounding box, using Random Forest statistical learning. Thanks to the 
abstract topology features inspired by underlying physics of the filling process, the resulting process model is far 
more generalizable than the traditional surrogate models based on, e.g., bitmap and local feature representation, 
with no penalty in computation time. In particular, the model can reasonably be applied to the situations with the 
different inlet gate locations and initial bounding boxes from the training samples, while the traditional surrogate 
models completely fail in such situations. 
Three case studies for composite structure topology optimization are discussed with different inlet gate locations 
and initial bounding boxes in order to demonstrate the robustness of the developed process model. The 
multi-objective topology optimization problem is solved by the Kriging-interpolated level-set approach and 
multi-objective genetic algorithm (MOGA). The resulting Pareto frontiers offer opportunities to select the designs 
with little sacrifice in structure performance, yet dramatically reduced resin filling time as compared to the 
structurally optimized design. 

2. Keywords: Topology Optimization, Manufacturing Constraint, Composite Structure, Resin Transfer Molding 
(RTM), Resin Filling Time 

3. Introduction 
The gap between the output of computer-based structure topology optimization and the final component ready for 
manufacturing is still considered as a barrier for further adoption of topology optimization in industries. Practically, 
some modifications are applied to the component generated by topology optimization to improve its 
manufacturability, which usually requires empirical expert knowledge. Such practice, however, is likely to yield 
suboptimal solutions with respect to either structure performance (e.g. stiffness) or component manufacturability, 
due to the nonlinearity of both responses to the change of component topologies. To resolve this problem, the 
process simulation (e.g. sheet metal stamping [1], injection molding [2] and casting [3]) can be incorporated to 
topology optimization as a tool of evaluating component manufacturability during optimization. Since the finite 
element based process simulation is usually computationally expensive, surrogate models of sampled process 
simulations are usually used as a means for approximate evaluation of component manufacturability. Nevertheless, 
the lack of generalizability of the traditional surrogate models to samples not similar to the training set has severely 
limited their applicability in topology optimization, where component geometries can undergo dramatic changes 
during optimization process. To overcome this limitation, this paper presents the application of a new class of 
surrogate models of manufacturing processes for evaluating component manufacturability during topology 
optimization. The model for resin filling process in resin transfer molding of composites is built using the 
data-driven manufacturing constraint modeling (MCM) [4] we previously developed. The model is trained with 
resin filling simulations of massive sampled topologies and statistical learning regression model. Thanks to the 
abstract topology features inspired by underlying physics of the filling process, the resulting process model is far 
more generalizable than the traditional surrogate models. 
Resin transfer molding (RTM) is a closed mold manufacturing process of fiber reinforced composite materials. 
Due to the requirement of lightweight structures in automotive and aerospace industries, it has become a promising 
economic solution for components made of polymer composite materials. The mass production of BMW i3 (2013) 
whose body structures are made of carbon fiber composite with RTM process, is an example of its recent 
application in automotive industry. The design of RTM component is currently a challenge due to the lack of 
empirical experience and design for manufacturing (DFM) guidelines which are available to the components made 
by traditional manufacturing processes such as sheet metal stamping. The potential manufacturability issues of 
RTM process could be preform deformation due to compaction [5] and draping [6], racetracking [7], void 
formation [8], etc. In the early exploration of composite structure topologies, the resin filling time is a critical 
manufacturability concern which affects the product lead time, especially for mass production automotive 
applications. Figure 1 shows an example of two composite structures with the identical volume, material properties 
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2

and process parameters, but a large difference in resin filling time, due to the topology difference.,  

The rest of the paper is organized as following. Section 4 reviewed the related works on manufacturing constraint 
in computer-based structure optimization. Section 5 presented the data-driven predictive modeling of composite 
resin filling time. Section 6 discussed the result of three topology optimization case studies with the trained process 
model. Finally, section 7 summarized the current study and opportunities for future works. 

4. Related Works 
In order to improve the manufacturability of components generated by the computer-based structure optimization, 
many types of manufacturing constraints have been incorporated into the structure optimization loop. Several 
researchers proposed the algorithms to control minimum member size [9-11] and maximum length scale [12] in 
topology optimization. As a result, the designer gained control over member sizes which could influence the 
component manufacturability and cost. As for manufacturing constraints tailored for specific manufacturing 
processes, Harzheim et al. [13] developed the program TopShape to enforce casting manufacturing constraint for 
structure topology optimization. Zhou et al. [14] added the empirical sheet metal stamping manufacturing cost 
objective to the multi-component topology optimization. Nadir et al. [15] considered the manufacturing cost 
model of abrasive water jet process for the shape optimization. Zuo et al. [16] added the machining constraints to 
generate manufacturable topologies. Edke et al. [17] incorporated virtual machining simulation into the shape 
optimization of heavy load carrying components to ensure the manufacturability of the structurally optimized 
result.
As for the composite structure, Boccard et al. [18] proposed a semi-analytic model to determine the resin filling 
time of the preforms with isotropic permeability. In addition, Park et al. [19] applied the model to the composite 
structure optimization problem with both mechanical performance and manufacturing cost objectives. Kaufmann 
et al. [20] and Lee et al. [21] used the software SEER-MFG to estimate the manufacturing cost of resin transfer 
molding component and added it to the composite structure design process. Gantois et al. [22] combined the 
manufacturing cost with the initial multidisciplinary design optimization framework of minimum weight and 
maximum aerodynamic efficiency for the civil aircraft application. 
However, the manufacturing process models used in these works are usually overly-simplified and tend to be 
conservative, in order to keep the model generalizability. We resolve it by using more accurate process simulations 
to evaluate structure manufacturability, and data driven predictive models to generalize the knowledge. 

5. Data-Driven Composite Resin Filling Time Predictive Modeling 
This section briefly summarizes the composite resin filling time predictive modeling process. The model is trained 
with massive process simulations and data mining of topology abstract feature representation inspired by 
underlying physics of the filling process. For detailed explanation, please refer to our previous work on predictive 
modeling of resin filling time of composite molding process [23].

5.1 Data Generation 
Within the initial  bounding box (see Figure 2),  random topologies are generated by Kriging 
level-set method [24] and labeled by their resin filling time, simulated by PAM-RTM (ESI Group). The material 
fraction volume, the fraction of the volume of structural materials to that of the whole bounding box is set as .
The preform permeability is assumed isotropic and set as , the thickness as  and the 
porosity as . The inlet pressure is . As a result, the training set  can be summarized as Eq.(1) below: 

, (1)
where:

Figure 1 Examples of the non-efficient filling topology (a: 3780s) and the efficient filling topology (b: 1570s). 

(b) Filling time: 3780s (a) Filling time: 1570s 

Inlet gate location 
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3

: binary bitmap representation of topology ;
 if void and  if filled ( : number of element in the bounding box); 

: resin filling time simulation result of topology ;
: number of training samples (  in this case). 

5.2 Knowledge-Inspired Feature Representation 
The performance of the predictive model depends on the quality of input features. The generalizability of the 
model also depends on how the topologies are represented. It is straightforward that the process model can be 
trained on the topology bitmap representation shown in Eq.(1). However, since the dimension of feature input is 
fixed as the number of elements in the initial bounding box, it is not scalable to problems with different number of 
element. In addition, the number of element is usually large which also poses challenges to the predictive model 
training process. 
To resolve the scalability issue, the topology local feature representation is proposed. Figure 3 shows an example 
of topology local feature representation. The bounding box is divided into pieces of squared patches, each of which 
is matched with a member of the pre-defined feature basis by calculating the minimum Euclidean distance. As a 
result, the topology is represented as a vector of 18 elements. To transform the bitmap representation to local 
feature representation, the dimension of the input attribute reduces dramatically and no longer sensitive to the 
element size. However, the topology local feature representation is still not generalizable to test samples with 
different initial bounding box (therefore different number of patches) and different inlet gate location. 

To further resolve the generalizability issue, the knowledge-inspired feature representation is proposed, which is 
inspired by the underlying physics of filling. An example of topology knowledge-inspired feature representation is 
shown in Figure 4, which consists of three major steps described below: 
1) The flow through porous medium is governed by the Darcy’s law which states that the flow rate per unit area 

is proportional to the pressure gradient. The relatively small preform area, especially at the beginning of the 
flow, leads to dramatically reduction of resin pressure. Therefore, to capture this phenomenon, the material 
fraction volume (M) in each segment along the major flow route is calculated (upper right of Figure 4); 

2) The length of the overall flow route also has great influence on the composite resin filling time. To capture that 
information, the skeleton of the initial topology is extracted using image processing thinning algorithm [25]. 
Then run the flood filling [26] simulation over the topology skeleton, starting at the point closest to the inlet 
gate location, and calculate the step count to finish the filling, defined as  (lower left of Figure 4); 

3) The initial topology bitmap is then transformed to the local feature representation. Based on a pre-defined 
critical patch pool, the search of critical patch with different sliding window size results in a sparse vector ,
explained in Eq.(2) below: 

Figure 2 Bounding box for process simulation data generation. 

Inlet gate location
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, (2)
where:

 if critical patch not in topology;
 otherwise; 

: number of selected critical patches. 
The critical patch pool is selected according to the filter-based feature selection criterion, Fisher score [27], 
inspired by the physics of flow that the resin filling time is effected by undesired local geometric patterns 
(lower right of Figure 4). 

The proposed knowledge-inspired feature representation is a more general topology representation for mold flow 
applications. Different from the bitmap and local feature representation, it is not sensitive to the number of element 
or the number of patch segment in the bounding box. In addition, it provides valuable information when the inlet 
gate location changes. Therefore, the trained predictive model is expected to be more generalizable to topologies 
not similar to the training set. Three topology optimization cases will be discussed in section 6 to test the process 
model robustness. 

5.3 Random Forest Regression Model 
After data generation and topology knowledge-inspired feature representation, the resulting transformed training 
set  is summarized as Eq. (3) below: 

, (3)

where:
: knowledge-inspired feature representation of topology , ;

: resin filling time simulation result of topology ;
: number of training samples (  in this case). 

Since the input feature set is a mixture of continuous and discrete variables, the Random Forest [28] regression 
model is applied to the training set  to build the resin filling time predictive model. The current model uses 50 
trees with the minimum leaf size of 20 as the tuning parameters. In our previous study [23], the trained regression 
model was tested to be generalizable to testing samples with different inlet gate locations and initial bounding box, 
while the other two surrogate models trained on bitmap and local feature representations failed.

6. Topology Optimization considering Composite Resin Filling Time 
The resulting manufacturing process model from section 5 is applied to the compliance minimization topology 
optimization problem. The multi-objective optimization problem is formulated as minimizing both structure 
compliance and resin filling time, summarized in Eq. (4) below: 

, (4)

where:  
: structure compliance, obtained by finite element calculation; 

Inlet gate location 

Material fraction volume (M):
[0.89, 0.72, 0.84, 0.78, 0.78, 0.56].

Critical patch identification (C)Original sample bitmap

Skeleton step count (N): 33.

Figure 4 An example of knowledge-inspired topology feature representation. 
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5

: resin filling time, predicted by the trained manufacturing process model from section 5; 
: material fraction volume, set as .

Since there is no known analytical sensitivity information for the random forest decision tree model, 
multi-objective genetic algorithm (MOGA) and Kriging level-set (KLS) [24] are used to alleviate the need for 
objective gradients and dramatically reduce the number of design variables. The dimension of the design variable 
vector  depends on the number of knot points which is independent from the mesh size. The Pareto frontier 
results of three test cases are generated (GA settings: 500 generations, 1000 populations per generation). The 
plotted objective values are normalized by the minimum value of each objective respectively. The selected 
non-dominated Pareto results’ resin filling time responses are validated by process simulations to demonstrate the 
accuracy and robustness of the trained manufacturing process model. 

6.1 Test Case 1: Short Cantilever 
Test 1 has the identical bounding box and inlet gate location setting as the manufacturing process model training 
data generation, known as the in-the-bag test. Figure 5 below shows the support and load conditions of the short 
cantilever problem and its Pareto frontier result. The normalized compliance and resin filling time objective values 
for five selected non-dominated Pareto frontier points (green dots in Figure 5) are summarized in Table 1. The 
result shows a clear trade-off between the structure compliance and resin filling efficiency. 

Table 1 Objective values of selected Pareto 
frontier points in test case 1. 

Topology Compliance Filling Time 
1 1.00 1.44 
2 1.03 1.28 
3 1.15 1.21 
4 1.26 1.11 
5 1.84 1.00 

While traditional surrogate models would produce high quality approximations for such in-the-bag tests, the 
proposed data-driven model also performs excellently. To validate the manufacturing process model output, the 
five selected topologies’ resin filling time simulation results are shown in Figure 6. The simulation validation 
results are consistent with the predictive model outputs. As a result, if topology 2 is selected as the optimized result 
with both compliance and resin filling time as objectives, compared with the structurally optimized result 
(topology 1), it reduces the resin filling time of 4.8% (1499.75s to 1427.79s) and sacrifices the structure 
compliance of 2.9% (49.66 to 48.25). 

6.2 Test Case 2: Bridge 
The same resin filling time manufacturing process model is also applied to another topology optimization problem 
with different inlet gate location as the process model training set, known as the out-of-bag test. It is a “bridge” 
problem with two-point support and mid-span load. The inlet gate location is set in the center of the structure. The 
resulting Pareto frontier is shown in Figure 7. The objective values for selected non-dominated points (green dots 
in Figure 7) are summarized in Table 2. 

Figure 5 Pareto frontier result for test case 1. 
Objective: compliance
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Table 2 Objective values of selected Pareto 
frontier points in test case 2. 

Topology Compliance Filling Time 
1 1.00 1.22 
2 1.03 1.10 
3 1.07 1.07 
4 1.11 1.02 
5 1.22 1.00 

The filling simulation result of selected Pareto points is shown in Figure 8. Though the predictive performance of 
out-of-bag topologies in case 2 is not as accurate as that of in-the-bag topologies in case 1, the simulation result is 
still consistent in terms of ranking as the process model output. It should be noted that traditional surrogate models 
would fail to provide reasonable approximations in this case since the gate location is different from that of the 
training set. As a result, if topology 2 is selected as the multi-objective optimized structure, compared with the 
structurally optimized result (topology 1), it reduces the resin filling time of 6.7% (410.53s to 382.85s) and 
sacrifices the structure compliance of 2.9% (6.93 to 7.13). 

6.3 Test Case 3: Long Cantilever 
Similarly, another out-of-bag test with different initial bounding box is conducted to further demonstrate the 
process model robustness. As discussed in section 5, while the traditional surrogate models cannot be applied due 
the change of input feature dimension, the proposed process model trained by more general features is still valid. 
The Pareto frontier result for test case 3 is presented in Figure 9. The objective values for selected non-dominated 
points (green dots in Figure 9) are summarized in Table 3. 

Table 3 Objective values of selected Pareto 
frontier points in test case 3. 

Topology Compliance Filling Time 
1 1.00 1.88 
2 1.01 1.45 
3 1.08 1.26 
4 1.27 1.14 
5 1.74 1.00 

The filling simulation result of selected Pareto points for test case 3 is shown in Figure 10. The simulation result is 
consistent in terms of ranking as the process model output. As a result, compared with the structurally optimized 
topology (topology 1), if topology 2 is selected as the multi-objective optimized result, it reduces the resin filling 
time of 6.0% (3466.09s to 3258.48s) and sacrifices the structure compliance of 1.3% (141.29 to 143.09). 

Figure 7 Pareto frontier result for test case 2. 
Objective: compliance
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7

According to the result of three multi-objective topology optimization test cases above, the resin filling time 
process model trained on features inspired by underlying physics of filling provides consistent topology filling 
efficiency approximation for both in-the-bag and out-of-bag tests. The model applicability to testing samples not 
similar to the training set demonstrates its better generalizability than traditional surrogate models which usually 
struggle in out-of-bag tests. 

7. Discussion 
This paper applies the resin filling time manufacturing process model to the compliance minimization topology 
optimization problem to identify topologies with improved manufacturability, yet minimum structure performance 
sacrifice, compared with the structurally optimized result. The scalability and generalizability of the data-driven 
process model is validated by three topology optimization test cases. The model applicability to samples not 
similar to the training set resolves the key limitation of traditional surrogate models. As of the future works, other 
topology representations can be studied to further improve the model predictive accuracy and generalizability. 
Several current assumptions should be relaxed including fixed material fraction volume and isotropic permeability 
of the preform. In addition, the data-driven manufacturing constraint modeling (MCM) can also be applied to other 
manufacturing processes (see, for example, sheet metal stamping application in reference [4]) to improve the 
manufacturability of components generated by computer-based structure optimization. 
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1. Abstract  
Nowadays the development of mechanical components is driven by ambitious targets. Engineers have to fulfill 
technical requirements simultaneously under the restrictions of minimized costs and reduced weight for 
mechanical components. Accordingly in the last years newly developed and tested optimization methods have 
been integrated in the development processes of industrial companies. Today, especially topology optimization 
methods are gaining in importance and are often used for the first design proposal of casting parts. 
However, these design proposals must be interpreted and transferred to CAD-models by design engineers and in 
later development phases manufacturing aspects must be considered. Both steps need more development time and 
normally material must be added to the design ideas. Beside castings parts, topology optimization is only a little 
help for the design of sheet structures, because framework structures are the result. Also crash and acoustic 
requirements cannot be completely supported by optimization methods.  
Beginning with the current situation four challenges for further work can be formulated. First the technical aspects 
like crashworthiness and acoustic requirements should be implemented into the topology optimization. The second 
future path focus on sheet structures and hybrid parts. With new manufacturing rules, the result of the topology 
optimization should only consist of thin and plane orientated material. As an extension, structures with more than 
one sheet should be possible in the future. The costs of needed welding seams must be considered. The third 
challenge is the integration of manufacturing simulation. By including a casting simulation for example, each 
iteration of a topology optimization can be analyzed to the castability. By modifications of the design, beside the 
mechanical needs also casting aspects will be recognized. 
The last future path treats a continuous and integrated development process. For this target, the CAE description of 
the topology results must be smoothed and automatically transferred to CAD models, which fulfills the design 
methodology in order to allow easy modifications. 

2. Keywords: Topology optimization, integrated casting simulation, multimaterial optimization, sheet structures, 
CAE2CAD process 

3. Introduction 
Today several approaches are in use for topology optimizations. The starting point for FEM based topology 
optimization can be found in literature in [1]. Bendsøe introduced his homogenization method first [2]. Parallel to 
the homogenization method, Bendsøe presented the SIMP approach (Solid Isotropic Microstructure with 
Penalization) [3]. This method gained popularity because other researchers applied it to their work [4]. Today the 
SIMP approach is a standard method for topology optimizations. For example, the commercial tool Tosca® from 
FE-Design [5] is based on SIMP. SIMP uses the element densities as continuous design variables. The coupled 
stiffness values of the elements transfer the modifications of the optimization to the structure results. At the end of 
each topology optimization run, a discrete distribution of material for the interpretation of the results is needed. For 
this reason, the SIMP approach penalizes intermediate density values using a penalization factor to assign lower 
stiffness values to these elements [13]. SIMP is combined with gradient algorithms, e.g. the method of moving 
asymptotes [7]. 
Since 1992 two other important approaches have been developed and published: ESO/BESO and the SKO method. 
The Evolutionary Structural Optimization (ESO) is focused to remove unnecessary material from too 
conservatively designed parts [8]. For ESO, it is only possible to remove material. A binary element modeling is in 
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use in comparison to SIMP [9]. To enable material growth, Querin introduced the Additive Evolutionary Structural 
Optimization method (AESO) [10]. AESO adds material to areas in order to improve the structure. The 
combination of ESO and AESO leads to the Bidirectional Evolutionary Structural Optimization [BESO] method 
[8, 9, 12]. The main idea behind ESO, AESO and BESO is to remove lowly stressed elements and adding material 
to higher stressed regions. To designate these elements, a so called “reference level” is defined. Elements below 
the reference level are removed from the structure. In the surrounding of elements with higher stresses then the 
reference level, material is added. During the optimization this level is adapted to the optimization progress. BESO 
uses here - depending on the individual approaches - direct, gradient or interpolated information about material 
properties to change the structure [9]. Due to these facts, for ESO/BESO the compliance-volume product can be 
assumed as an objective function [6]. 
The Soft Kill Option method (SKO method) was introduced by Mattheck, Baumgartner and Hartzheim in [13]. 
Inspired by the growth of trees and bones, the biological growth rule was formulated. In highly stressed areas 
material can be added and in lowly stressed areas material will be removed.  Homogeneous and constant stresses 
should be generated especially at the surface of the structure. To change the structure, the SKO method modifies 
the Young Modulus of the FEM-elements as a function of the temperature. High temperature indicates high Young 
Modulus and low temperature causes low Young Modulus [11, 13, 14, 15]. 
The SIMP method in combination with gradient algorithms achieved a widely-used application in industry. The 
main reason for the success of the approach is the integration of manufacturing restrictions [16, 17, 18]. Without 
manufacturing restrictions, it is impossible in most cases to get a feasible design for real life problems. Today 
nearly no suggestions for the integration of manufacturing restriction for BESO and the SKO method have been 
published. Only for SKO a further development, called Topshape®, which offers manufacturing restrictions, has 
been published [19]. 

4. The basic approach of the topology optimization 
The new approach for topology optimization is designed for industrial purposes. Taking into consideration, for 
engineering and daily work, the optimization focus is on the improvements of existing results instead of searching 
for global optima. The main targets are costs and weights of the parts. In the development of casting parts, a 
reduction of weight is coupled with a reduction of material costs. So it is consequent to use the weight as target 
function. Additional important aspects are the necessary time and costs in the development process. To achieve 
this and to improve the general usage, linear and nonlinear FEM analysis should be combined with the new 
topology optimization method. Nonlinear effects can be found for example in plastic material behavior as well as 
by bushings and by contact problems. Finally the last point, manufacturing requirements need to be fulfilled [20, 
21]. 
The flow chart in figure 1 illustrates the main steps of this new topology optimization method. A step size 
controller calculates first a basic rate. Depending on this basic rate, the numbers of removing and adding elements 
are defined for the modification of structural elements. According to the added element, hotspot areas are 
corrected. After this correction process, the lowest stress elements depending on the reduction rate are removed. 
After adding and removing elements, the structure will be checked to insure it is connected: all force transmission 
points must be connected to the support elements. If this check fails, the controller modifies the correction and 
reduction rate in order to produce a feasible structure. During the heuristic steps, non-connecting elements are 
removed from the structure. The interface routines for the FEM solver are integrated in the optimization software. 
After finishing all changes and checks, the optimizer writes the solver specific input decks with all active elements 
and coupled nodes. After the FEM analysis, the post-processing evaluates all target functions and constraints. An 
interface transfers this information to the controller. 
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correction
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Adding elements removing
elements
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3

Figure 1: Flow chart of basic Topology Optimization Method 
The step size controller is an important element of this new method. The main idea is to control the target function 
“weight” by using the progress of the constraints during the optimization. In the first step, the basic rate is 
modified. In a second step the reduction and correction rate are calculated depending on the basic rate to vary the 
structure. 
The basic principle is simple. A smooth increase or decrease of the constraint function allows the removal of more 
elements up to the allowed maximum. In the other case, when the constraint increases, the step size is reduced, 
allowing only a limited number of elements to be removed but more hotspots have to be fixed. When a structure 
violates the maximum allowed constraint limit two times one after another interaction, the step size has to be 
reduced significantly: no elements are removed. In such a situation it is only allowed to add new elements to the 
structure. This is based on a simple heuristic from an engineer’s knowledge.
Figure 2 describes the change of the basic rates dependent on the possible events and the coupling between basic 
rate, correction and reduction rate. High basic rates allow high reductions and less corrections will be necessary. 
For basic rates from 0.1 to 0, fewer reductions should be carried out. When the basic rate tends to zero, more 
corrections are needed. Only corrections will be done in case of a basic rate lower than zero [20].  

Figure 2: Step size controller modifications on the basic rates cause variations on correction and reduction rates 

After the calculation of the step sizes for corrections and reductions, the structure will be modified. To avoid 
problems in the FEM-simulation only binary states of the material are allowed: material is solid or not available. 
This binary material modeling allows only a switch between both states. Similar to ESO/BESO and the biological 
growth rule, material will be added at the highest stress values and removed at the lowest stressed regions. In figure 
3 the process is illustrated. Instead of any calculated derivations of properties to generate gradients, the stress 
values of the structure will be sorted in descending order. Using the step size for corrections, the neighbor elements 
next to the highest stress values will be added to the structure and the elements with the lowest stress values 
according to the reduction rate will be directly removed from the structure. 

Figure 3: Modifications of an example structure by adding and removing elements by calculated stress values 

The integration and implementation of the FEM simulation can be done very easily. No special material model 
without mayor modifications and programming work must be integrated into the code. The input deck for the FEM 
simulation is identical to an input deck for single simulation of a design. The interface of the optimizer writes a 
standard input deck of all existing elements. No removed elements will be written out. Due to this fact all FEM 
solvers can be used. For the simulation of the examples in this paper, Abaqus® has been used [22]. Linear, 
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nonlinear and explicit simulations can be performed with Abaqus® [23, 24] based on the theory of the FEM [25, 
26]. Using the integrated scripting procedures the stress values and constraints will be extracted to files. The 
optimizer starts the next optimization loop based on the information from these files. 

5. Necessary additional technical requirements 
The topology optimization presented in chapter 4 gives the possibility to fulfill all requirements for stress 
constraints and misuse requirements. However the design for crashworthiness of vehicles has additional specific 
requirements: geometry (e.g. large displacements and rotations), boundary condition (e.g. contact) and material 
(e.g. plasticity, failure and strain rate dependency) [27]. Usually crash simulations are performed with Finite 
Element Method codes which can handle the nonlinearities by using explicit time integration. These explicit 
simulations are right now integrated in the topology optimization presented in chapter 4 [28]. For the further 
development of the approach, the optimization algorithm must be extended to handle the specific crash 
requirements like the existence of bifurcation points, the usage of special structural responses like energy 
absorption and injury criteria. The huge number of local optima make the optimization of crashworthiness 
structures even more complex. The conflicting goals of stiffness for structural integrity and compliance for a 
smooth and controlled energy absorption are important parts of the crashworthiness of vehicles. 
Also acoustic requirements are not yet implemented in the current optimization tool.  With regard to acoustics the 
research code elementary Parallel Solver – elPaSo developed at the Institute for Engineering Design, Technische 
Universität Braunschweig can be used to predict the acoustical parameters. The code elPaSo can run in parallel on 
distributed systems on multiple platforms and in multiple architectures. It is based on the Finite Element Method, 
the Boundary Element Method, the Scaled Boundary Finite Element Method, and hybrid numerical approaches 
[29, 30, 31]. The code is able to simulate a wide range of acoustical applications, from vibroacoustical sound paths 
to sound insulation and to the radiation of sound. Special models for viscous, viscoelastic, and poroelastic 
materials are already implemented just as models that describe e.g. flow-induced sound in structures. 
 
6. New type of components and structures  
At the moment, topology optimization is very popular for casting parts. If the target design should contain sheet 
structure or more than one material, additional extensions must be implemented. Here an improved optimization 
method is a topology optimization based on solid finite elements with an included manufacturing constraint for flat 
structures. The developed manufacturing constraint ensures that the structure does not exceed a given thickness 
and that the optimized sheet metal has no undercuts in order to deep draw the structure in one step. Figure 4 shows 
optimized structures for the same design space and load case with and without the manufacturing constraint for 
deep drawable sheet metals. Further information is provided by the contribution Topology optimization 
considering the requirements of deep-drawn sheet metals by Dienemann, Schumacher and Fiebig [35]. 

a) b) c) 
Figure 4: a) Design space and loadcase b) framework structure c) flat structure without undercuts in punch 

direction z 

To achieve even more ambitious targets in terms of weight reduction and cost savings in the development of 
mechanical components, new strategies are required. Hybrid components are success-promising because of the 
large possibilities the use of two or more material offers. Nowadays the development methods are just at the 
beginning and no universal process is available. To offer a first idea of the ideal distribution of the two materials, 
the new topology optimization is capable of handling multi-material-structures. Therefore the binary material 
model is expanded by distinguishing two different materials, one strong material with a high density and a weaker 
material with a lower density. The step size controller also differentiates between the two materials, thus the 
correction and reduction rates are separate for both materials. Furthermore, a new intermediate step for the 
modification of structural elements is introduced. Before an element of the strong material is deleted, it is 
converted to an element of the weaker material. If the stress value in this element is still low, it is deleted in the next 
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iteration. A transformation from the weaker material to the stronger material is also possible, but on stress hot spots 
the same material is always added. The new optimization process is shown in figure 5. 
An important factor on the final design of a multi-material-component is the type of joining, as an adhesive 
bonding leads to a different design of the joint than an interlocking structure. Both joining types are implemented 
in the new topology optimization. 
To simulate an adhesive bond in the FE analysis, cohesive elements are added to the structure before the FE input 
deck is written. An algorithm searches for joints in the structure between the two elements. If a joint was found, the 
nodes are duplicated and a cohesive element is added. For cohesive elements with a geometric thickness the nodes 
are displaced by an offset, which is limited by the distortion of the connected elements. If a zero-thickness 
modelling is used, the coordinates for the duplicated nodes are coincident. The cohesive elements return stress 
values which represent the stress distribution in the adhesive layer. Hence an active design of the joint by the 
optimizer is possible, as the size of contact areas could be increased and load directions could be changed. 
For interlocking structures, contact conditions between both materials are defined. To improve the load-bearing 
capacity of the joint, the structure of the contact surface could be modified or enclosing structures could be formed. 
In contrast to a single material casting part, the component cost is also directly influenced by the costs of the 
joining process. Therefore an expansion of the cost model is suitable, which could then be used as a target function 
for the multi-material-optimization.

      
Figure 5: Topology optimization for multi-material, flowchart and exemplary optimization of a control arm 

7. Integration of manufacturing simulation 
Currently the topology optimization considers only the mechanical simulation results to modify the structure. Only 
basic rules for manufacturing restrictions, like the casting direction are integrated. Therefore, much work is 
necessary to optimize the castability after the first design proposals. This work can be saved and the quality of the 
first concept can be massively increased by the integration of a two-step-approach. First the optimization 
procedure is extended by more detailed manufacturing rules such as a draft angle and minimum hole and pocket 
sizes. Secondly a casting simulation is integrated in the topology optimization to determine the castability of the 
design. Figure 6 shows the new workflow of the optimization process. In each optimization loop, a casting 
simulation iruns parallel. 

Figure 6: Topology optimization with integrated casting simulation 

The results of the casting simulation are used in the optimization to improve the castability after the adding of 
material due to high stresses. Elements which aren’t filled completely are grouped. It is assumed, that these regions 
are too thin or inappropriately placed to be filled properly. Depended on the visibility the elements are removed or 
reinforced. Figure 7 shows the compact result of this procedure. To prevent deep cuts in the structure a maximum 
depth mechanism is used. This whole procedure causes a violation of the structure every time elements are 
removed with high stresses. Because only few elements are changed in each iteration, the optimization can repair 
the structure in the next step and a feasible design is ensured. 
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Figure 7: Changing of the structure due to not filled elements 

This approach is discussed in a simple example. The target is the weight reduction. A stress restriction is used; the 
material of the part is an aluminium alloy. Two symmetric load cases are defined. Figure 8 shows two optimization 
results. The first design was generated with the basic optimization. The weight is reduced to 35.5% of the start 
design. The structure contains a lot of small beams and is complicated to produce. Parallel the optimization was 
done with an integrated casting simulation. The small beams are deleted every time they become too small to be 
filled. The result is a clear structure with few beams. In this case the weight is reduced to 35.3%. This is even 
lighter than the result of the basic optimization. Although more restrictions are used and the result is clearly 
different in topology and shape, a higher weight reduction can be reached. 

   
Figure 8: Modelling and result of a basic optimization and one with integrated casting simulation 

8. Improved development process  
One of the biggest challenges around the topology optimization for the next years is the conversion of the final 
optimized meshes in CAD geometries. Nowadays, the designers have to create a new part design with a smoothed 
result structure as design proposal. This step is very time consuming and some features of the optimization result 
get lost. 
To improve this procedure, at least two steps are necessary as a minimum. First the result must be smoothed and 
secondly the smoothed structure must be described with CAD geometry elements to achieve a CAD design, which 
fulfills necessary design rules and can be modified. 
The current smoothing algorithms do not allow transferring all the geometry information achieved by topology 
optimization to the CAD program. Surface mesh smoothing is a field studied for decades, however algorithms 
such as Laplace iterative smoothing, marching cube algorithm and the smoothing algorithm proposed by Wang 
and Wu still do not solve one of the biggest problems in the mesh smoothing of topology optimization results [32, 
33, 34]. This problem is schematically represented in figure 9 on the left side. The left picture illustrates that the 
part corners are always rounded and the correct information in these specific zones is always lost. Even the new 
developed smoothing methods that are focused in not shrinking the final volume, don´t allow to solve this problem. 

Figure 9: current smoothing result on the left side and needed result on the right side 
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The needed smoothing algorithms must be able to transfer the shape features, defined in the optimization results, to 
the final CAD geometry, without the loss of geometrical information. The target design should be changed to the 
characteristic of a part designed by engineers with clear feature lines. As a possible intermediate step, geometry 
elements can be written in dead geometry formats like IGES and STEP. The benefits are a strong reduction of the 
size of the files and resulting handling advantages, the distance between lines can be measured and they can be 
used for sketches. In the final step, the feature lines and surfaces must be transferred inside the CAD programs.  

9. Conclusion 
The presented paper describes four future challenges for structural optimization in order to extend the advantages 
of the topology optimization to fields, where today manual development loops must be accepted. If an 
optimization algorithm can handle acoustic and crash requirement, it will be possible to use it for more parts and 
applications, especially if also sheet structures or hybrid parts should be the result. The quality of the first design 
proposal will increase strongly and due to this, new possibilities of weight and cost reductions are offered. By 
saving weight, fuel consumption and CO2-emissions can be additionally reduced. Beside these effects, also 
development time at the beginning of a project can be saved. 
With the integration of the manufacturing process, the resulting part design follows not only mechanical aspects. 
As first step, the casting parts are the main focus. In each optimization loop, an additional casting simulation will 
be executed. Due to this, the castability gets a strong increase and weight and material costs stay on the same level 
in current projects. On the one hand, manual development loops for improving the quality of the casting process 
can be reduced and on the other hand also in the manufacturing process costs will be saved. 
The fourth and last future challenge takes care of the process after the end of the optimization and the next steps of 
the part design. Today, a lot of design work must be invested to find a first CAD-design of the part. The today used 
smoothing algorithm changes the surface of the optimization result with possible influences to the mechanical 
behavior. Unnecessary weight could be added and feature lines get lost. With a new smoothing algorithm these 
negative effects can be avoided. After finding a way to generate CAD design automatically more development 
time and costs can be reduced. 
With all four future challenges, the development of mechanical components can fulfill in the next years the 
ambitious targets inside the automotive industry. 
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1. Abstract
The prominence of ecologically produced and sustainably operable goods is constantly increasing and society’s 
acceptance is rising. For ecological reasons and for society’s demand sustainable materials are thus also of 
increasing importance in the manufacturing industries. Substituting conventional substances such as metals or 
plastics is therefore an important issue in the field of product development. Until now, most of the eco-design 
approaches are limited to the selection of the right material but the industrial processing to manufacture the desired 
design is done in a conventional way. Consequently a better eco balance can only be expected for material 
extraction, recycling and disposal while manufacturing is not considered in a way it should be.  
The authors of this contribution are scientists from the areas of cell-biology, eco-toxicology, structural-, 
engineering- and industrial-design. They teamed up to analyse the potential and the behaviour of bio-materials 
being influenced during their growth period into predefined shapes, which can be produced on an industrial scale 
and which are used as semi-finished products. The aim is to minimize conventional production steps and thus 
decrease the amount of resources needed for manufacturing. To find out which products and plants offer promising 
potential, in the first step possible plants are categorized and analysed in general and on a structural cell level. In 
addition, requirements and main elementary functions for different sorts of products are defined, and matching 
parts of both databases are identified. For a systematic approach, engineering methodology e.g. according to Pahl 
and Beitz is taken as a basis. 
It is expected that plants being influenced during their growth will go through a natural topology optimization 
compared to a plant being reformed and shaped during a manufacturing process after the plant has been cut. A 
higher grade of mechanical stability can therefore be predicted if the plant is absorbing the same strain while it is 
growing as it will during usage as a technical product. The aim of this project is to investigate these structural 
differences in mechanical testing, on a cell level in the laboratory as well as in simulations using Finite Element 
Analysis (FEA). Bamboo is taken as a first exemplary plant for its high pace of growth.  
For a holistic view the potentials of the renewable materials will be evaluated by a comparison to conventional 
materials considering mechanical properties. Moreover, the assessment of the eco balance of the entire life cycle of 
a product, the Life Cycle Assessment (LCA), is employed to compare the impact of conventional and renewable 
materials. The outcome will be a data base with mechanical, ecological and economic information to help the 
developer to decide which material to choose for which technical product and what ecologic impact is implicated. 
2. Keywords: Eco Manufacturing, Grown Components, Technical Product Harvesting, Natural Topology 
Optimization 

3. Introduction 
The demand for sustainably produced goods is constantly growing, considering societal as well as political calls. 
An ongoing process has therefore been to substitute conventional material like plastic or metal by natural, 
renewable materials. But until now products have mainly been copied using a “new” material without taking 
advantage of the materials’ characteristics and natural topology. The approach in this project is not to concentrate 
on the topology of the conventional product but to break the product down into its elementary functions. A product 
with the same function which is made of a different material can therefore look totally different depending on the 
material’s characteristics. The goal is to produce structurally well designed, sustainable products that can be 
reproducibly manufactured on an industrial scale. The natural topology of a plant is influenced during its growth; 
thus the plant can grow into a certain shape which can be used as a semi-finished product. In addition to the already 
better eco balance compared to conventional materials even manufacturing steps can be saved that way. 
Additionally it is expected that plants go through a natural topology optimization if the same loadcase is applied 
during their growth as it will be when the plant is used as a technical product or part. Structural advantages are very 
likely. The potential of possible structurally gained strength is investigated experimentally and in simulations. The 
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aim is to formulate design guidelines for different biomaterials with which the potential of these materials can be 
utilized up to a high capacity. To achieve this, a consortium of scientist from the areas of cell-biology, 
eco-toxicology, structural-, engineering- and industrial-design has teamed up to work on the task of Technical 
Product Harvesting (TEPHA). All gathered data about technical requirements and functions and material 
properties of biomaterial will be summarized and linked in a data base.
In addition to the mainly functional and structural analysis the ecological impact of the whole lifecycle of products 
is being analysed. The Life Cycle Assessment (LCA) of different products considering their life from cradle to 
grave is looked at. Also economic data that arises from the manufacturing process until the recycling is considered 
in the database.
With help of the database the developer, engineer, architect or designer, should be able to choose the right 
sustainable material considering the function of the product, the ecological impact as well as economic issues. For 
each case he can decide on his own whether the structural function, the ecologic or economic issues are most 
important. Approaches and first results of this fresh cooperative research are presented in this contribution. 

4. Approach and state of the art 

4.1. Approach 
The goal is to fully exploit the natural given mechanical und topological properties of sustainable materials. To 
make sure not to only copy an existing part and substitute the material, the functions of certain representative 
products are broken down to their elementary functions and requirements. Additionally the goal is to find new 
applications for natural materials without being prejudiced by already existing products made of those materials. 
To achieve this, on the one hand technical functions will be systematically analysed and classified according to the 
engineering design methodology of e.g. Pahl and Beitz [1], see also 6.1. On the other hand biological data is 
summarized and clustered considering structural material parameters such as Young’s modulus, Poisson ratio as 
well as biological data as growth rate and required growing conditions. All data will be stored in a database to 
eventually find matching partners for fulfilling a certain technical function with a certain natural material. 
Additionally but independent from the functional parameters the database will include information on ecological 
data considering the whole LCA of certain products or functions as well as data about economic figures for the use 
of each material (see 4.3). 

Figure 1: Systematically finding matching technical requirements and biological characteristics 

Eventually the database will also contain design guidelines of how to design with the given material. This 
information is varying for the different bio-material since the natural topology needs to be considered. Information 
will therefore include growing dimensions, e.g. bamboo is only growing one directional with no branches and is 
always made of a hollow stem with a certain radius and nodes. When bending a bamboo a certain bending radius 
cannot be excessed. Whereas a fungus, growing 3-dimensionally, has hardly any restrictions in topology and its 
structure is usually foam-like with hollow lightweight cells.  
To fully exploit the plants properties it is also necessary to analyse to what extend the plant can be manipulated in 
its growths and what effect the manipulation causes considering structural behaviour. For its rapid growth this 
scenario is exemplarily tested on bamboo. The experimental and simulative procedures are displayed in section 
6.2. The way the plant is presented in this work is to be seen exemplarily. The aim of the project is to investigate 
numerous species of plants and fungi in a similar way.

4.2. Current use of sustainable material for technical purposes 
Current products made of sustainable material that fulfil a technical function and that are produced on an industrial 
scale do not or hardly take advantage of the natural topology of the plant. To achieve the required shape of a 
product either external connection pieces are needed or they consist of laminates that require complex 
manufacturing processes as well as chemical additives. Changing the shape of a whole e.g. bamboo cane takes 
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place under heat and pressure. Structural damage is expected here. (See Figure 2) 

Figure 2: (a) Bicycle made of bamboo [2], (b) Surfboard made of bamboo laminate [3], (c) framework of table

Natural materials grown into certain shapes as design objects have been presented by several artists. The so called 
“chair farm” by Werner Aisslinger is one of the most famous artefacts. With his installation (Figure 3a) Aisslinger 
wants to indicate the change in consumer behaviour to a more regional and sustainable demand. 
But so far, growing plants and the use of their characteristic shapes have mainly been used as unique artefacts or 
design objects. The “Pooktre Living Chair” is a well known example. The chair in Figure 3b was planted in 1998 
and has been growing since. The new field of botanical construction or “living architecture” is an approach to use 
the natural topology for technical functions. In German it is referred to as “Baubotanik” and it was estblablished in 
2007 by Prof. Dr. Gerd de Bruyn in Stuttgart (Figure 3c,d). But despite its technical function they are unique 
solutions that cannot be manufactured or reproduced on a large scale. 

Figure 3: (a) Chair Farm” by Aisslinger [4], (b) Chair made of a living tree [5]  
(c), (d) Natural fixation for a handrail of a bridge [6] 

Biomimetic is another current research area. Imitating the topology and its functionality of natural systems is the 
main aspect. The material employed can be either sustainable or conventional. 

Figure 4: (a) Technical/architectural structures inspired by natural growth [7]
(b) Technical Plant Stem as fibrous compound material, inspired by biological templates [8] 

Only very little research could be identified where the shape of a living plant is modified and used for technical 
purposes. The Industrial Design faculty at Monash University, Melborne, Australia concentrated on a 
rickshaw-vehicle design made of bamboo grown into the shape of the vehicle frame. So far the possibility of 
manipulating the shape with a certain bending radius and influencing the cross section of the cane could be shown. 

Figure 5: Bamboo shape modification over substructures [9] 

But until now it is hardly known that the growth itself has been influenced to produce near net shaped structures 
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that are reproducible. Achieving reproducibility on an industrial scale is the major aim to achieve in this project.  

4.3 Ecological impact 
One of the project goals is to establish a comprehensive life cycle assessment of the near net shape grown 
components as well as for their conventional equivalents. This allows to evaluate if the bio-based components can 
be produced more environmental friendly. The LCA of a product covers the whole process from the raw material 
extraction and acquisition, through energy and material production and manufacturing, to its use and end of life 
treatment up to the final disposal [10], Figure 6. 

Figure 6: Life Cycle Assessment (LCA) 

5. Exemplary plant: Bamboo. Biological background 
Bamboo is a tribe (Bambuseae) within the plant family of true grasses (Poacea) which comprises more than 1400 
species [11]. Bamboos grow mainly in the tropical and subtropical regions around the globe and are of significant 
cultural and economic importance in Southeast Asia. Bamboo is used in building, construction, as raw material for 
plywood or composites and even as bamboo viscose for clothing. A great advantage of bamboo is that some 
species belong to the fastest-growing plants in the world [12] The culms of Dendrocallamus giganteus can grow 
within one growth period of a few months to full height (up to 35m) with impressive diameters (up to 30cm). The 
culms then lignify, harden and incorporate silica to extraordinary strong material [1313131313]. Bamboos produce 
wooden stems with a higher compressive-strength than tree wood, brick or concrete, a tensile strength that rivals 
steel and a surface with extraordinary hardness [14]. Lignin is responsible for the high compressive-strength of 
bamboo wood and cellulose for its unusual tensile- and break-strength [15]. The special organization of the wood 
in a hollow stem with longitudinal fibers, intersections and the hardest material on the stem-surface produces 
extraordinary properties. This is why bamboo has received a lot of attention in material sciences. 
Hence, to ensure the success of bamboo cultivation under North Rhine-Westphalian conditions, bamboo species 
were selected based on their frost-resistance. Phyllostachys vivax and Phyllostachys bissettii as two possible 
bamboo species for the production of near net shape components can tolerate temperatures down to -20°C, resp. 
-23°C. Moreover Phyllostachys vivax is a very dry resistant species possibly tackling the irrigation issue [16]. 

6. Procedure 
6.1 Methodical approach 
According to Pahl and Beitz, in the conceptual state, all technical systems can be described as a combination of 
several principal solutions. These in turn consist of three elements: “physical effect”, “effect carrier” (material) 
and the “qualitative embodiment parameters of the working location” [1]. It is obvious that even in this early stage 
of product development not every physical effect for a given function can be realized with every sort of material or 
any geometrical shape. 

Figure 7. Elements of Principle Solutions [1] 

In order to address the technical functions, on the one hand the authors use the Koller approach of elementary 
functions, which cannot be subdivided to a lower hierarchical level and can directly be implemented with at least 
one corresponding physical effect [17]. A set of different elementary functions has been defined for the material, 
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energy and signal flow, which can potentially be covered by naturally near netshape grown materials. At the same 
time, a systematic analysis of a wide range of products from consumer goods to machine tools and plant 
engineering as well as architecture/civil engineering is carried out to cluster different product characteristics and 
identify archetypal application patterns for the material substitution. The results are implemented in the 
product-function database including amongst other parameters information about the three mentioned aspects of 
the principle solution. The database will thus contain classifications of products which lead to basic functions and 
required material properties. At the same time the database includes data about growing organisms such as 
mechanical properties as well as geometric limitations during growth. Besides it will also contain quantitative data 
on the LCA (Figure 6) and economic data. 
Hence with help of the database it will be possible to identify the basic functions of a product. In the second step it 
will lead the user to the material requirements needed to fulfil these functions. To match the technological 
requirements and the biological characteristics the requirements are then compared to the material data of the 
possible natural effect carriers (Figure 7). Along with the evaluation of the fulfilment of the technical functions, 
ecological and economical criteria will be displayed. Ideally the user will then have the choice of different 
materials and can weigh which aspect next to the functionality is most important for his case. Based on this he may 
choose a natural substitute for the conventional material.  
Since a detailed product not only consists of structural elements or elements which are directly involved in the 
fulfilment of a technical function, but is also composed of material volumes which do not contribute functionally 
[17], the embodiment design and styling of these parts need to be considered as well. Particularly it is obvious that 
not every contour or outline can be realized without additional technological processing.  
Currently the availability of adequate material data for the TEPHA approach is very limited, not only in terms of 
the number of different plant species but also concerning guidelines for controlled and guided growth respectively 
the alteration of physical material characteristics caused by the manipulation. To overcome this lack of 
information the consortium has set up different plantings and tests material from the same species conventionally 
grown as well as according to the outlined method. For the first stage the authors concentrate mainly on structural 
functions of products. 

6.2. Experimental approach 
The procedure to analyse the behaviour of plants being manipulated while they are growing consists of different 
approaches. Bamboo will be manipulated while it is growing. Because the lignification until the bamboo reaches 
its full hardness takes up to three years, structural testing cannot be done on the manipulated plants. But structural 
testing can be done on bamboo canes that have grown normally, yet under the same nutritional conditions as the 
manipulated plants. To estimate the gain of structural strength of naturally grown structures compared to canes 
with the same topology that have lignified and then modified under pressure and heat, a simulation model is set up. 

Experimental growing procedure 
For the mentioned advantages in section 5 the first stage of the experiments deals with different species of bamboo. 
It is systematically tested to what extend bamboo can be influenced in its natural growth. 
Different parameters such as bending angles and radii as well as the cross section will be gradually changed to get 
to know the limits. A variation of tools will lead to the optimal way to create reproducible elements. 
Knowing what basic geometric elements are producible, it will be possible to predict what kind of whole products 
or semi-finished products are contrivable. So far it could be shown that it is possible that the bamboo is 
manipulable in its shape. The tested plant is growing in a loop of approximately 20 cm (Figure 8). In further 
experiments different species of bamboo and other plants and fungi will be tested. 

Figure 8. Bamboo growing in a loop trough a tube 

Structural evaluation 
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Regarding the topology of naturally grown structures such as e.g. trees it is noticeable that these structures develop 
exactly the topology needed for the loadcase which is applied by wind, rain etc. [18]. The aim of this project is to 
make use of this characteristic for technical purposes and to quantify the gained advantage compared to plants that 
have been manipulated after their growth was finished.
Since the lignification of the bamboo needs approximately three years, no structural testing can be done during the 
two-year-project. But the potential of the manipulated plants can be estimated by setting up a simulative FE-model 
for straight bamboo. That model can be expanded to simulate the behaviour of bamboo that has been grown into a 
certain shape since it can be assumed that for both growing scenarios no cells have been injured. Comparing this to 
the results of structural testing from bamboo that was bent after its lignification, a quantitative prediction can be 
made about the structural advantage of grown structures. 
The goal is to find out to what extend natural growing into a wanted shape has structural advantages to structures 
that have been bent afterwards.  

7. Discussion and Outlook 
In the project TEPHA the potential of substituting conventional materials with sustainable bio-material for 
products that are manufactured on an industrial scale is investigated. By creating a database with which it is 
possible to evaluate products according to their function and not to their topology it will be possible to find 
matching natural materials that fulfil the requirements needed for that certain function. The goal is to fully exploit 
the material properties. To do so design-guidelines for each material will be developed. 
For the guideline and to estimate the potential of manipulated grown structures, the structural behaviour is going to 
be evaluated. In particular for the chosen example bamboo it is analysed how much the grown structure is stronger 
than the one bent after lignification. This contribution only provides the approach for further research and first 
supposable qualitative results of this project. It is expected that there will be quantitative results of first exemplary 
plants soon after the first growing phase when results of simulations and of real grown plants can be verified. 
But even if the structural strength will be worse or equal, the eco balance of the grown material is still of better 
value because of the way the raw material is extracted and because of less manufacturing steps. The authors 
therefore see great potential ecological wise. Economically the growing time and needed space have to be kept in 
mind as well as possible tolerances for the produced products. It is obvious that still it remains a natural material 
that can only be manipulated in a certain range. High production tolerances can therefore not be predicted which 
limits the selection of possible products. 
The presented methodology in which elementary functions are used to choose a certain material could also be 
introduced for other material groups to ensure best exploitation for certain materials. 
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1. Abstract
Structural optimization of support structures for wind turbines is complicated by the need to assess fatigue damage.

Due to nonlinearities in the rotor loads, this situation calls for transient time-domain simulations, with combined

wind and wave action. The structural model considered here is a jacket consisting only of beam elements that is

subject to one 90 second operational loadcase from which the fatigue constraint is evaluated. Since no optimality

theory exists for such a case, the optimization was performed with a genetic algorithm using a small population

of designs. Under a ground structure approach, the structure was initially modeled with a large set of beams.

By storing favorable design traits and discarding bad traits, the beams were sized in an iterative manner. Beams

under a certain minimum size were removed. The objective function includes a term for the cost of welding and

painting the beams, and thereby favors less structural elements. Results show that it is possible to obtain reasonable

structures with this approach, similar to what would be obtained by straightforward manual optimization, but

often with a lower weight. Due to the many simplifications the final designs are not completely realistic, but this

study highlights the important issues that do arise and is a first step toward more comprehensive automatic design

optimization.

2. Keywords: Wind Turbine, Jacket, Optimization, Genetic Algorithm

3. Introduction
The construction of offshore wind farms for electricity production has shown great promise. Both as a contributing

element in mitigating the ongoing climate changes, and in lessening the global oil dependency. Wind power is in

terms of cost of energy the second cheapest of all renewable energy sources, after hydro-power. Still, construction

and operation cost is a limiting factor in utilization of offshore wind energy on a significant scale. For an onshore

installation, the cost of the turbine and tower itself will typically be 64-84% of total capital costs, while for offshore

wind farms it will only make up 30-50% [1]. To realize cost efficient offshore wind farms, minimization of the

support structure cost is essential. For water depths between 30 and 60 m, tubular steel lattice towers, i.e. jackets,

are a favored solution. Environmental factors that need consideration when designing offshore wind turbines

include high wind speeds, turbulence, wave loading, ice, currents, tides, marine growth and corrosion [2]. Not

only are all these factors hard to predict and design for individually, but their coupled effects are also important to

consider.

Structural optimization is a design scheme for finding optimal solutions. The goal of the process is structures that

are stiff, economical and easily producible while satisfying mechanical constraints like displacements, stress levels,

fatigue damage, buckling and eigenfrequencies. Several methods can be employed to arrive at an optimized design.

However, most existing methods are based on maximizing stiffness, using one or more static loadcases, whereas

the problem here has to take fatigue constraints into account. This is difficult with gradient-based algorithms [3],

especially for a system that is subject to such a complex dynamics as a wind turbine. The current state of the art of

support structure optimization is therefore the use of heuristics [4, 5].

One such method is the genetic algorithm (GA), which mimics the evolutionary process known as ”survival of the

fittest”. By continuously passing on good design traits and discarding unfavorable traits, the design will improve

over generations. Evolutionary optimization schemes are powerful because they can find innovative solutions to

complex problems in an enormous search space. The solution adapts to changing environments and one can easily

take advantage of parallel processing. Compared to more traditional, gradient-based, optimization methods it is

also relatively straightforward to implement. Weaknesses of GA are among others difficulties relating to premature

convergence of the solution and in defining a suitable fitness function, which defines the goal of the optimization

process.
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4. Methodology
The optimization process is based on an interaction between Fedem Windpower (Ver. R7.1-α2, Fedem Technology

AS, Trondheim) and a MATLAB script. Fedem Windpower is a flexible multibody software specialized in dynamic

simulation of wind turbine systems. It offers tools for designing realistic rotors and support structures, and for

modeling wind and sea conditions. The topology is optimized by reducing the task to an equivalent sizing problem

of a ground structure of varying complexity. The ground structure includes all possible beam connections between

predefined nodes in the jacket. The inner and outer diameter of the beams are sized by the script and beams that

have a diameter which is smaller than a certain limit will be removed. To limit the size of the search space, a

maximum outer diameter, as well as upper and lower bounds for the ratio between the inner and outer diameter are

inputs to the optimization script.

As the goal of this research is to optimize a jacket structure, an existing model of the transition piece, tower and

rotor nacelle assembly (RNA) was utilized. Namely, a model from the OC4 project [6], illustrated in Fig. 1. Data

about the wind and sea conditions the wind turbine was subjected to during analysis were gathered from a reference

site in the Dutch North Sea [7]. The wind file was generated by TurbSim, a tool developed by NREL (National

Renewable Energy Laboratory, Boulder). Wave loading was applied using a JONSWAP sea wave spectrum. Total

analysis time was set at 90 seconds and data was recorded in every time step (size 0.05 s) of the last 30 seconds of

the analysis. The first 60 seconds are devoted to accelerating the turbine, i.e., to reach steady state conditions. An

overview of the entire design optimization process utilized is illustrated in the flowchart in Fig. 2.

Figure 1: Wind turbine model from the OC4

project
Figure 2: Flowchart of optimization process

The genetic algorithm was carried out by a MATLAB-script. The first generation of jackets were generated with

a random topology, the only limitations being the ground structure definition and the diameter bounds. The script

also ensured that all four faces of the jacket were symmetric. Fedem input-files were written for all individuals, i.e.

jackets, in the generation and were analyzed in parallel. Data exported from Fedem were axial force and moment

about the Y and Z axis for both ends of all active beams in the model. The forces were converted to a stress time

series which was checked for yielding and fatigue failure. Working by the DNV guidelines [8], all beams were

evaluated for fatigue damage in eight hot spots at both ends. Extraction of stress ranges from the stress time series

was done by rainflow counting following standard procedure [9]. The 30 second loadcase from the analysis was
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scaled in order to predict fatigue damage through a 20 year lifespan.

After testing the yield criterion and the fatigue limit state, all surviving individuals were evaluated for fitness.

Casualties, either by fatigue, yielding or by the Fedem solver module crashing, were discarded. Fitness was

calculated as an arbitrary constant minus the objective function. The objective function to be minimized represents

a rough estimate of the total cost of the jacket and includes both a fixed cost per member, as well as material

cost. This ensures that jackets with less members are favored by the algorithm. In order to track the evolution

and determine which individuals will pass on their genome to the next generation, a leader table/mating pool is

updated and stored for each generation. The number of individuals in the mating pool equalled the population

size. For all generations except the first, the result of the current generation was added to the mating pool. This

list was then sorted from best to worst fitness, mixing new results with the old leaders. Hence, an individual in the

mating pool will not leave the mating pool unless replaced by an individual with better fitness. Next, individuals

in the mating pool bred children for the following generation. Two parent individuals were selected by means

of a weighted roulette wheel, ensuring that individuals with the highest fitness have the highest probability of

being chosen as parents. All inner and outer beam diameters in a parent, i.e. chromosomes, were converted to

binary numbers where each bit represents a gene. A crossover was performed by mixing chunks of genes from

both parents in each child chromosome. A mutation was implemented by randomly switching genes from 1 to

0 and vice versa. The probability of such a mutation adapts to the diversity in the mating pool in an effort to

avoid premature convergence. A low diversity among the leading designs calls for a higher mutation probability.

The diameters of the beams in the children were checked to be inside the user-specified bounds and new Fedem

input-files were written. This iterative optimization loop was carried out for a specified number of generations.

The winning design is the individual with the highest fitness upon termination. More details can be found in [10].

5. Results
In the following, examples of two optimization runs are presented. First, an unrealistically low cubic jacket with

3 nodes along its width, i.e. nodes in all corner legs and one additional node in between, was optimized. Second,

a more realistic 32 m tall jacket with 2 nodes along its width, i.e. only nodes along the four legs, was analysed.

Satisfactory results with a 32 m tall jacket with 3 nodes along its width could not be obtained with the available

processing power. Having 2 nodes along its width implies that X-braces are not connected, i.e. welded together, at

the their intersection.

5.1. Optimization of a cubic jacket

Figure 3 shows a plot of the evolution throughout the optimization process. The plot shows the fitness on the

left abscissa, and the generation number on the ordinate. The maximum fitness is 50, which would correspond to

a structural cost of 0. The optimization was set to run for 50 generations and each generation had a population

of 16 individuals. The thick blue line indicates the fitness of the best design so far in the optimization process,

while the thin green line shows the fitness of the best individual in each generation. The dotted line illustrates the

mean fitness in the mating pool. If the distance between the mating pool mean and the leading design is small, the

diversity in the mating pool is low.
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Figure 3: Optimization of a cubic jacket
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As one would expect, the diversity is high in the initial generations and lower as the design converges towards a

solution. The red bars with the corresponding right abscissa illustrate the number of casualties, i.e. failures, within

each generation. The effect of the adaptive mutation probability can be seen at the very end of the optimization

evolution. As the diversity in the mating pool decreases, the mutation probability increases, as illustrated by lower

fitness of the generation winners and more casualties.

Fig. 4a illustrates a random topology from the initial generation. By the 15th generation, Fig. 4b, the structure is

lighter and somewhat more purposefully designed. The winning design is produced in the 46th generation, as seen

in Fig. 4c. Its fitness increased from 43.1 in the initial generation to 48.5 in the 46th generation. A classic X-brace

has been formed in parallel with a horizontal support. The small dimensions of the X-brace have probably made

the horizontal support mandatory in controlling wave induced oscillations of the braces. Although the topology of

the winning design can be found within the leading design of generation 15, there are many other possibilities that

have been discarded in the optimization process.

(a) Initial random design (b) Leading design, 15th generation (c) Winning design, 46th generation

Figure 4: Cubic jacket at different optimization stages

5.2. Optimization of a tall jacket

The jacket with two nodes along its width was optimized over 100 generations with 16 individuals in each

generation. The maximum fitness in this example is 100. The entire optimization took roughly 24 hours in a

completely automatic process on a regular workstation, and was subdivided into 12 hours of Fedem analyses, 10

hours of stress and fatigue analyses and 2 hours of writing model files. As seen in Fig. 5, most of the increase

in fitness is done before the 25th generation. The second half of the optimization, from generation 50 to 100,

displays traits of many bad designs through the fluctuating fitness of the generation winners and a high number of

casualties.
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Figure 5: Optimization of a tall jacket
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The evolution of the topology is illustrated in Fig. 6a-6c and exhibits how structural cost is being minimized by the

optimization script. A lot of the initial weight has been cut already by the 5th generation, as shown in Fig. 6b. From

generation 5 and onwards the only non-sizing changes are the removal of two horizontal beams and two X-braces

on each face. The winning design in Fig. 6c looks inexpensive and reasonable for the given loading, which was

the goal of the objective function. It has a thin stabilizing X-brace in the middle of each face and large legs with an

outer diameter of 1.537 m and a thickness of 25 mm. It is impressive that the single brace formed exactly halfway

up the jacket, where there is need for support, considering that there is no enforced symmetry about the horizontal

middle line. However, the design seems prone to buckling failure, which was not evaluated by the script.

(a) Initial random design (b) Leading design, 5th generation (c) Winning design, 91th generation

Figure 6: Tall jacket at different optimization stages

5.3. Comparison with manual optimization

In order to have a basis of comparison for the automatically optimized designs, a simple manual optimization was

carried out. A classic topology with one X-brace on each face as well as four legs was assumed as the optimal

design for the cubic jacket. The tall jacket was modeled with four such X-braces throughout its height as a basis

for the manual optimization. The initial cross sections of the legs and braces were set equal to the inner and outer

diameters of the legs and braces from the jacket model used in the OC4 project [11].

To minimize the cost of the structure manually, the outer diameter was kept constant while a sizing optimization

was carried out for the inner diameters. In other words, the manual optimization process had two design variables,

the inner diameter of the braces and the inner diameter of the legs. The jacket was subjected to the same loading

and stress assessment as with the automatic optimization. If a brace or leg failed, either by yielding or fatigue, the

inner diameter was decreased and vice versa if no failures occurred. This iterative process was carried out until an

increase of 1 cm of the inner diameter of either the legs or the braces would cause a failure. To compare this result

with the jackets that were optimized by GA, the fitness score of the manually optimized jacket was calculated by
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Table 1: Comparison of automatic and manual optimization process

Maximum fitness Automatic Manual

Cubic jacket 50 48.4658 47.9314

Tall jacket 100 97.2175 97.7768

the same rules as in the automatic optimizations. The automatic optimization was superior for a cubic jacket, but

not for the tall jacket. Fitness results are given in Table 1.

6. Conclusion
The jacket topologies generated by means of evolutionary optimization showed a complexity-dependent quality.

The automatic optimization of a simple cubic jacket beat the quick manual optimization of the same ground

structure. The taller and more complex jacket topology had a marginally better fitness by manual optimization.

The employed optimization process is by no means without fault and there is much room for improvement. Some

of the weaknesses of the implementation include that no ultimate limit state load case was checked, buckling

of members was not assessed and the ground structure did not allow for inclined legs. Still, important aspects

regarding the use of evolutionary optimization on a jacket have been explored. The results have shown that

structural cost can be minimized in a reasonable manner under fatigue constraints using genetic algorithms.

Reasonable and innovative designs were generated in a very large search space of possible solutions. The method

shows great promise because it is powerful and at the same time easy to implement. If a more general ground

structure were to be optimized on a supercomputer by use of a combination of GA and manual optimization, it is

likely that more cost-efficient designs could be constructed.
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1. Abstract
Wind farm layout optimization (WFLO) is the process of optimizing the location of turbines in a wind
farm site, with the possible objective of maximizing the energy production or minimizing the average cost
of energy. Conventional WFLO methods not only limit themselves to prescribing the site boundaries,
they are also generally applicable to designing only small-to-medium scale wind farms (<100 turbines).
Large-scale wind farms entail greater wake-induced turbine interactions, thereby increasing the computa-
tional complexity and expense by orders of magnitude. In this paper, we further advance the Unrestricted
WFLO framework by designing the layout of large-scale wind farms with 500 turbines (where energy pro-
duction is maximized). First, the high-dimensional layout optimization problem (involving 2N variables
for a N turbine wind farm) is reduced to a 6-variable problem through a novel mapping strategy, which
allows for both global siting (overall land configuration) and local exploration (turbine micrositing). Sec-
ondly, a surrogate model is used to substitute the expensive analytical WF energy production model; the
high computational expense of the latter is attributed to the factorial increase in the number of calls to
the wake model for evaluating every candidate wind farm layout that involves a large number of turbines.
The powerful Concurrent Surrogate Model Selection (COSMOS) framework is applied to identify the
best surrogate model to represent the wind farm energy production as a function of the reduced variable
vector. To accomplish a reliable optimum solution, the surrogate-based optimization (SBO) is performed
by implementing the Adaptive Model Refinement (AMR) technique within Particle Swarm Optimization
(PSO). In AMR, both local exploitation and global exploration aspects are considered within a single
optimization run of PSO, unlike other SBO methods that often either require multiple (potentially mis-
leading) optimizations or are model-dependent. By using the AMR approach in conjunction with PSO
and COSMOS, the computational cost of designing very large wind farms is reduced by a remarkable
factor of 26, while preserving the reliability of this WFLO within 0.05% of the WFLO performed using
the original energy production model.
2. Keywords: Large-scale wind farm; Layout optimization; Surrogate-based optimization; Concurrent
surrogate model selection; Predictive estimation of model fidelity; Particle Swarm Optimization

3. Introduction
The wind energy harvested through large utility-scale wind farms can compete with conventional

energy resources. A large utility-scale wind farm generally has a 500 MW installed capacity (can consist
hundreds of wind turbines). Planning such a large scale wind farm is a complex process and extremely
time-consuming. It includes various mutually correlated factors and large-scale effects, especially the
energy losses due to the wake effects caused by a large number of turbines. The wind farm layout opti-
mization (WFLO) for large-scale wind farms is desired, however, performing the WFLO of a large scale
wind farm is computationally expensive. Surrogate-based optimization approaches can be applied to
alleviate the computational burden in this complex design problem.

3.1 Surrogate-base Optimization
Surrogate models are purely mathematical models (i.e., not derived from the system physics) that

are used to provide a tractable and inexpensive approximation of the actual system behavior. They are
commonly used as an alternative to expensive computational simulations or to the lack of a physicalmodel
in the case of experiment-derived data. Major surrogate modeling methods include Polynomial Response
Surfaces, Kriging, Moving Least Square, Radial Basis Functions (RBF), Support Vector Regression(SVR),
and Neural Networks [1]. These methods have been applied to a wide range of disciplines, from aerospace
design and automotive design to chemistry and material science [2].
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The major pitfall in using surrogate models in optimization is that they can often mislead the search
process, leading to suboptimal or infeasible solutions. To address this issue and provide optimum designs
with high fidelity system evaluations, “Surrogate-Based Optimization” strategy can be applied. In these
approaches, the accuracy and robustness of the surrogate model is improved by adding points where
additional evaluations of the high fidelity model / experiment are desired to be performed. Infill points
are generally added in (i) the region where the optimum is located (local exploitation); and/or (ii) the
entire design space to improve the global accuracy of the surrogate (global exploration)[3, 4]. Infill points
can be added in a fully sequential (one-at-a-time), or can be added in a batch sequential manner. There
exist various criteria for determining the locations of the infill points including (i) Index-based criteria
(e.g., Mean Square Error and Maximum Entropy criteria) and (ii) Distance-based criteria (e.g., Euclidean
distance, Mahalonobis distance, and Weighted distance criteria) [5].

Over the last two decades, different Surrogate-Based Optimization strategies have been developed [6,
7]. Trosset and Torczon in 1997 [8] proposed an approach where the balance between exploitation

and exploration was considered using the aggregate merit function, f̂(x) − ρdmin(x), where, dmin(x) =
Min
x

‖x− xi‖, ρ > 0. It is important to note that, this technique is independent of the type of surrogate

modeling technique being considered. Jones et al. in 1998 [6] developed a well-known model management
strategy that is based on an Expected Improvement (EI) criterion, and is called Efficient Global Optimiza-
tion (EGO). This powerful approach is however generally limited to surrogate models based on Gaussian
processes. The surrogate-based optimization presented in this paper has the following characteristics:
(i) It is independent of the type of model, (ii) It uses a reliable surrogate model (with a desired level of
fidelity) at any given iteration of SBO, and (iii) It determines the optimal batch size for the infill points
for the upcoming iteration of SBO.

3.2 Layout Optimization of Large Scale Wind Farms
The current research on solving the large layout optimization problem is mostly limited to quantify

the layout using the streamwise and the spanwise spacings between turbines, and assumes that a specified
number of turbines are uniformly distributed in pre-defined boundaries. As a result, the optimization is
incompletely performed due to the prescribed conditions. Fuglsang et al. [9] defined the wind farm layout
as a function of the spacings between rows and columns for a specified number of turbines. Perez et
al. [10] used the numbers of rows and columns, the streamwise spacing and the spanwise spacing between
neighboring turbines, the turbine rotor diameter, and a specified rectangular boundary to determine the
wind farm layout. Wagner et al. [11] developed a framework that can solve the WFLO for up to 1000
turbines. In this framework, the initial location of turbines is restricted to an array-like layout. However,
a radial displacement around each turbine is allowed. The approach presented in this paper is capable
of optimizing the location of turbines for large wind farms, i.e., 500-turbine scale wind farms, without
prescribing the farm boundaries.

4. Mapping of the Layout for a Large Scale Wind Farm
In this section, we present a mapping approach to quantify the layout of a very large wind farm using

six mapping factors: (i) the maximum allowable streamwise and spanwise spacings between neighboring
turbines (smax and rmax), (ii) the average spacings of rows and columns (dr and dc), (iii) the normalized
local radial displacement, (iv) the turbine rotor diameter (D), (v) Number of turbines (Nturb), (vi) the
farm site orientation (φ), and (v) the maximum number of rows and/or the maximum side length of the
wind farm. The maximum allowable streamwise and spanwise spacings between neighboring turbines are
determined based on the size of turbine rotor diameter. the average spacings of rows and columns are
variable for difference rows and columns, and given by

dr = (rmax − rmin)×
{
Aπ

j

Nrow

− �1
2
+ (Aπ

j

Nrow

)�+ 1
}
+ rmin

dc = (smax − smin)×
{
Bπ

i

Ncolumn

− �1
2
+ (Bπ

i

Ncolumn

)�+ 1
}
+ smin

(1)

where smin and rmin are the minimum streamwise and spanwise, respectively; A and B are design factors
in mapping function; i and j are respectively the row and column indexes; Nrow and Ncolumn are number
of rows and column, respectively. By this definition, non-uniform spacings between rows and columns
are allowed.

In this paper, the normalized local radial displacement is expressed as the Gaussian distribution with
zero mean (μ = 0) and the variable standard deviation (σ) [11]. The actual radial displacement is
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obtained by multiplying the minimum streamwise/spanwise between turbines. This allows the turbines
not to be restricted to be in the grid form. The side length of the wind farm can provided based on the
average land usage of US commercial wind farms. Therefore, the coordinates of the turbine at the Ith

row and the J th column are given by

XI =

J∑
j=1

[
(rmax − rmin)× {Aπ j

Nrow

− �1
2
+ (Aπ

j

Nrow

)�+ 1}+ rmin

]
+ rminr̂(0, σ)

YJ =

I∑
i=1

[
(smax − smin)× {Bπ

i

Ncolumn

− �1
2
+ (Bπ

i

Ncolumn

)�+ 1}+ smin

]
+ sminr̂(0, σ)

(2)

5. Surrogate model selection using COSMOS
In Section 4, the dimensionality reduction is performed. In this section, the Concurrent Surrogate

Model Selection (COSMOS) framework (developed by Chowdhury et al. [12]) is applied to select the
best surrogate model to represent the average annual energy production of a large-scale wind farm as
a function of the mapping factors and the farm site orientation (φ), illustrated in Table 2. In this
paper .This automated model selection is based on the error measure given by the Predictive Estimation
of Model Fidelity (PEMF) [13] and Mixed Integer Nonlinear Programing (MINLP). Unlike most other
model selection methods, the COSMOS framework coherently operates at all the three levels necessary
to facilitate optimal selection, i.e., (i) selecting the model type (e.g., RBF or SVR), (ii) selecting the
kernel function type (e.g., cubic or multiquadric kernel in RBF), and (iii) determining the optimal values
of the typically user-prescribed parameters (e.g., shape parameter in RBF) – thereby allowing selection
of globally competitive models. COSMOS offers five different criteria for selection of optimal surrogates.
In the current implementation, three of them are selected including: (i) the median error (Emo

med), (ii) the
maximum error (Emo

max), and (iii) the variance of the median error (Eσ2

med).
Next, the proposed approach is implemented in a 500-turbine wind farm. In this problem, the number

of sample points for training the surrogate models considered in the COSMOS framework is N({X}) = 200

and the average annual energy production in these sample points is estimated using the model incor-
porated in the Unrestricted Wind Farm Layout Optimization framework [14]. The surrogate models
identified using COSMOS for the average annual energy production of a large-scale wind farm under
the mentions threes criteria, are listed in Table 1. In this problem, the selected surrogate model will be

Table 1: The set of surrogate models given by COSMOS for the wind farm energy production problem
COSMOS TEST Pareto Surrogate Model Selected
Test I: min[Emo

med, Emo
max] Kriging with Linear correlation , SVR with Sigmoid kernel

Test II: min[Emo
med, Eσ2

med] Kriging with Linear & Exponential correlation , SVR with Sigmoid kernel

used as an initial model in the surrogate-based optimization process. In the surrogate-based optimiza-
tion process, the fidelity of surrogate model iteratively should be improved by adding infill points in the
optimization process. Therefore, Kriging model with Linear correlation function that is selected in Test
I and Test II could be the best choice. The dimensionality reduction and the implementation of the sur-
rogatemodel reduce the computational cost on a very large wind farm layout optimizationmore than 95%.

4. Adaptive Model Refinement (AMR)
The major challenge of using surrogate models in optimization is that they can often mislead the

search process due to underestimation or overestimation of system behavior and leading to suboptimal or
infeasible solutions. To address this issue, surrogate-based optimization with adaptive model refinement
(AMR) [15] is applied in this paper. In AMR, reconstruction (or refinement) of the model is performed
by sequentially adding a batch of new samples at any given iteration (of surrogate-based optimization
(SBO)) when a switching metric is met. The major components of the surrogate-based optimization
using AMR method include:

(i) The model switch metric [16]: This metric is perceived as a decision-making tool for the timing of
surrogate model refinement. Performing model refinement (by adding infill points) too early in the
optimzaiton process can be computationally expensive while wasting resources to explore undesirable
regions of the design domain. On the other hand, updating surrogate model too late might mislead
the search process early on to suboptimal regions of the design domain, i.e., leading to scenarios
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where the global optimum is outside of the region spanned by the population of candidate solutions
in later iterations.This metric is formulated by comparing (1) the uncertainty associated with the
outputs of the currentmodel, and (2) the distribution of the latest fitness function improvement over
the population of candidate designs. Whenever the model switching metric is met, the history of the
fitness function improvement is used to determine the desired fidelity for the upcoming iterations
of SBO.

(ii) The Predictive Estimation of Model Fidelity [13]: In AMR, the PEMF method with certain imple-
mentation is used to quantify the surrogate model fidelity, and identify the optimal batch size (e.g.,
size of infill points). The inputs and outputs of PEMF (in the AMR method) are expressed as:

[P(με,σε), ΓInfill] = f
PEMF

(X, ε∗) (3)

where the vector X represents the sample data (input and output) used for training the surrogate
model; and ε∗ is the desired fidelity in the model refinement process. In Eq. 3, P(με,σε), and ΓInfill

respectively represent the distribution of the error in the surrogate model, and the batch size for
the infill points to achieve a desired level of fidelity in the AMR method.

(iii) Optimization algorithm: Mixed-Discrete PSO (MDPSO): In the presented surrogate-based opti-
mization methodology, optimization is performed using an advanced implementation of the Particle
Swarm Optimization (PSO). In this paper, we use one particular advanced implementation of the
PSO algorithm called Mixed-Discrete PSO (MDPSO), which was developed by Chowdhury et al
[17].

6. Numerical Experiments
In this section the proposed approach is implemented to design a 500-turbine wind farm for measured

site data, in order to illustrate the effectiveness of this unique wind farm layout optimization approach.
The objective is to maximize the average annual energy production of the farm through layout optimiza-
tion (Pfarm = annual energy production/365× 24). In this problem, the farm layout optimization is started
using the best surrogate model selected in Sec. 4 (Kriging with Linear correlation function). To reach a
reliable optimum solution, a refinement of the surrogate is then performed by sequentially adding batches
of new samples using the adaptive model refinement approach. The optimization problem is defined as

max
V

: f = Pfarm

V = {v1, v2, . . . , v6}
subject to

g1(v) ≤ 0

g2(v) ≤ 0

V Lower ≤ vi ≤ V Upper

The upper and lower bounds of design variables (vi = 1, 2, ..., 6) are listed in Table 2.

Table 2: Upper and lower bounds of design variables
Design variables Lower bound Upper bound
rmax 5D 15D
smax 5D 15D
A −20 20
B −20 20
σ 0 1
φ 0 90

These variables include the mapping factors (that
defines the coordinates of the wind turbines in
the farm), and the farm site orientation (φ). In
Eq. 4, g1(v)= ‖AMW − 45(hectare/MW )‖ is the land
area constraints. This constraint is defined based
on the average land usage of US commercial
wind farms in 2009. In this equation, g2(v)

=
∑N=500

i,j=1,i�=j max{[4D − dij ]} is the minimum inter-
turbine spacing constraints. In this paper, the
GE-1.5MW-XLE turbine is chosen as the specified
turbine-type [18]; the minimum streamwise (smin)
and spanwise (rmin) are set to the same value: 4D; and the wind data is obtained from the North Dakota
Agricultural Weather Network (NDAWN)[19].

7 Results and Discussion
In this optimzation problem, the AMR is applied at every iteration of PSO. The population size of

PSO is pre-specified to Npop = 300, and the PSO algorithm converges by satisfying the predefined function
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tolerance, δf = 1e− 6. In this problem the model refinement will be implemented if the current size of data
set is less than N({X}) = 500 In this optimization problem, the initial population of particles is generated
using the Kriging with Linear correlation function. The AMR approach adaptively improve the fidelity of
the surrogatemodel fifteen times during the optimization process (over a total of 110 iterations), resulting
in an optimum design with a reasonable level of fidelity.
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Figure 1: The improvement of the surrogate model
fidelity through sequential model refinement process
with AMR

Figure 1 represents the improvement of the
model fidelity for the wind farm energy produc-
tion problem through the sequential model refine-
ment process using the AMR method. This figure
illustrates that the error (estimated using PEMF)
decreases with sequential addition of batches of
infill points in SBO, thus showing that the batch
size of the infill points and the location of these
points determined by the AMR method resulted
in lower error in the refined (updated) surrogate
model. It should also be noted that the novel use
of themodal value in the PEMFmethod, promotes
a decrease of the error measure with infill points,
as opposed to the untraceable noisy variation that
is often characteristic of mean or RMS error mea-
sures [13].

The convergence history of the optimization
problem is illustrated in Fig. 2. These figures also
indicate: (i) the active surrogate model at each it-
eration (using different colors), (ii) the size of data

set (N({X}) = NCurrent({X}) + ΓInfill) used to refine (update) the active surrogate model in the AMR ap-
proach, and (iii) the iteration that the model refinement is performed (the AMR metric is met). It is
observed that, from the first iteration till the 8th iteration the initial surrogate model with N({X}) = 200 is
active, before refining the model using additional 19 sample data through the AMR approach. The final
switching event, from the surrogate model constructed using N({X}) = 496 training points to the surrogate
model constructed using N({X}) = 513, occurs at the 96th iteration. The optimization progresses using the
surrogate model constructed using N({X}) = 513 training points for another 14 iterations before reach-
ing convergence. In this case, the algorithm converges by satisfying the predefined function tolerance,
δf = 1e− 6.
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Figure 2: Convergence history of the surrogate-based optimization using AMR

Next, we investigate how the AMRmethod performs better than simply using the single stage sampling
strategy for SBO. The result yielded by the AMR method are therefore compared with the results yielded
by running MDPSO using the surrogate model constructed in the one-step method (using all 500 sample
points). The optimum results are thus obtained, and the total number of function evaluations in each
case are reported in Table 3. The final column of this table shows the actual function estimate for
the optimum design obtained under each optimization run. It is observed that the PSO-AMR not only
requires 26 times less computing time compared to PSO-HF, it also provides the optimum value that is
14.9 MWh better that simply using the single stage sampling strategy for SBO. It is also observed that,
in the PSO-AMR approach, the optimum is located in the region where the SM model has 0.63% error.
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Table 3: Optimization results using different optimization approaches

Approach
v∗1 v∗2 v∗3 v∗4 v∗5 v∗6

Optimum Model in No. of HF response
AMWfunction Pfarm last HF function at optimum

× D × D (degree) (f∗ × 108) iteration evaluations (f
HF

(v∗)× 108)
PSO-SM 14.03 13.40 15.68 4.72 0.05 70.73 2.3013 SM 500 2.1248 29.7085
PSO-HF 13.70 13.54 16.27 4.92 0.08 69.69 2.2760 HF 300× 45 2.2760 43.80
PSO-AMR 12.65 12.57 9.99 -2.53 0.03 72.17 2.2892 SM 513 2.2748 44.74

PSO-SM: optimization performed by MDPSO solely using the surrogate model with all 500 sample points
PSO-HF: optimization performed by MDPSO solely using the high fidelity model
PSO-AMR: optimization performed by MDPSO using AMR approach (surrogate-based optimization using AMR)

8 Conclusion
This paper presented a new approach for layout optimization of very large scale wind farms. A

mapping of the wind farm layout to the detailed turbine coordinates was created, allowing the wind farm
layout to be represented by a set of 6 parameters. As a result, the design variable space for optimizing
the layout of a large scale wind farm is significantly reduced. The COSMOS framework was then applied
to select the globally-best surrogate model to represent the energy production of the wind farm as a
function of the reduced set of layout variables. Surrogate-based optimization was then preformed using
the Adaptive Model Refinement approach, implemented through Particle Swarm Optimization. The
objective of wind farm layout optimization was to maximize the average annual energy production of a
500-turbine wind farm. The results indicated that AMR along with Mixed Discrete PSO improved the
efficiency of the optimization process by a factor of 26 when compared to optimization using the standard
energy production model, while retaining an accuracy of within 0.05% of the latter.
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1. Abstract  
Surrogate modeling is commonly used to estimate function values efficiently and accurately at unsampled points. 
The estimation procedure is called interpolation when target points are inside the convex hull of sampled points 
while extrapolation otherwise. This paper explores one-dimensional deterministic function extrapolation using 
surrogates. We first define a new error metric, relative average error, for quantifying overall performance of 
extrapolation technique. Ordinary Kriging and Linear Sheppard surrogates proved to be safer on several 
challenging functions than polynomial response surfaces, support vector regression or radial basis neural 
functions. This reflected that prediction of these surrogates converge to mean value of samples at points far from 
samples. 

It’s commonly recognized that long-range extrapolation is likely to be less accurate than short-range 
extrapolation. Two kinds of effective extrapolation distance are defined to indicate how far we can extrapolate test 
functions. We propose using the correlation between the nearest sample and the prediction point given by Ordinary 
Kriging as indicator of effective extrapolation distance. The relationship between effective extrapolation distance 
and corresponding correlation over the distance is examined by several test functions. A large value of correlation 
is associated with effective extrapolation distance.  

2. Keywords: One-dimensional extrapolation, Extrapolation distance, Kriging, Error metric 

3. Introduction 
In surrogate modeling, it is common to sample a function f at several points and fit them with an explicit function 
in order to estimate the function at other points[1]. This is often required for optimization or reliability analysis in 
which thousands of function evaluations are common, and each sample often means expensive simulation or costly 
or time-consuming experiment.  

Function estimation is defined as interpolation when target points are inside the convex hull of sampled data 
points and extrapolation otherwise. For one-dimensional samples, convex hull is the smallest interval containing 
the samples. Although many research results have been reported on the accuracy of surrogate modeling, most 
focused on the prediction accuracy in interpolation. Extrapolation is usually associated with large estimation errors 
[2] and commonly encountered in three situations:  

1) Sampling pattern such as Latin Hypercube sampling is adopted, which typically does not sample at or near 
the boundaries of sampling region.  

2) For function estimation in high-dimensional space, we usually cannot afford enough points to avoid 
extrapolation. For example, in twenty-dimensional box, more than million points (220) are required. 

3) Region of interest changes after samples are collected[3].  
Besides the above conditions, extrapolation may be useful when the target points cannot be sampled via 

simulation or experiment due to the need to know future events, inadequacy of simulation software or high cost to 
perform experiments[4]. As a first step to explore effective extrapolation scheme in engineering problems, 
attention is limited here to one-dimensional (1D) function extrapolation.  

This paper investigates general issues on extrapolation using surrogates. Section 4 illustrates possible behavior 
of surrogates for extrapolation and potentials of extrapolation using surrogates. Section 5 proposes an error metric 
designed for extrapolation. Extrapolation of a few examples using five surrogates are compared in Section 6. 
Section 7 discusses the possibility of estimating extrapolation distance using surrogates.  

4. Possible behaviours of extrapolation using surrogates  
Estimation of several analytical functions using ordinary kriging is presented to illustrate possible behavior in the 
extrapolation region, which is assumed here to be inaccessible. Figure1 presents three 1D functions which have 
different function behavior between the accessible and inaccessible domains. These three functions are estimated 
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2

using Ordinary Kriging in Fig.2. It is seen extrapolation results approximate the true function value surprisingly 
well. Since extrapolation in Kriging is based on correlation between function values based on distance, we 
evaluate first the correlation between inaccessible domain and accessible domain. 

Figure 1: (a) Forrester function, (b) ( ) sin( )f x x  and (c) 2( ) ( 6) /13 2f x x . Vertical line denotes border of 
inaccessible domain which is on the left and accessible domain which is on the right 

Figure 2: Extrapolation of (a) Forrester function, (b) ( ) sin( )f x x  and (c) 2( ) ( 6) /13 2f x x . Vertical line 
denotes border of inaccessible domain which is on the left and accessible domain which is on the right 

Denote by r the ratio of length of extrapolation distance to that of accessible domain. As expected, extrapolation 
error increases with r as shown in Fig. 3 for the log function.  In this paper, the length of inaccessible domain and 
accessible domain are set to be equal, which would typically be considered as long range extrapolation. 

 
Figure 3: Extrapolation of ( ) log( )f x x

Another factor determining the extrapolation accuracy is how close the samples to the boundary are.  Figure 4 
illustrates that by using samples close to the boundary.  Extrapolation accuracy improves obviously after shifting 
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3

samples close to inaccessible domain. 

Figure 4: Extrapolation of ( ) log(12.8 )f x x  from (a) Full sampling domain and (b) Reduced sampling 
domain

The examples and discussion above identified three issues, which are correlation between inaccessible domain and 
accessible domain, relative extrapolation distance and absolute extrapolation distance, which are important for 
extrapolation research.

5. An error metric for 1D extrapolation  
We denote extrapolation result by ˆ ( )f x .  The performance of one-dimensional extrapolation technique may be 
quantified by various error measures. Relative error cr ( )e x  is  

cr

ˆ ( ) ( )( )=
( )

f x f xe x
f x

        (1) 
cr ( )e x may be misleading when the function changes sign. So one often uses the range of the function instead of the 

function value for normalization. In addition, for extrapolation, we are often interested in the error in predicting 
change from a boundary point bx . This error, ( )ece x  is: 

ˆ ( ) ( )
( )= 1

( ) ( )
b

ec
b

f x f x
e x

f x f x
        (2) 

For example, if based on this year’s record we predict that gas prices will rise from $4/gallon today to $5/gallon a 
year from now, and they rise only to $4.50, we may consider ( )=100%ece x this as rather than cr ( )=11%e x error. Of 
course, this error measure will fail if the change in the function is near zero, and for this case an alternate relative 
error is defined as ( )re x  . Denoting ( )range f  as the range of true function in the extrapolation domain, ( )re x  is: 

ˆ ( ) ( )( )=
( )r

f x f xe x
range f

         (3) 
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4

( )re x  is used in the following for extrapolation comparisons. We may also use  1 1( ( )) max( ) min( )range f x f f ,
where 1f denotes function value in the range between extrapolation point x  and the closest sample. In order to 
evaluate the overall performance of extrapolation, we use the average error AE in extrapolation domain: 

( )
b

t

x

r
x

b t

e x dx
AE

x x                 (4) 

6. Surrogate comparison for extrapolation   
Surrogates have different performance for interpolation and extrapolation. We test the performance of five popular 
surrogates: Ordinary Kriging, Polynomial response surface (PRS), Radial basis neural network (RBNN), Linear 
Shepard (moving least squares), and Support vector regression (SVR). Four test functions were extracted from 
well-known multidimensional functions taken from [5] and shown in Fig. 5. 

The number of sampling points along each line is 6. Sampling points are generated using Latin hypercube 
sampling with 5 iterations, which introduces randomness in the position of the samples. To average out the effect 
of the positions of the sampling points, 30 sets of samples are generated for each test function, and the mean value 
of AE  for all the sample sets are computed. The extrapolation results of test functions are listed in Table 1. All the 
surrogates except Ordinary Kriging and Linear Shepard can generate huge errors. Kriging and Linear Shepard do 
not extrapolate well, but do not incur huge errors. This is because function estimation using Ordinary Kriging and 
Linear Shepard are weighted sum of samples and they eventually revert to the mean of the samples. Ordinary 
Kriging was then selected for further testing in the next section. 

Figure 5: Four test functions for surrogate selection. Domains close to origin are inaccessible domain.

Table 1: Average AE for extrapolation of test functions using 30 sets of samples 

Surrogate 
models 

Test functions 
Average AE 
of Forrester 
et al.(2008) 

function 

Average AE of 
one-dimensional 

Branin-Hoo 
function 

Average AE of 
one-dimensional 
Ackley function 

Average AE  of 
one-dimensional 
Gramacy & Lee 
(2009) function 

(a) Forrester function (b) 1D Braining-Hoo function 

(c) 1D Ackley function (d) 1D Gramacy & Lee function 
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5

Kriging 0.80 0.13 0.31 1.44 
Quadratic PRS 13.36 0.97 2.01 6.13 

Cubic PRS 7.54 0.53 4.02 60.22 
Quartic PRS 93.62 3.18 8.67 442.14 

RBNN 2322.5 0.2 0.54 25612 
Linear Shepard 0.44 0.19 0.56 1.85 

SVR 20.7 0.26 0.76 188.08 

7. Estimating extrapolation distance 
Kriging is based on a correlation structure between points based on their distance. Large correlation between 
extrapolation points to closest sample may indicate reliable extrapolation. We defined two types of effective 
extrapolation distance and tried to find the relation between extrapolation distances of test functions and 
corresponding correlation over that extrapolation distance.

7.1. Effective extrapolation distance 
Ordinary Kriging assumes that the error at a point is normally distributed with a mean of zero and a given 

standard deviation. Error bounds here are set be 95% confidence interval of this normal distribution. The 
conservative extrapolation distance d is defined for measuring how far the error bounds of the surrogate bound the 
true function. 

The second extrapolation distance is denoted as accuracy distance. Accurate distance is inside conservative 
distance and in which estimated error bounds of the points are less than 30% of ( )range f . We make an exception 
to the requirement of being within the error bounds when they are very tight, allowing error bounds to be off by 1% 
of ( )range f ). Two types of effective extrapolation distance are illustrated in Fig. 6. 

Figure 6. Conservative and accurate distances for extrapolation 

7.2 Identification of effective extrapolation distance using correlation 
The error estimates get less dependable as we go deeper into the extrapolation domain.  We tried to find certain 
indicators of effective extrapolation distance based on Kriging. Prediction of Ordinary Kriging is based on the 
assumption that correlation between function values decay with distance at a rate controlled by , with the 
correlation r between two points at a distance l being equal to 

2( ) expr l l
        (5) 

is usually found by maximizing likelihood of observing that the samples come from Gaussian process. 
Large means short wavelength, large curvature, fast changing function, and reverse for small . It is reasonable 
to expect that as the correlation between function values in the sampling domain and extrapolation domain 
diminishes, the reliability of the error estimates deteriorates. Distance corresponds to given small correlation as 
possible measure of how far we can go.  

We have performed a test to figure out the relation between effective extrapolation distance and 
corresponding correlation value. 10 multi-dimensional functions: Branin-Hoo function, Ackley function, Gramacy 
& Lee (2009) function, Hartmann 3-D Function, Hartmann 6-D Function, Sasena Function, Friedman Function, 
Zhou (1998) Function, Franke's Function, Dette & Pepelyshev (2010) curved Function. 
These functions are commonly used for testing algorithm performance and can be found from [5]. 3 lines are 
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6

extracted towards one random vertex from each function. We use 6 uniformly spaced samples to train Kriging. In 
Fig.7, we present corresponding correlation value between effective extrapolation bounds and closest sample. 
Accurate bounds are associated with large correlation value. The third quartiles of correlation values 
corresponding to accurate bounds and conservative bounds are both 0.99. The box plots of distance ratios are 
dispersed and imply extrapolation accuracy vary with functions.  

8. Summary 
This paper first illustrated the possibility of extrapolating 1D function using surrogates and proposed an average 
error metric designed for quantifying the performance of extrapolation technique. Testing extrapolation on several 
challenging functions indicated that Kriging and Linear Shepard were safer than other surrogates. We defined two 
types of effective extrapolation distance and correlation of Ordinary Kriging has been demonstrated as a possible 
indicator for effective extrapolation distance based on the tests of 30 one-dimensional functions.  
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1. Abstract
Design optimization of offshore wind turbine structures is generally fatigue driven, yet the fatigue sensitivities 
with respect to design variables are commonly approximated using finite differences, leading to inefficiency and 
unreliable information. This paper presents analytical methods to calculate the gradients of fatigue damage and 
equivalent fatigue loads in both time and frequency domains, focusing on their use with the rainflow counting and 
Dirlik’s methods, respectively, for implementation in the optimization of offshore wind turbine structures. 
Comparison studies against finite difference schemes, for simulated stress data experienced by the OC4 jacket 
substructure, show that the fatigue damage gradients were very sensitive to response sensitivities, while 
highlighting several key suggestions which could improve the numerical fatigue sensitivity analysis.    
2. Keywords: Fatigue; sensitivity analysis; structural optimization; gradient-based; offshore wind. 

3. Introduction 
Fatigue assessment is critical in the design of offshore wind turbine structures, as the structures experience 
vibrations during operation, while subject to time-varying wind and wave loads [1]. When performing structural 
optimization, the gradients of fatigue damage with respect to design variables are valuable for an optimizer to 
determine the best direction for improvement [2]. A finite difference method is commonly employed to 
approximate the sensitivity information, since the method is easy to implement while the dynamic analysis of a 
wind turbine system generally requires specialized software which often cannot be modified or extended [2,3]. 
Nevertheless, the method can be inefficient and unreliable when it is used for design sensitivity analysis [4]. On the 
other hand, the analytical formulae for fatigue damage sensitivities cannot be evaluated readily. Various fatigue 
assessment techniques (e.g. in the time domain and by spectral methods) are available and the process to calculate 
stress range histograms or stress range probability density functions (PDF) requires one to go through the cycle 
counting or the Fourier transform, respectively. In this paper, methods to calculate the analytical fatigue damage 
gradients for both time and frequency domains are presented. Further studies are carried out to compare them 
against the finite difference schemes under consideration of various parameters, such as step sizes, time steps, joint 
configurations and stress concentration effects; and discuss their implications on the fatigue gradients estimation.

4. Fatigue assessment of offshore wind turbine structures 
The general approach for fatigue assessment of offshore wind turbine structures is documented in [5,6,7]. Fig. 1 
illustrates the procedure. Internal nominal stresses, in the form of time series which are recovered from system 
responses, are pre-multiplied with Stress Concentration Factors (SCF) and superimposed to obtain the Hot Spot 
Stresses (HSS). The SCF can be computed using empirical formulae as prescribed by Det Norske Veritas, given 
the joint class, geometry and dimensions [5]. As for the HSS, they are evaluated at eight different spots around the 
circumference of joint intersections, at both brace and leg sides.  
The HSS output is variable in amplitudes; therefore post-processing is required to estimate the stress ranges before 
one can proceed to calculate the fatigue damage. This can be achieved either by using cycle counting or spectral 
techniques. ASTM’s rainflow counting algorithm is a commonly used cycle counting method which identifies the 
stress ranges and associated number of cycles (half or full cycles) for the HSS time series by pairing the peaks and 
valleys in analogy with rain flowing down a pagoda roof [8]. Alternatively, the Dirlik’s method obtains the stress 
range PDF from a spectrum. It assumes that the stress range PDF is a weighted combination of an exponential and 
two Rayleigh distributions; and is intended for both wide- and narrow-band processes [9]. The Dirlik’s method is 
frequently used in conjunction with dynamic analysis performed in the frequency domain, where the power 
spectral density (PSD) of HSS is calculated using transfer functions. The individual stress ranges of the histogram 
or PDF are then compared against the S-N curves to determine the fatigue damage. By applying the Palmgren- 
Miner’s rule, the damage for each stress range is summed up linearly, which gives the total accumulated damage. 
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Calculate SCF and HSS

Dirlik's method

Spectral Palmgren-Miner's rule

Start

End

Dynamic solver

Rainflow counting

Palmgren-Miner's rule

Fourier transform

End

Time domain method Spectral method

Nominal stress in time series

HSS in time series

HSS PSDHSS stress range histogram

HSS stress range PDF

Expected fatigue damage

Fatigue damage fraction

Figure 1: Procedure to calculate fatigue damage, either using time domain or spectral method 

5. Methodology to calculate analytical fatigue gradients 
The gradients of fatigue damage with respect to design variables were obtained analytically using the Direct 
Differentiation Method (DDM) [10]. The term ‘fatigue damage’ refers to the fraction of accumulated fatigue 
damage, with 0 meaning fatigue free and 1 signifying failure. This is also called fatigue utilization factors.  

5.1 Time domain method 
The gradients of fatigue damage D and equivalent fatigue loads EFL, using DDM, were given by Eqs. (1) and (2), 
respectively:

( ) 1

1

d
d

I
mi i

i
i

mn SD S
a=

=
b

                (1) 

1

1 maDEFL D
mD N

=                 (2) 

where a = intercept of S-N curve with log N  axis; m = negative inverse slope of the S-N curves; Si = stress range 
of HSS [MPa]; ni = number of stress cycles corresponding to Si; and b = design variable vector. The Si here 
referred to the individual stress ranges without binning, while ni corresponded to either a half or full cycle. As such, 
the d din b  term could be neglected in Eq. (1). 
The derivative of stress range d diS b  was calculated by taking the difference of stress (in this case HSS) 
sensitivities ( )d dt b  at t = ti,1 and t = ti,2, where ti,1 and ti,2 are the times of initial and reversal points for Si,
respectively, see Eq. (3). The ti,1 and ti,2 could be identified during the rainflow counting process. 

( ) ( ) ( ) ( )
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          (3) 

3.2 Spectral method 
The gradient of expected fatigue damage [ ]E D , by using  DDM, could be written as Eq. (4): 

1 1

d d[ ] ( ) [ ] [ ] ( )
d d

K K
m m
k k k k k k

k k

TE D S p S S E P E P S p S S
a = =

= +
b b

        (4) 
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3

Figure 2: OC4 Jacket substructure model and locations identified for simulated HSS data output 

where ( )p S = Dirlik’s stress range PDF; T = total time [s]; and [ ]E P = expected number of peaks per unit time 
[s-1]. The empirical distribution weight factors of ( )p S  and [ ]E P  are governed by spectral moments nm :

( )
1

L
n

n l s l l
l

m f P f f
=

=   (5) 

The PSD ( )sP f  was obtained by the Fourier transform of ( )t . The Welch method (modified periodogram) with 
Hamming windows and overlaps was used in this study, as the taper reduces leakage from the spectral density near 
the large peaks in the spectrum [11]. The sensitivity of Welch’s method was derived as: 

( )( ) ( )( ) ( )( ) ( )( )

( ) ( ) ( )

( ) ( ) ( )

( )

' '

1

1

0

1
'

0

1 2
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=

=

=

=
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b

           (6)  

where Q = number of  window segments; J = number of samples within the window; W = windowing function 
(e.g. Hamming); sF = sampling frequency; and 1i = . Note: Scaling factor of 1 / J  to be used for samples at 
zero frequency and Nyquist frequency. Comparably, the gradient of EFL for the spectral method was derived as: 

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

1

1 ma E D E D E N
EFL

m E N E D E N
=             (7) 

The [ ]E N in Eq. (7), unlike iN n=  in Eq. (2), is a function of nm and therefore varies with respect to b .

6. Comparison of fatigue damage sensitivities 
A comparison between analytical and numerical fatigue damage sensitivities was carried out on simulated stress 
data obtained from the numerical wind turbine model used within the Offshore Code Comparison Collaboration 
Continuation (OC4) Project. The model consists of the 5 MW wind turbine model developed by National 
Renewable Energy Laboratory, mounted on a support structure system that includes a tubular tower, a concrete 
transition piece and a jacket substructure [12,13]. The HSS were evaluated at six distinct locations. They are the 
middle K-joints facing upwind (K2U) and downwind (K2D), the bottom K-joints facing upwind (K3U) and 
downwind (K3D), the X-joints at 2nd bay (X2) and 4th bay (X4) from top (Fig. 2). The vector b  consists of 22 
design variables, i.e. 1 22b b , where the odd and even numbered variables represent the member diameters and 
thicknesses, respectively. The fatigue damage sensitivities were evaluated at initial jacket dimensions against the 
4th bay brace diameter 3b , 4th bay brace thickness 4b , 4th bay leg diameter 13b , 4th bay leg thickness 14b , 2nd bay 
brace diameter 7b , 2nd bay brace thickness 8b , 2nd bay leg diameter 17b  and 2nd bay leg thickness 18b .
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Figure 3: Comparison of fatigue damage sensitivities varying against design variable step sizes and time steps in 
the numerical sensitivity analysis, for (a) spectral and (b) time domain methods. Sensitivities were calculated 
against b13 at hot spot location 1 of K3U (leg side) joint.

6.1 Step sizes and time steps 
Fig. 3 depicts the variation of fatigue damage sensitivities with respect to step sizes and time steps used in the 
sensitivity analysis. The design variables were perturbed in steps of tenfold increments from 10-7 to 10-1, while two 
different time steps, 0.025 s and 0.010 s, were used. Both central difference (CD) and forward difference (FD) 
schemes followed different patterns, with each attaining minimum numerical errors at different step sizes. The 
‘optimal’ step sizes also varied for different joint and hot spot locations (not shown here), resulting in difficulties 
to determine a ‘good’ step size to be used in the overall design sensitivity analysis. The numerical errors consist of 
truncation and condition errors, which are positively and inversely proportional to the step sizes, respectively. The 
CD generally yielded smaller numerical errors as compared with the FD due to a higher order of approximation. 
However, in some cases, the CD could be more erroneous (Fig. 4). Similarly, the finite difference approximations 
improved when smaller time steps were used. The analytical solutions for fatigue damage sensitivities between the 
time domain and spectral methods came closer when a smaller time step was implemented. The spectral method 
was more sensitive to the time step change, since the method is based on the Fourier transform which is more 
susceptible to the quality of input signals. Besides, the semi-finite difference methods could help to enhance the 
numerical sensitivity analysis. In this method, the HSS sensitivities were estimated numerically using finite 
difference schemes while the final fatigue sensitivity analysis was performed using analytical formulations. The 
results of this approach matched well with the finite difference methods (Fig. 4). However, in some cases, they 
could avoid numerical artefacts, as shown for the FD in Fig. 3. The above mentioned findings have demonstrated 
the subtle characteristics of fatigue sensitivity analysis with regard to the response sensitivities. Therefore, it is 
imperative to make sure that the quality of response sensitivities is sufficient when calculating the numerical 
gradients for fatigue damage. Often the analytical solutions are not available for the response sensitivities due to 
software constraints. In such case, the semi-finite difference approach is suggested.

6.2 Joint locations and hot spot locations 
Fig. 4 summarizes the fatigue damage sensitivities calculated using the analytical, finite difference and semi-finite 
difference methods at various joint and hot spot locations. The last two were taken at step sizes which resulted in 
the smallest numerical errors. The percentage errors of numerical sensitivities against the analytical solutions (1st

bars) were listed above and below the respective bars, for the time domain and spectral methods.
In Fig. 4(a), the fatigue damage sensitivities at specific joint locations are shown to be localized, i.e. to be 
influenced most by the design variables which the joint was directly connected to. The finite difference schemes 
also gave smaller errors when evaluating fatigue sensitivities at locations where the design variable was directly 
connected to. On the contrary, the associated errors at joint locations where the design variables were not in 
connection with could reach values as high as 1700 percent or could be wrong in sign. Whereas Fig. 4(b) indicates 
that the fatigue damage sensitivities were distinct at various hot spot locations. Although the time domain and 
spectral methods differ in estimating the damage sensitivities (of which the accuracy depends on the quality of 
response sensitivities), the percentage errors of their finite difference counterparts were generally similar in scale. 
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Figure 4: Comparison of fatigue damage sensitivities at various (a) joint locations and (b) hot spot locations. (a) 
Sensitivities were calculated against b3 at hot spot location 1 for various joints and (b) Sensitivities were calculated 
against b8 at K2U (leg side) for 8 hot spot locations using time domain (‘time’) and spectral (‘freq’) methods. 

6.3 Stress concentration effects 
So far all the fatigue damage sensitivities discussed earlier have considered the SCF variations against the design 
variables. However, since the empirical formulae to estimate the SCF are laborious to use, it raised the interest to 
investigate the contributions of SCF derivatives in the overall fatigue sensitivity analysis.  HSS are geometric 
stresses that account for stress concentration effects occurring at the joint regions. The sensitivities depend on both 
the sensitivities of nominal stress as well as the sensitivities of SCF with respect to design variables. Fig. 5 shows 
the analytical fatigue damage sensitivities, performed with and without consideration of the SCF derivatives. The 
SCF were treated as constants in the latter case. Results indicate that the SCF derivatives exerted significant 
influences in the calculation, for all joint types. In some cases, the sensitivities could be inverted in sign. Therefore, 
it is important to include the SCF variations in the gradient assessment of fatigue damage, when HSS are used. 

7. Conclusions 
This paper presented analytical formulations to calculate the gradients of fatigue damage and equivalent fatigue 
loads, for both time domain and spectral methods. Detailed comparison studies using the stress data obtained from 
the numerical OC4 wind turbine model revealed that: 
• Fatigue sensitivity analysis was very susceptible to the quality of response sensitivities. Several 

recommendations which could help improve the overall quality of numerical sensitivities include using 
sufficiently small step sizes when perturbing the design variables; implementing more robust time domain 
methods when evaluating the fatigue damage; or adopting the semi-finite difference methods. 

• The fatigue damage sensitivities were localized, as they were affected most by the design variables in close 
proximity with the joints. The errors associated with fatigue damage sensitivities for joints which the design 
variables were not directly connected to, could be very high for the finite difference approximations. 

• The derivatives of SCF exerted significant influences in determining the fatigue damage sensitivities. This 
should always be considered when the hot spot stress methodology is used for the fatigue assessment. 
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Figure 5: Comparison of analytical fatigue damage sensitivities with and without consideration of SCF derivative. 
Sensitivities are calculated against bi at hot spot location 1 for various joints using time domain (‘time’) and 
spectral (‘freq’) methods. 
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1. Abstract
In many cases, structural design optimization highlights great weight saving potentials, but yet, engineers may

face difficulties unlocking these potentials, since further economical and technical constraints need to be obeyed.

This especially holds for the optimization of composites, because manufacturing techniques often not only imprint

limits onto realizable parameter configurations for a given design, but furthermore differ considerably in the asso-

ciated manufacturing effort level for different parameter configurations. This work mitigates this issue of inchoate

designs, by introducing a method capable of quantifying expert knowledge regarding manufacturing effort at early

design phases and, thereby, leveraging the optimization’s significance by introducing technical aspects into the

optimization responses. The method will be introduced and displayed at length and thereafter be presented for a

structural design optimization task.

2. Keywords: Composite design optimization, quantification of manufacturing effort, considering efforts associ-

ated with the prepreg lamination technology, ply waste algorithm.

3. Introduction and literature review
It is evident, that structural optimization can solely bring forth designs comprising aspects, which are explicitly

modeled and being incorporated into the optimization process. In this regard, the designs derived via structural

optimization, are only as relevant as the underlying optimization models are holistic. This especially holds for

structural design optimization of composites, where given manufacturing processes impinge not only on whether

or not derived optima are technically realizable, but further determine associated levels of manufacturing effort

and, in that consequence, also the products final manufacturing cost. This marks the importance of capturing man-

ufacturing aspects - specifically those leading to efforts - in tandem with structural mechanics, when optimizing

composite structures, designated to actually be build with moderate or even low manufacturing effort. For this sake,

a method facilitating the modeling of verbal expert knowledge for any given knowledge domain - herein apparently

manufacturing effort - will be introduced and displayed for an exemplary optimization task. The introduction of

this method will be given in chapter 5, followed by chapter 6, where the simultaneous mass and effort optimization

will be displayed. Prior, to that, the general formulation of a vector optimization task is being introduced. The

paper will be topped off by summarizing the conducted work, discussing the key results and sketching prospective

research work. Next, a brief overview of literature addressing the demand for holistic structural design optimiza-

tion models, i.e. optimization models including further aspects beside those stemming from structural mechanics,

will be given.

Wang and Costin [1] used analytical manufacturing constraints for capturing restrictions associated with the hand

prepreg lay-up process. By doing so, they where able to show the importance of these technical aspects within the

structural optimization. Similar to this research work, many researchers incorporated technical aspects via sharp

bound based on analytical equations such as Henderson et al. [2] and many more. Pillai, Beris and Dhurijati [3]

used soft computing approaches so as to model the operating of an autoclave. The knowledge-based system they

derived is able to predict the curing of thick composite laminates and served as a source of inspiration for the

approach displayed in this paper.

4. General definition of the optimization task
With Eq.(1) the optimization task is stated in its general form, where f , g, x and χ are the objective, vector

of inequality constraints, vector of design variables and design space respectively. More information regarding

optimization can be found in [4].

min
x∈χ

{ f (x) |g(x)≤ 0} (1)
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In the later solved optimization problem, the manufacturing effort e will be defined as one objective beside mass

m. Thus, this leads to a multi-objective problem - or also referred to as vector optimization task. Since mass and

manufacturing effort are conflicting goals, a so-called pareto frontier will emerge, as being exemplary displayed

in sub-figure 1a. In this work gradient-based algorithms will be used, for which reason, both objectives need to be

condensed to one single objective for obtaining one pareto optimal solution, i.e. one point on the pareto frontier.

For that purpose, the following general norm as a distance to a fictitious design point, being composed of extremal

pareto optimal values is being defined and given with Eq.(2). It is further displayed in sub-figure 1b.

f1

f2

Pareto frontier

1

32

(a) Pareto optimality

f1

f2

f opt
2

f opt
1

d

(b) Norm approach

Figure 1: Pareto frontier and vector norm definition for gradient-based optimization

f = d( f1, ..., fn f ) = ‖ fi − f opt
i ‖q i ∈ {1, ...,n f } (2)

Inserting the two objectives - mass m and manufacturing effort e - into the euclidean norm, i.e. q = 2 in Eq.(2),

leads to the objective definition as used herein. Note that ξi represent the weight factor for mass (i = m) and effort

(i = e).

f =
√

ξm(m−mopt)2 +ξe(e− eopt)2 (3)

5. Modeling manufacturing effort based on verbal expert knowledge
This chapter aims to give a brief outline on how expert knowledge is modeled. Obviously, the challenge in hand,

is the quantification of verbal information; or more precisely, the transformation of verbal expert knowledge into a

knowledge domain expressed in algorithm-close rule networks.

5.1. Quantification of verbal expert knowledge

At first, the knowledge domain of the manufacturing effort model needs to be acquired. A knowledge domain can

be comprehended as a gathering of information for a given field and is most commonly expressible in a sequence

of inference logic rules. Because verbal knowledge, and in that consequence inherently qualitative information,

needs be gathered, evaluated and processed, the so called fuzzy logic will be used. This theory is founded by

Zadeh [5] and, among other features, enables the handling of imprecise and qualitative information. It is owned to

this qualitative modeling approach, why it is also referred to as soft computing [6]. Herein, the knowledge domain

is defined by human expertise concerning manufacturing effort associated to the prepreg technology. In [7], the

authors discuss the process of how a knowledge domain can be derived at length. The demonstration technology

therein is braiding. This also highlights the general nature of the proposed approach.

5.2. Generating the rule network

With figure 2 an overview of the derived fuzzy inference system (FIS) is given. As depicted, the input parameters

are the curvature, ply number, wastage, ply-drop-offs, continuity and radii. These inputs do not have to be passed by

the user; instead they are fetched from the finite element analysis (FEA) input deck automatically. So, for instance,

the continuity requirement is evaluated based on a neighborhood search for each ply and the check whether or not

plies do continue into their neighbors. The rule network computes, based on these input parameters, the effort
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level for that given design configuration. This is done by evaluating each implemented rule of the knowledge

domain by checking, which verbal variable is active (antecedent) thereafter the degree of fulfillment for each rule

(implication). The final output is then obtained by summing up active rules (aggregation).

Figure 2: The prepreg manufacturing effort model based on the fuzzy inference system

The output can be expanded, when each implication value is being cross-checked with the knowledge domain,

since this reveals the reason for the output. This reason supports the optimizer in verifying one specific output by

making it plausible within the post-processing or by re-consulting an expert. Another feature of the knowledge

domain can be unlocked, when the implication and antecedent values are inspected. This combination provides

insight on how the design can further be improved, because one gets insight on which rule was active and more-

over which verbal variable did trigger it the most. This latter can be understood as an elaboration advise and is

highlighted as the output number three in figure 2.

5.3. Modeling ply wastage

As can be seen in figure 2 one input parameter for the manufacturing effort model is the play wastage. This ply

wastage is determined by the ply’s geometry, thus width and length for square patches, the orientation of the ply

and available rolls, i.e. orientation and width of the prepreg roll from which the ply will be cut. For that purpose a

wastage algorithm has been developed in python. An exemplary results of this algorithm is shown next. One can

Figure 3: Ply wastage for given lay-up illustrated in gray

see in figure 3 how the wastage (depicted in gray) is computed for four different ply bundles. These bundles are

of orientation 7◦, 35◦, 75◦ and 85◦ and are therefore cut from the rolls of 0◦, 45◦ and both latter ones from 90◦
orientation.

5.4. Preparing the rule network for the subsequent optimization

Prior to the optimization on responses from both models - hence, finite element and manufacturing effort model -

the effort model’s condition needs to be leveraged to a higher level, by introducing relaxation schemes, e.g. inter-

polation or meta-modeling for discrete variables and parameters such as ply number or continuity. This guarantees

efficient and robust gradient-based optimization runs resulting in fast convergence. Figure 4 provides an example,

where the continuity check is relaxed for two neighboring plies (θ and 0◦). The plot displays the regular check for

angle difference Δθ = θ −0◦ as a red singleton and the relaxed one in blue. The relaxation in this case has been

realized via C = 1− Δθ
90

0.2
and clearly improves the models behavior in terms of differentiability and continuity in
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the derivatives in light of gradient-based optimization.

0

1

Continuity C 0◦θ

Ply 2Ply 1

Angle difference Δθ = θ −0◦
0 90

Regular check

C = 1− Δθ
90

0.2
Continualizaion

Figure 4: Demonstration of the continualization for two given plies

6. Optimizing an automotive A pillar considering manufacturing efforts
For the purpose of demonstrating the derived approach, the following example of an automotive A pillar of the

convertible Roding Roadster R1 is defined and optimized. The load cases are derived from a roof crush test accord-

ing to FMVSS 216a and driving dynamics requirements addressing the structure’s stiffness. They are illustrated

in figure 5. Along the lengthwise extrusion axis, the A pillar has been fully parametrized in its geometry, so as to

allow the optimization algorithm to vary not only curvature and length properties of the extrusion axis but also all

profile dimensions.

FLC1

FLC2
FLC3

FLC4

Figure 5: Illustration of the load cases for the A pillar structure [7]

The optimization task can be stated as follows,

min
x∈χ

{ f (x) |g(x)≤ 0} (4)

where

f (x) = d(m,e)

g(x) = gi =
FIi
0.9 −1 ∀i ∈ {1, ...,nSecs}

g1+nSecs
= uLC1

uIntrusion
−1

g2+nSecs
= KLC2

Kmin,1
−1

g3+nSecs
= KLC3

Kmin,2
−1

g4+nSecs
= KLC4

Kmin,3
−1

x =
[
xProfile, xExtrusion, xOrientations, xThicknesses

]T
define the objective and constraint functions. As stated, the objective is set to d as defined with Eq.(2) and displayed

in sub-figure 1b.
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Prior to directly solving the optimization task given with Eq.(4), the two extremal solutions, i.e. minimal mass mopt

and minimal effort eopt, need to be found by minimizing f = m and f = e respectively. Obviously, the constraints

as defined in Eq.(4) are imposed throughout the individual minimization of mass and effort as well.

With the following two sub-figures the two extrema of the pareto frontier are given. In sub-figure 6a the thickness

distribution for the minimal mass solution is given, whereas the sub-figure 6b depicts the one of the minimal

effort design. Both designs can be made plausible, considering that the left design is characterized by maximizing

bending stiffness resulting into a blown up A pillar design and on the contrary, that the left, thus minimal effort, is

showing neat patch geometries, and therefore rectangularly shaped, for minimizing the ply wastage.

(a) Mass optimal solution (b) Effort optimal solution

Figure 6: Thickness plotted for both extremal solutions, thus mass and effort minima

In addition to the thickness distribution, one can also visualize the associate manufacturing effort level and its

origin. This is achieved by plotting the manufacturing effort density, which is being computed for each ply region,

leading to the final effort level via an integration scheme. Figure 7 depicts again both extremal solutions, but now

the manufacturing effort density is plotted for minimal mass (sub-figure 7a) and minimal effort (sub-figure 7b)

(a) Mass optimal solution (b) Effort optimal solution

Figure 7: Manufacturing effort density plotted for both extremal solutions, thus mass and effort minima

As the objective in the defined optimization task Eq.(4) is set as the distance to the fictitious combination of both

extremal optima of the pareto frontier the solution represents a compromise. The engineer could define different

weights ξi for shifting the compromise in favour of mass (i = m) or effort (i = e). Here, both weights have been set

to one. With figure 8 the compromise solution is illustrated. Due to its relative position within the minimal mass

and effort design it can be stated, that this solutions indeed strikes a compromise.

m

e

d(m,e)

0.5

1.0

0.6

0.7

0.8

0.9

1.00.5 0.6 0.7 0.8 0.9

angle bisector

Figure 8: Optimal compromise (red start) struck in-between the two mass and effort

(yellow stars are individual optima)
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7. Summary and outlook
It has been shown, that the integration of technical aspects via soft computing has been proven to be a viable

approach. By doing so, the optimization process can be enriched through information regarding manufacturing

effort, thereby increasing the optimization’s significance. The optimization evinces a greater significance, since

derived optima not only satisfy structural requirements, but also honor technical constraints arising from the chosen

manufacturing process. Moreover, the modeling of manufacturing effort enabled the optimization to meet an

optimal compromise by simultaneously maximizing structural efficiency and minimizing effort.

Because of the fact, that in [7] the presented approach has been applied for braiding and herein for the prepreg

lay-up process, it can be concluded that this technique is of general nature and can in that consequence be applied

for various manufacturing processes.

It also has been shown, that the manufacturing effort model not only computes the effort level for a given design,

but also provides reasoning about the determined effort level. This supports the engineer in the post-processing of

the optimization in a manner, that effort levels can be verified.
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1. Abstract
Wind Farm Layout Optimization (WFLO) is a typical model-based complex system design process, where the
popular use of low-medium fidelity models is one of the primary sources of uncertainties propagating into the esti-
mated optimum cost of energy (COE). Therefore, the (currently lacking) understanding of the degree of uncertainty
inherited and introduced by different models is absolutely critical (i) for making informed modeling decisions,
and (ii) for being cognizant of the reliability of the obtained results. A framework called the Visually-Informed
Decision-Making Platform (VIDMAP) was recently introduced to quantify and visualize the inter-model sensi-
tivities and the model inherited/induced uncertainties in WFLO. Originally, VIDMAP quantified the uncertainties
and sensitivities upstream of the energy production model. This paper advances VIDMAP to provide quantifica-
tion/visualization of the uncertainties propagating through the entire optimization process, where optimization is
performed to determine the micro-siting of 100 turbines with a minimum COE objective. Specifically, we deter-
mine (i) the sensitivity of the minimum COE to the top-level system model (energy production model), (ii) the
uncertainty introduced by the heuristic optimization algorithm (PSO), and (iii) the net uncertainty in the minimum
COE estimate. In VIDMAP, the eFAST method is used for sensitivity analysis, and the model uncertainties are
quantified through a combination of Monte Carlo simulation and probabilistic modeling. Based on the estimated
sensitivity and uncertainty measures, a color-coded model-block flowchart is then created using the MATLAB GUI.

2. Keywords: Model-based systems design, Particle Swarm Optimization, Sensitivity analysis, Uncertainty quan-
tification, Wind farm layout optimization.

3. Introduction:
3.1 Model-based Systems Design
Computational approximation models are crucial building blocks of most design processes in the 21st century.
This includes both physics-based models (e.g., FEA and FVM) and statistical models (e.g., surrogate models
and empirical models). An informed application of such computational models demands the knowledge of how
uncertainties, both inherited and introduced by such models, propagate through the model-based design process.
In a broader sense, the complexity of a system and/or the inability to fully understand and address it can also be
perceived as uncertainty.

There exists very few quantitative design frameworks that determine the uncertainty in the information flowing
along a design optimization process, and even fewer in the arena of visualizing information attributes in the model-
based design process. Allaire et al. [1] presented a new definition of system complexity and a quantitative measure
of that complexity based on information theory. They performed sensitivity analysis to indicate key contributors to
system complexity. This method created opportunities to use the complexity information, to make better modeling
decisions, towards increasing the reliability of the resulting designs. While making a uniquely important contri-
bution towards model-based complex system design, in its current form (that does not involve visualization), this
method does not provide a strategy to actually integrate design automation and human decision-making.

In a recent paper, Chowdhury et al. [2] explored the hypothesis that, ”such integration could be accomplished
by a visualization platform that will enable the user/designer to be cognizant of the criticality, fidelity, and expense
of information at any stage or model-level of the design process”. In other words, such a visual platform will allow
the designer to make informed modeling decisions in a model-based complex system design (MB-CSD) process.
In that paper, a new framework concept was proposed to quantify and visualize the inter-model sensitivities (infor-
mation criticality) and the uncertainty (information fidelity) introduced by each model in the process of designing
wind farm layouts − this framework was called a Visually-Informed Decision-Making Platform or VIDMAP.
Wind farm layout design is a complex process, which involves multiple layers of highly non-linear models and
highly uncertain input parameters. In this initial implementation of VIDMAP, Chowdhury et al. [2] demonstrated
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a quantification and visualization of the inter-model sensitivities and model-induced uncertainties leading up to
the estimation of the energy production of a 100 turbine wind farm. The VIDMAP visualization obtained thereof
provided a unique illustration of which models and input parameters (in this case, turbine power response and wake
width estimation models, and turbine features) have the strongest impact on the energy production estimations.

3.2 Impact of VIDMAP
The end goal of understanding (and analyzing) the inter-model sensitivities and the model-induced uncertainties
along a MB-CSD process is to accomplish a desirable level of reliability in the final solutions (or designs) at an
acceptable expense and within a reasonable time-frame. To this end, the user is required to make modeling deci-
sions, such as: (i) model selection, (ii) specification of prescribed model parameters and/or kernel functions, (iii)
sampling or design of experiments, (iv) model improvement, (v) grid refinement, and (vi) computational resource
allocation. These modeling decisions can be partly automated and partly user-guided (through informed decision-
making), only if measure(s) of pertinent information attributes are available to guide quantitative decision-making.
With VDIMAP, we are exploring the potential of constructing and using a novel platform that quantifies and pro-
vides a visual representation of these information attributes.

In this paper, we are presenting a significant advancement to the development and implementation of VIDMAP,
with the following research objectives:

1. Develop a computationally-efficient approach to exploit the previously quantified uncertainty in the top-level
system evaluation model in estimating the sensitivities and uncertainty of the final optimum design, where
the system evaluation model itself comprises several uncertain downstream models.

2. Quantify the uncertainty introduced by a heuristic optimization algorithm into the final optimum design.

3. Apply the new VIDMAP to the entire wind farm layout optimization (WFLO) process, thereby extending
the visualization platform from the ”energy production model” (demonstrated in [2]) to the optimum Cost
of Energy (COE) obtained by WFLO.

A brief discussion of the wind farm layout optimization (WFLO) process and existing methods in this arena is
provided in Section 4.1. Sections 4.2 and 4.3 respectively provide an overview of VIDMAP and the advancement
of VIDMAP (undertaken in this paper) in order to apply it to the entire WFLO process. Illustration and discussion
of the results obtained from the application of the advanced VIDMAP to WFLO is provided in Section 5.

4. An Informed Approach to Model-based Design of Wind Farm Layouts
4.1 Wind Farm Layout Optimization
The energy losses in a wind farm due to wake effects can be reduced by optimizing the selection and the arrange-
ment of turbines over the site, a process commonly known as wind farm layout optimization (WFLO). Two primary
classes of turbine arrangement (or layout optimization) methods exist in the literature: (i) methods that divide the
wind farm into a discrete grid in order to search for the optimum grid locations of turbines [3, 4, 5, 6], (ii) more
recent methods that define the turbine location coordinates as continuous variables, thereby allowing turbines to
take up any feasible location within the farm [7, 8, 9]. A few of the above methods also allow optimal selection
of commercial turbines along with optimal turbine arrangement [9, 10]. A majority of these wind farm layout
optimization methods seek to either maximize energy production or minimize the cost of energy (COE).

In this paper, we use the Unrestricted Wind Farm Layout Optimization framework [9], as it is one of the most
comprehensive WFLO frameworks in terms of the variety of design and natural factors that it incorporates in the
process of searching for the most optimal wind farm layouts. More specifically, the energy production model [9],
the land usage model [11], and the optimization methodology [9] used in demonstrating VIDMAP are all adopted
from the UWFLO framework. In UWFLO, the COE (in $/kWh) of a wind farm is expressed as

COE =Cf arm/E f arm (1)

where Cf arm and the E f arm are respectively the average annual cost (in $) of the wind farm and the average annual
energy production (in kWh) of the wind farm. There are several wind farm cost models in the literature [12, 13, 14],
which are generally empirical in nature, and represent cost in terms of different sets of parameters such as turbine
features, nameplate capacity, and labor costs. The energy production model in the UWFLO framework is a complex
model that represents the wind farm energy production as a function of the turbine features, turbine locations, and
the incoming wind conditions over a given period of time.

The energy production model is a collection of several models: (i) the wind distribution model that estimates
the frequency of wind speeds based on the measured site data; (ii) the wind shear model that determines the wind
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speed at a given height above the ground (generally the hub height) based on measured/reference wind speed at a
different height; (iii) the wake model that estimates the wake width and the wind speed in the wake downstream
from each turbine within the farm; and (iv) the turbine power response model that yields the power generated by
each turbine with respect to the wind speed directly encountered by the turbine. The energy production of the wind
farm (E f arm) is estimated as a numerical integration of the wind farm power generation over a distribution of wind
conditions, which can be expressed as:

E f arm = (365×24)
Np

∑
i=1

Pf arm
(
Ui,θ i) p

(
Ui,θ i)ΔUΔθ , where ΔUΔθ =Umax ×360◦/Np (2)

where Pf arm
(
Ui,θ i) represents the power generated by the farm (in kW) for the i th sample wind speed (U i) and

direction θ i − estimated using the wind shear model, the turbine power response model, and the wake model. In
Eq. 2, p

(
Ui,θ i) represents the probability of the occurrence of the i th sample wind wind condition, which is given

by the wind distribution model. The parameters Umax and Np are respectively the reference maximum wind speed
at a site (e.g., 15 m/s) and the number of sample wind conditions considered (20 in this paper).

Wind farm layout optimization (WFLO) can be readily perceived as a complex system design process. The
energy production of a wind farm depends on several compound factors, such as (i) atmospheric boundary layer
(ABL) variations, (ii) local topography, (iii) turbine geometry, (iv) turbine power characteristics, (v) arrangement
of turbines over the site. These factors themselves comprise of multiple sub-factors or characteristics; e.g., the
ABL, even in its simplest representation, consists of (i) mean wind speed and direction, (ii) turbulence intensity,
(iii) wind shear, and (iv) air density, all of which vary with time and space. Several of these factors are highly
uncertain, and the implicit functional relationships are highly nonlinear. In addition, high-fidelity estimations of
some of these functional relationships have extensive computational footprint, making them practically prohibitive
in the context of designing utility-scale wind farms − e.g., with current high-fidelity LES wake models (e.g., NREL
SOFWA ), one will require approximately 600 million CPU-hours for optimizing a 25-turbine wind farm [15, 9].

WFLO thus comprises a series of interdependent/interconnected models. A information flow perspective to
WFLO can therefore enable significant advancements in informed decision-making compared to the state of the
art. VIDMAP provides such an information flow visualization for WFLO through a synergistic implementation of
sensitivity analysis, uncertainty quantification, and a novel visual interface. In its complete form, VIDMAP could
provide a major leap forward not only in addressing issues of “wind farm underperformance” and “concept-to-
installation delays”, but also in effective “risk mitigation” in wind energy projects. The following section describes
the major components of VIDMAP in the context of WFLO.

4.2 Visually-Informed Decision-Making Platform (VIDMAP)
The Visually-Informed Decision-Making Platform (VIDMAP) for WFLO comprises the following 3 components:

1. Uncertainty Quantification: Uncertainty quantification (UQ) is in general performed in VIDMAP to gauge
the fidelity or quality of information at any stage in the design process; in other words, UQ techniques are
applied to estimate the uncertainty in the originating information (i.e., inputs to the most upstream models),
and to subsequently estimate the uncertainty generated by the models (themselves) along the design process.

2. Sensitivity Analysis: Sensitivity analysis is performed for each constitutive model (in the design process) to
gauge the relative impact of different inputs (incoming information) on the model output (outgoing informa-
tion). It essentially illustrates the inter-model dependency/sensitivities within the design process.

3. Informed Graphical Representation: A graphical user interface (GUI) is created to illustrate the uncertainty
in the information generated by each model and the inter-model sensitivities.

The VIDMAP GUI is therefore intended to be an important step towards integrating design automation, evolv-
ing heuristics, and human decision-making in the context of model-based design. The VIDMAP GUI is developed
using the MATLAB GUI toolbox, and associated built-in functions. The initial VIDMAP GUI constructed in [2],
which shows the entire WFLO framework and specifically illustrates the estimated inter-model sensitivities and
model uncertainties up to the energy production model stage, is shown in Fig. 1.

In Fig. 1, the color bar shows a qualitative representation (e.g, high/low) of the uncertainty and sensitivity.
Variance is used as the measure of uncertainty, and is normalized w.r.t. reference values to allow ready comparison
across different models. The measure of sensitivity used in this case is the variance-based first-order index, which
can take any positive real value less than or equal to 1. These sensitivity indices are estimated using the Extended
Fourier Amplitude Sensitivity Test (eFAST), developed by Saltelli and Bolado [16].
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Figure 1: The VIDMAP graphical interface for WFLO, where (i) the color of a model block depicts the uncertainty
in the corresponding model output;(ii) the color of a connector depicts the sensitivity of the corresponding down-
stream model output to the upstream information-source; and (iii) a gray-colored block or connector indicates that
the corresponding sensibility or uncertainty values have not yet been computed

The approaches used to quantify the uncertainty in the upstream models, and propagate the uncertainty down-
stream, is further described in [2] In this paper, we particularly extend the VIDMAP for WFLO to estimate the
uncertainty introduced by the PSO algorithm, the sensitivity of the minimum COE (associated with the optimized
layout) to the uncertainties in the “energy production model”, and the resulting uncertainty in the minimum COE.
The WFLO problem definition and the VIDMAP advancements are discussed in the next Section.

4.3 Advancing VIDMAP for WFLO
The objective of wind farm layout optimization here is to minimize the cost of energy (COE) of a 100-turbine
wind farm, for given (i) turbine type(s), (ii) maximum allowed land area per MW installed (LAMI), (iii) land
aspect ratio, and (iv) wind distribution. A Rayleigh distribution of wind speed is considered, where the single-
parameter Rayleigh distribution is estimated from the given average incoming wind speed (U av). The variables
in the optimization problem are the locations of each turbine (X j,Yj) − a total of 200 design variables. The
optimization problem is defined as

Min
V

f =COE (V,T )
subject to

g1 (V )≤ 0
g2 (V )≤ 0
V = {X1,X2, ......,X100,Y1,Y2, ......,Y100}

(3)

where the COE is estimated from Eq. 1; T represents the turbine type (a vector of features for a given commercial
turbine); the inequality constraint g1 represents the minimum clearance required between any two turbines, which
is set at ”2× rotor diameter” of the installed turbines; and the inequality constraint g 2 represents the maximum
allowed LAMI (AMW ). Since a land aspect rario of 7/3 is assumed, the farm dimensions can be estimated from the
maximum allowed LAMI as: L =

√
7/3×100AMW and B =

√
3/7×100AMW .

In order to decouple the variance of the energy production model from that of the independent parameters,
the deviation in the output (E f arm, given by Eq. 2) of the energy production model is represented by a stochastic
parameter (εE ) that follows the probability distribution determined via uncertainty propagation in [2] − where
E f arm had an estimated variance of 0.0063. Thus, the return value from the energy production model (the top-level
system evaluation model) whenever it is called by the optimization algorithm is given by f E = E f arm (1+ εE). The
effective set of input parameters for the sensitivity analysis and uncertainty quantification of the minimized COE
is provided in Table 1; this table also shows the upper and lower bounds of the input parameters, and the sampling
strategy for these parameters. The first three inputs are the independent inputs, and the last input represents the
stochastic deviation in the energy production estimates.
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Table 1: Continuous Design variables
Input Parameter Lower Bound Upper Bound Sampling Strategy

Average Wind Speed (Uav) 3.5 m/s 10.0 m/s Normal Distribution with mean= 5.6m/s and σ = 1.3m/s [17]
Turbine Feature Vector (Ti) i = 1 i = 24 Uniform
Land Area per MW (AMW ) 10 ha/MW 50 ha/MW Uniform Pseudorandom (LHS) [2]
Deviation in WF Energy Production (εE ) -∞ ∞ Normal Distribution with zero mean and σ = 0.079 [2]

Based on the information provided in Table 1, a mixture of 50 samples is created with the following three
parameters: Average Wind Speed (Uav), Land Area per MW (AMW ), and Deviation in WF Energy Production
(εE ). WFLO is then performed for each sample w.r.t. each turbine type (turbine feature vector). For the sake of
computational efficiency, a small set of 24 different turbine types are chosen from the comprehensive list of 131
commercial turbines considered in [2]. Therefore, WFLO is performed for a total set of 50×24= 1200 samples.

Heuristic optimization algorithms such as particle swarm optimization (PSO) and genetic algorithms (GA)
involve random operators, and are also initiated with randomly generated population of candidate designs. As a
result, the optimum solution obtained by such heuristic optimization algorithms could vary from one run to another.
Hence, these algorithms are generally run multiple times to gauge their robustness during benchmark testing or
practical application. In this paper, WFLO is performed using the mixed-discrete PSO adopted from the UWFLO
framework [18]. The uncertainty introduced by the PSO algorithm (due to its random operators) is estimated
by running WFLO with this algorithm 5 times for each of the 1200 samples. The number of optimization runs
per sample although small is considered practically adequate, since the observed variance in the PSO results was
small, and it also helped in retaining desirable computational efficiency of the overall VIDMAP framework. The
uncertainty in the estimated minimum (σ PSO

f ) due to the PSO algorithm is then determined by

σPSO
f =

stddev
(

f PSO
1 , . . . , f PSO

5
)

min
(

f PSO
1 , . . . , f PSO

5
) (4)

where the generic f PSO
k represents the optimum value of the objective function obtained in the k th run of PSO for

a given sample. The resulting VIDMAP GUI for the overall WFLO framework is illustrated next.

5. VIDMAP for WFLO: Results
It is observed from Fig. 2 that the optimization algorithm is significantly robust with an average estimated vari-

Figure 2: The final VIDMAP graphical interface for WFLO; gray colored blocks represent deterministic models;
otherwise the color of a block represents the corresponding model uncertainty

ation in the obtained minimum over 5 runs (for each sample) of only 0.12%. This observation further establishes
the use the PSO as a suitable algorithm for WFLO. The sensitivity of the computed minimum COE to the energy
production model appears to be small (from Fig. 2) due to the first order index of 0.00118. However, it is to be
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noted that the total order index of the deviation in the output of the energy production model is estimated to be 0.87.
This observation indicates that the impact of the uncertainties in the energy production model is highly coupled
with the variation in the wind resource, allowed land usage, and selected turbine features. Hence, the uncertainty
in the energy production model is likely to influence decision-making when multiple wind farm sites, multiple
turbine configuration, and different land plot availability is being considered in the planning stage of wind farm
development. Moreover, it indicates that VIDMAP needs to be further advanced to illustrate both the first and total
order indices with respect to inter-model sensitivities.

6. Concluding Remarks
In this paper, we advanced the Visually-Informed Decision-Making Platform to understand and analyze the im-
pact of the uncertainties in the system model and the heuristic optimization algorithm on the uncertainties in the
minimum Cost of Energy (COE) obtained through wind farm layout optimization. VIDMAP was applied in the
layout optimization of a 100 turbine wind farm, where 1200 different samples of allowed land usage, wind re-
source strengths, turbine configurations, and (previously quantified) deviations in the energy production estimates
are used to perform the sensitivity and uncertainty analysis. The uncertainty due to the random operators in the
optimization algorithm (Particle Swarm Optimization) was determined by running the algorithm 5 times for each
sample. It was observed that the Particle Swarm Optimization algorithm is remarkably robust, whereas the total
order sensitivity of the minimum COE with respect to the deviations in the energy production estimates and the
input parameters was noticeable.
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1. Abstract
One of the main functions of a gas injector in a domestic oven combustion system is to improve the air-fuel ratio

in the burner in order to increase the efficiency in the reaction process (combustion). For such a case, it would be

necessary to maximise the primary air that enters into the combustion system and this could be done by redesigning

the internal geometry of the injector. By improving this design, it is expected that the chemical reaction process

between the fuel and the air becomes cleaner since the mixture inside the burner would be closer to its stoichio-

metric value and therefore the flame would have a smaller diffusive component. Currently, experimentation is

the most used methodology to find the most appropriate shape of the injector. This paper presents an alternative

way of finding the injector’s geometry by using shape optimisation. Navier Stokes equations written in variational

formulation were used to model the flow in the injector/mixer system. The aim was to maximise the primary

air entrainment. A shape optimisation method based on Hadamard boundary variation using differentiation with

respect to the domain was applied. Results showed improvements of 19.5% in the amount of air dragged into the

burner for the optimised injector when compared to the original geometry. The geometry found by the optimisa-

tion procedure presents a manufacturability advantage as it requires less tooling to manufacture and allows greater

dimensional accuracy. Finally, the method presented is automatic and can be used over any injector-mixer combi-

nation, provided that they are axisymmetric. This approach has significant advantages over other experimental or

computational methodologies due to its reduced time and cost of development.

2. Keywords: CDF, shape optimisation, Navier-Stokes, gas injector.

3. Introduction
In any combustion system operating with a premixed atmospheric burner, the gas injector (nozzle) is the device

responsible for controlling the thermal power and accelerate the fuel gas to generate a low region pressure at

the outlet of the nozzle and thus induce the entrainment of the primary air required for the combustion process.

Namkhat and Jugjai [1], theoretically established that the primary aeration is a function of fuel flow rate, gas type,

nozzle geometry, mixing tube geometry and the burner ports geometry. Therefore, the design of the injector to-

gether with the burner is of great importance, as the system must bring a better air-fuel ratio to achieve higher use

of the fuel thermal energy and generate lower emissions.

Most conventional domestic burners have high energy losses due to their open flame system which has a relatively

low thermal efficiency, less than 30% according to [2, 3]. The traditional design of the nozzles has mainly been

based on trial and error tests, where the designer’s experience is crucial in selecting the most appropriate form fac-

tor. Modern techniques includes the use of experimental setups and computational fluids mechanics. For example,

Zhang et al. [4] conducted studies using CFD to improve the gas-air mixture in a premixed burner through the

inclusion of an orifice plate in the mixing chamber, resulting in improved uniformity of the velocity at the burner

output ports by 234.2 % and fuel–gas mixing by 2.2 %. The results were validated experimentally, showing a

reduction of pollutant emissions in the combustion process. They define the objective function as the uniformity

of the velocity at the different output ports and use and iterative correction in order to achieve the minimum.

In atmospheric burners, efficient combustion depends largely on the amount of primary air entrained by the jet

issuing from a nozzle or orifice [5]. Furthermore, the gas injector shape play an important role in improving air

entrainment and the degree of mixing between the fuel jet and the primary air into the mixing tube. For this reason

Singh et al. conducted a pilot study with nozzles of circular and non-circular shape to investigate the characteristics

of air entrainment from the environment into the mixing tube cross sections [5]. They found that the entrainment

ratio increases to a maximum value for small mixing pipe diameters and little separation between the injector and

mixer. However, for a larger mixing tube or shifted jet locations, the noncircular jets entrain more of ambient fluid.

The results were verified with theoretical approximations made by Pritchard et al. [6] and also with the similarity

solution proposed by Becker et al. for circular nozzles [7].

Another important factor to consider in the design of burners, particularly when measuring the primary air en-

trainment, is the preheating of the air around the burner when it is operating. Namkhat and Jugjai [1] performed
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experiments on a self-aspirating burner using both hot and cold tests. They found that the hot test gives about 37%

lower primary aeration value than that of the cold test because of the preheating effect caused by combustion.

The optimisation in fluid dynamics has been studied from different points of view and multiple approaches have

been developed. The first applications can be seen on minimising the drag on wing profiles [8, 9, 10]. More re-

cently, general optimisation procedures have been applied to the optimisation of problems involving fluids. In [11]

Mohammadi and Pironneau present a short survey of optimal shape design (OSD) for fluids. Lohner et al. [12]

show developments on shape optimisation for aeronautical applications based on the adjoint method. A gathering

of different methods and specific applications is presented on [13] with an engineering emphasis. Shape and topol-

ogy optimisation for Navier–Stokes problem using variational level set method is presented in [14].

In this paper a shape optimisation method for internal geometry of a gas injector of a premixed atmospheric burner

is applied. The objective is to maximise the primary air entrainment. Due to its cylindrical symmetry, the flow is

modelled with the Navier Stokes equations in cylindrical coordinates and the optimisation model is based on the

Hadamard boundary variation, using differentiation with respect to the domain.

4. Optimisation problem
4.1. Model description

The equivalence ratio, φ , is the ratio between the quantities of air and fuel used in a stoichiometric reaction (A/C)s
relative to that used in the actual process ((A/C)a, that is

φ =
(A/C)s
(A/C)a

(1)

This paper presents a shape optimisation methodology, of the internal shape of the fuel injector, for the minimisa-

tion of the equivalence ratio Eq.(1) of a combustion system that uses a premixed atmospheric burner, see Figure 1.

The fuel used by the burner is natural gas, for which, according to [15], its stoichiometric air to fuel ratio is equal

to (A/C)s = 9.52 m3
air / m3

fuel. Assuming a constant gas flow (k) through the injector, Eq.(1) can be expressed as:

φ =
9.52

(A/k)a
(2)

Therefore, in order to minimise the equivalence ratio, the amount of air entrainment (A) induced into the burner

should be increased. Due to its geometry, a cylindrical coordinate system is used (r,z,θ ), with r the radial coordi-

nate, z the coordinate along the axis of the injector/mixer, and θ the angular coordinate along which the properties

are assumed constant in this study. The global geometry of the injector-mixer set is described in Figure 1. The

assumed working conditions are also shown in the figure. They consist of a developed fuel flow at the entrance

of the injector, ΓD1, no slip conditions in the internal walls, ΓD2, radial velocity equal to zero over the axis of

symmetry, open boundary conditions at the entrainment zone of the mixer, and open boundary conditions at the

exit of the mixer, ΓN .

air inlet

∂u
∂nz

r

u = 0

u = 0

outlet

∂u
∂n = 0

BurnerInjector

ur = 0

uz = uz(r)

z

Dgas inlet

Figure 1: Axisymmetric model of the injector-mixer system used in the optimisation problem

4.2. Mathematical model

Given the fact that minimising the equivalence rate requires the increase in the amount of primary air entering

the burner as shown in Eq.(1), and the fuel flow in the injector remains constant, minimising the equivalent rate

is identical to increased flow at the output of mixer. Therefore, that can be expressed in terms of a minimisation

function by defining a target velocity vd , whose value is greater that it could be expected at the exit, and minimising

the distance of the actual velocity to the target velocity, that is

minimise
Ω∈O

J(Ω,u(Ω)), with J(Ω,u(Ω)) =
∫

D
|u−ud |2dΩ (3)
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where O is the space of all admissible domains Ω and D ∈ Ω is a part of the domain at the exit region where the

velocity needs to be maximised. The Cea’s method, developed by Jean Cea [16] is proposed to obtain the shape

derivative. It is based on the formulation of the Lagrange operator and the solution of the adjoint state equation to

find the objective function derivative.

The original problem involves the mixture of two different gasses and the entrainment of air due to the fuel jet.

However, in terms of shape optimisation, the problem is equivalent to minimise an air entrainment due to air

jet. That is an air-to air problem. This assumption greatly simplifies the physics of the problem and allow us to

concentrate on the optimisation algorithm. The complete optimisation problem can be written as

minimise
Ω∈O

J(Ω,u(Ω)) =
∫

D
|ui −ud |2dΩ (4)

subject to

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Ri(Ω,ui, p) : −νΔui +(ui ·∇)ui +∇p = 0 in Ω
C(Ω,ui) : divui = 0 in Ω

ui = uD
i on ΓD1

∂ui
∂n = 0 on ΓN
ur = 0 on ΓA
ui = 0 on ΓD2

. (5)

The constraints of the problem correspond to the state equation, Eq.(4), plus boundary conditions, Eq.(5). This

is an implicit (or nested) formulation of the optimisation problem as the objective function depends on the design

variables, which in this case is the domain Ω, and the state variable, the velocity u is also a function of the

design variable u = u(Ω). As the flow can be consider stationary and incompressible, the state equations in Eq.(5)

represent the momentum and mass conservation equations. The rest of the constraint correspond to the boundary

conditions

As it is a constrained problem, the Lagrangian is defined as

L (Ω,ui, p,vi,q) = J(Ω,ui)+
∫

Ω
vi Ri(Ω,ui, p) dΩ+

∫
Ω

q C(Ω,ui) dΩ (6)

where the state equations (Ri) and (C) are incorporated into the Lagrangian function by using the Lagrange multi-

pliers v and q.

Using the first Green identity and taking into account that the momentum and mass conservation equations are

written in cylindrical coordinates the weak form of the Eq.(5), can be found as [17]:⎧⎪⎨⎪⎩
a(ui,vi)+d(ui,ui,vi)+b(vi, p) =

∫
Ω

f · vi r dx

b(ui,q) = 0

(7)

where:

a(ui,vi) = ν
∫

Ω
(∇ui : ∇vi)r dx+ν

∫
Ω

urvr
1

r
dx (8)

d(wi,ui,vi) =
∫

Ω
((wi ·∇)ui) · v r dx (9)

b(vi, p) =−
∫

Ω
(divvi)p r dx−

∫
Ω

vr p dx (10)

b(ui,q) =−
∫

Ω
(divui)q rdx−

∫
Ω

ur q dx (11)

The nonlinear convective term, Eq.(9), is linearised using a fixed point like iteration [18, 19]. Therefore, substitut-

ing Eq.(8) and Eq.(11) in Eq.(7),the Lagrangian, Eq.(6), is defined as:

L (Ω,ui, p,vi,q) =
∫

D
|ui −ud |2 dΩ+ν

∫
Ω
(∇ui : ∇vi)r dΩ+ν

∫
Ω

urvr
1

r
dΩ+

∫
Ω
(uo ·∇ui) · vi r dΩ

−
∫

Ω
(divvi)p r dΩ−

∫
Ω

vr p dΩ−
∫

Ω
f · vi r dΩ+

∫
Ω
(divui)q rdΩ+

∫
Ω

ur q dΩ
(12)

The variables vi and q appear as Lagrange multipliers and act as a test function to obtain the variational formulation

3
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of the state equations Ri and C into L as shown on Eq.(12). Then, the last two terms of Eq.(6) define the weak

form of the state equation. Here uo is the velocity in the previous iteration.

Finding ui and p as the solution to the state equation, Eq.(5), one can define the objective function as:

J(Ω) = L (Ω,ui, p,vi,q) ∀vi,q (13)

According to [20], a variation in the shape of the domain (without topological changes) can be defined with

displacement field θ over the initial domain Ω0. Assuming θ small, a deformed domain Ω is represented as

Ω = (I + θ)(Ω0). Details of the mathematical model are presented in [21] and [22]. Taking into account that

definition, the derivative of the function L with respect to a domain variation in the θ direction is obtained:

L ′(Ω,ui, p,vi,q)(θ) =
∂L

∂Ω
(Ω,ui, p,vi,q)(θ)+

∂L

∂ui
(Ω,ui, p,vi,q)(u̇i(θ))

+
∂L

∂ p
(Ω,ui, p,vi,q)( ṗ(θ))+

∂L

∂vi
(Ω,ui, p,vi,q)(v̇i(θ))

+
∂L

∂q
(Ω,ui, p,vi,q)(q̇(θ))

(14)

This result is obtained taking advantage of the non dependancy of the variables (ui, p,vi,q) on the domain. The

partial derivatives with respect to these variables, that are different from the domain, are calculated as follows:

∂L

∂ui
(Ω,ui, p,vi,q)(u̇i(θ))→

∂λ L (Ω,ui +λ ûi, p,vi,q)|λ=0 = J′(ui, ûi)+ν
∫

Ω
(∇ûi : ∇vi)r dΩ+ν

∫
Ω

ûrvr
1

r
dΩ

+
∫

Ω
(uo ·∇ûi) · vi r dΩ+

∫
Ω
(div ûi)q rdΩ+

∫
Ω

ûr q dΩ

(15)

∂L

∂ p
(Ω,ui, p,vi,q)( ṗ(θ))→ ∂λ L (Ω,ui, p+λ p̂,vi,q)|λ=0 =−

∫
Ω
(divvi)p̂ r dΩ−

∫
Ω

vr p̂ dΩ (16)

∂L

∂vi
(Ω,ui, p,vi,q)(v̇i(θ))→

∂λ L (Ω,ui, p,vi +λ v̂i,q)|λ=0 = ν
∫

Ω
(∇ui : ∇v̂i)r dΩ+ν

∫
Ω

urv̂r
1

r
dΩ

+
∫

Ω
(uo ·∇ui) · v̂i r dΩ−

∫
Ω
(div v̂i)p r dΩ−

∫
Ω

v̂r p dΩ

(17)

∂L

∂q
(Ω,ui, p,vi,q)(q̇(θ))→ ∂λ L (Ω,ui, p,vi,q+λ q̂)|λ=0 =

∫
Ω
(divui)q̂ rdΩ+

∫
Ω

ur q̂ dΩ (18)

The derivative of the objective function, J′(u), is calculated as:

J′(ui, ûi) =
∫

D
2(ui −ud) ûi dΩ (19)

Equations Eq.(17) and Eq.(18) correspond to the weak form of the momentum and continuity equations and they

solve for ui and p), for any arbitrary v̂i and q̂ test functions. on the other hand, equations Eq.(15) and Eq.(16)

correspond to the adjoint system. Eq.(15) has the same form of the state equation with a source term defined by the

derivative of the objective function J′. In this case, one solves the state equation for the variables (ui, p) and then

they are used to compute the source term J′ and them the adjoint system is solve for the variables (vi,q). Finally,

after making all these terms null, the shape derivative, Eq.(14), reads:

L ′(Ω,ui, p,vi,q)(θ) =
∂L

∂Ω
(Ω,ui, p,vi,q)(θ) (20)

The partial derivative ∂L /∂Ω is computed using the Structure Theorem, see [16], [23, theorem 3.6 p. 479] and

[22, theorem 2.2.2] for a detail explanation.

∂L

∂Ω
(Ω,ui, p,vi,q)(θ) =

∫
∂Ω0

θ · n̂i(|ui −ud |2 +ν (∇ui : ∇vi)r+ν urvr
1

r
+(ui ·∇ui) · vi r

− (divvi)p r− vr p− f · vi r+(divui)q r+ur q) ds,
(21)

4

819

Leo
Rectangle



where n̂i is the unitary vector that defines the normal direction of ∂Ω0. The terms (vi,q) are the solution to the

adjoint system defined by Eq.(15) and Eq.(16). The shape derivative can be defined as the sensitivity of the objec-

tive function J(Ω) with respect to a variation of the domain shape defined by the boundary displacement field of

magnitude θ on the normal direction n̂i.

This model was implemented using FreeFem++ [24] using the initial geometry shown in 1. The visualisation of

the results is accomplished exporting the results into VTK format and visualising into ParaView.

5. Results
The minimum diameter of the injector defines the thermic power of the burner. Therefore, in order to preserve the

thermic power of the system an additional restriction was set to ensure that the smallest dimension in the radial

direction was not less than a given value.

The optimisation problem defined by Eq.(4) and Eq.(5) was implemented with a initial geometry as shown in figure

1. Although the sensitivity was calculated for any point in Ω only the shape of the injector was allowed to evolve.

The variation on the boundary was accomplished according to the shape derivative defined in Eq.(21). Each itera-

tion involves the computation of the shape sensitivity, a correction in the injector shape, remeshing of the injector

domain and computation of the new objective function

Figure 2 presents the initial and optimised injector geometries, the evolution of the optimisation function and the

variation of air entrainment. It can be observed that, as expected, the objective function decreases and the amount

of primary air drawn into the burner increases. Only eight iterations were required until the minimum diameter of

the injector reached its minimum limit, so it can guaranty the required thermic power of the burner.

Figure 2: Left: Initial geometry and its final shape after running the optimisation algorithm. Right: behaviour of

the objective function and the air flow entrainment at each iteration

In Figure 3 the geometries of both, the original injector and the found by the optimisation procedure are compared.

The original geometry refers to the current design of the injector that has led to the study in this paper. A compar-

ison of the flow field in the original and the optimised injector is shown. Figure 3a presents the velocity field on

the original injector, a balance of the flows and a scale showing the magnitude of the velocity. Likewise, Figure 3b

presents the same information for the optimised injector. The fields were calculated solving Eq.(5) for each of the

geometries. It can be appreciated that the velocity at the output is larger for the optimised model. Also the primary

air entrainment is increased from Qd = 0.184182 L/s for the original one to Qd = 0.220038 L/s to the optimised

one. That is equivalent to an increment of the 19.5% and maintaining the same level of flow at the injector input.

From the manufacturability point of view, it can be observed that the construction of the optimised shape is easy

compared with the current design as it requires less tooling and manufacturing processes.

5. Conclusions
The shape optimisation method using shape derivatives, has been successfully applied to optimise the equivalence

rate on a gas injector of an atmospheric burner. The objective function was written in terms of minimising the dis-

tance of the velocity to a target velocity at the outlet. A shape optimisation method based on Hadamard boundary

variation using differentiation with respect to the domain was applied. The results showed improvements of 19.5%

in the primary air entrainment when compared to the previous geometry. This implies a combustion system with

higher thermal efficiency and lower emissions. Additionally, the geometry found by the optimisation procedure

5
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(a) Velocity field and summary of flows for the original injector
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(b) Velocity field and summary of flows for the optimised injector

Figure 3: Comparison of the flow fields in the original and optimised injector.

presents a manufacturability advantage as it requires less tooling to manufacture and allows greater dimensional ac-

curacy. Finally, the method presented is automatic and can be used over any injector-mixer combination, provided

that they are axisymmetric. This approach has significant advantages over other experimental or computational

methodologies due to its reduced time and cost of development.
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1. Abstract  
Optimal blank shape minimizing earing in deep drawing has a direct influence on material saving as well as 
product quality. This paper proposes a method for determining the optimal blank shape design in square cup deep 
drawing using sequential approximate optimization (SAO) with a radial basis function (RBF) network. The earing 
is minimized under tearing and wrinkling constraints with a variable blank holder force (VBHF), which varies 
through the punch stroke. Through numerical and experimental results, the validity of the proposed approach is 
examined.  
2. Keywords: Deep Drawing Blank Shape Design, Variable Blank Holder Force, Sequential Approximate 
Optimization 

3. Introduction 
Sheet metal forming processes involve a complicated deformation that is affected by process parameters such as 
material properties, blank holder force (BHF), die geometry, blank shape, friction, and lubrication condition. 
Among these, the blank shape has a direct influence on the product quality. The desired product cannot be obtained 
with a small initial blank shape, while a large initial blank shape produces a large flange part that is trimmed off as 
waste. Furthermore, a small BHF can lead to wrinkling while a large BHF results in tearing. Thus, it is important to 
find a suitable blank shape with an optimal BHF for the material saving and product quality. A number of different 
approaches have been proposed to determine the optimal blank shape in deep drawing, and these are mainly 
classified into two categories: the use of a closed-loop type algorithm, or those based on the response surface 
method (RSM). 
Sheet forming simulation is currently so numerically intensive that the use of RSM is a valid option. Hino et al. 
used the RSM for obtaining the optimal blank shape in deep drawing [1], in which earing, as defined by the amount 
of trimmed material, was minimized under two design constraints. Naceur et al. used a moving least square 
approximation to determine the optimal blank shape [2], for which the risk of tearing/wrinkling was approximated 
using a quadratic polynomial, and 7 control points (nodes of the blank) were taken as the design variables. 
This paper proposes a method for determining the optimal blank shape with the VBHF in deep drawing. The 
objective is to find out the optimal blank shape minimizing the earing under tearing/wrinkling constraints with the 
VBHF approach. In this paper, two objective functions are developed to evaluate the earing. The tearing/wrinkling 
is evaluated using the forming limit diagram (FLD) and are regarded as the design constraints. In order to identify 
a set of paret-optimal solutions with a small number of simulation runs, a sequential approximate optimization 
using the RBF network has been adopted. The validity of the proposed approach is examined through the 
experiment using a servo press. 

4. Blank Shape Optimization with Variable Blank Holder Force 
4.1. Finite element analysis model 
The FEA model used in this paper is shown in Fig.1, in which the blank holder force is applied in the positive 
z-direction. The counter punch and die drop to the negative z-direction with a total stroke of 62 mm. The element 
type and the number of finite elements are shown in Table 1. The friction coefficient  of the interfaces 
(blank/blank holder, blank/punch, blank/die, and blank/counter punch) is set to 0.10. Considering the symmetry, 
one-quarter model is used for the numerical simulation as shown in Fig.1. An initial blank size of 92.5 mm  92.5 
mm is actually used. A Belyschko-Tsay shell element with seven integration points along the thickness direction is 
used for the shell mesh of the blank. The penalty coefficient for contact (blank/blank holder, blank/punch, 
blank/die, and blank/counter punch) is set to 0.10. The element types and the number of finite elements are listed in 
Table 1. In addition, Steel Plate Formability Cold (SPFC) 440 is selected as the test material. The material 
properties are listed in Table 2.  
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2

The quarter-model deformation of the initial blank is shown in Fig. 2, in which the dashed line represents the target 
(trimmed) contour and the area above this contour is defined as earing. As shown in Fig. 2, the earing in this square 
cup deep drawing is generated in the x-y plane. Ideally, the target contour should be set to the exact shape of the 
product denoted by the bold line. However, it is very difficult to set the exact shape as the ideal target contour in 
this deep drawing. The tolerance of 5 mm from the exact shape is then considered and is set as the target contour. 

Table 1 Element type and number of finite elements 

Element type
Number of finite

elements
Counter punch Rigid 120
Die Rigid 924
Blank Shell (Belytschko-Tsay) 2116
Blank holder Rigid 432
Punch Rigid 962

Table 2 Material properties of SPFC440 
Density:  [kg/mm3] 7.84×10-6

Young's Modulus: E  [MPa] 2.06×105

Poisson's Ratio: 0.3
Yield Stress: Y  [MPa] 353

Tensile Strength: T  [MPa] 479
Normal Anisotropy Coefficient: r 0.98
Strain Hardening Coefficient: n 0.189
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Fig.1 Finite element analysis model 
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Fig.2 Deformation of initial blank (quarter model) 
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4.2. Design Variables 
The blank shape is determined using the four design variables shown in Fig.3, where one-quarter model of the 
formed product is depicted. The three nodes denoted by black squares are taken as the design variables for 
determining the blank shape. Nodes 1 and 3 move along the vertical and 45 degree line, respectively, while the 
movement of Node 2 depends on x4. These nodes are connected by straight line as shown in Fig. 3, and the initial 
blank shape is then determined. VBHF is also taken into consideration to control the material flow into the die. For 
the VBHF, total stroke Lmax is partitioned into n sub-stroke steps and the BHF of each sub-stroke is taken as the 
design variables. An illustrative example of these design variables is shown in Fig.4, where it should be noted that 
the design variable for VBHF starts from x5.

x

yz

Target contour
Initial blank contour
Deformed contour

x2x1 x3

4

Moving direction

x4
f1(x)

f2(x)

1 2
3

Fig.3 Illustrative example for evaluating earing and design variables for blank shape 

Stroke

BHF

Lmaxx5 xn+4

Stroke is divided into n

x6

L1 L2 Ln

Fig.4 Design variables for variable blank holder force  

4.3. Objective functions 
Let us explain how to evaluate the earing with Fig.3, in which the dashed line represents the target (trimmed) 
contour. First, the area above the target contour is evaluated as the first objective function f1(x), as shown in Fig.3. 
Unfortunately, in this method, the area below the target contour cannot also be evaluated. Consequently, this area 
below the target contour is evaluated as the second objective function f2(x). As f1(x) will be large with a large blank 
shape, while f2(x) will be large with a small blank shape, a trade-off between these objectives can thus be observed.  

4.4. Constraints 
The forming limit diagram (FLD) is used to evaluate the tearing and wrinkling. In order to evaluate the degree of 
tearing and wrinkling, the strains in the formed element are analyzed and compared against the forming limit curve 
(FLC, as shown in Fig.5). The following FLC was defined in the principal plane of logarithmic strains proposed by 
Hillman and Kubli [5]. 

1 2 1 2( ) ( )T W   (1) 

where T  is the FLC that controls tearing, and W  is the FLC that controls wrinkling. The following safety FLC 
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is defined: 

2 2

2 2

( ) (1 ) ( )
( ) (1 ) ( )

T T

W W

s
s

  (2) 

where s represents the safety tolerance, and is defined by the engineers (in this paper, s is set to 0.2). If an element 
comes to or lies above FLC, it is expected that a risk of tearing can be observed. Similarly, a risk of wrinkling can 
be assumed if an element lies in the wrinkling region. The risk of both wrinkling and tearing were evaluated as 
follows:  
For tearing:  

1
1 1
( ) ( )nelm p

jj
g Tx   (3) 

where 

1 2 1 2( ( )) ( )
0

j j p j j
j T T

j

T
T otherwise

  (4) 

For wrinkling:  

1
2 1
( ) ( )nelm p

jj
g Wx   (5) 

where 

2 1 1 2( ( ) ) ( )
0

j j p j j
j W W

j

W
W otherwise

  (6) 

p is set to 4, and nelm represents the number of finite elements of the blank.  
1

2

Tearing

Wrinkling

1 2( )T

1 2( )W

1 2( )i i
T

1 2( )i i
W

2 2( ) (1 ) ( )T Ts
2 2( ) (1 ) ( )W Ws

jT

jW

FLC

Safety FLC

Fig.5 Forming limit diagram for evaluating tearing and wrinkling 

5. Flow of Sequential Approximate Optimizatoin 
The flow can be summarized as follows:  
(STEP1) Initial sampling points are generated by the LHD. 
(STEP2) Numerical simulation is carried out, in which objective functions (f1(x) and f 2(x)) and constraints (g1(x)
and g2(x)) are numerically evaluated at all sampling points.  
(STEP3) All functions are approximated by the RBF network; wherein the approximated objective functions are 
denoted as ( )if x( )ifi ( 1,2, ,i K,K, ), and the approximated constraint functions are denoted as ( )jg x( )jg ( 1,2, ,j mm, ). 

(STEP4) A pareto-optimal solution for the response surface is found using the weighted lp norm method:  

1

1
( ) min

( ) 0 1,2, ,

ppK
i ii

j

f

g j m

x

x

1 p

( )
p

f ( )f ( )f ( )ifi

( ) 0jg ( ) 0j 0 m,
  (7) 

where i ( 1,2, ,i K,K, ) represents the weight of the i-th objective function, and p is the parameter (set to 4 in this 
paper). In order to obtain a set of pareto-optimal solutions, various weights are assigned. 
(STEP5) The density function is constructed and minimized, and the optimal solution of the density function is 
added as a new sampling point [4]. This step is repeated till a terminal criterion is satisfied.  
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(STEP6) If terminal criterion is satisfied, the SAO algorithm will be terminated. Otherwise, return to STEP 2. 

5. Numerical and Experimental Results 
Numerical simulation was carried out to obtain the optimal blank shape and VBHF. For the VBHF, the total stroke 
was divided into 3 (L1, L2, and L3). Then, the total number of design variables is 7. The lower and upper bounds of 
the design variables are defined as follows: 

1 2 3

4

5 1

6 2

7 3

38 42.5[ ] 33 40[ ] 23 62[ ]
12 6[ ]

20 120[ ] 0 20[ ]
20 120[ ] 20 40[ ]
20 120[ ] 40 62[ ]

x mm x mm x mm
x rad

x kN for L mm
x kN for L mm
x kN for L mm

 (7) 

Fifteen initial sampling points are first generated with the LHD, and the pareto-frontier is identified. The error in 
the pareto-optimal solutions is adopted as the terminal criterion, which is set to 5.0 %. Various weights are 
assigned to the each objective function, and a total of 56 sampling points (simulation runs) are required to identify 
the pareto-frontier. All feasible sampling points in the objective space are shown in Fig.6. It can be seen that the 
pareto-frontier is disconnected. Furthermore, we can also see that the optimal blank shape and the deformed shape 
are not qualitatively different, but the same is not true in the case of the optimal VBHF. 
At point A, the initial BHF is low but gradually increases. This implies that the material readily flows into the die 
with the low BHF, but becomes hardened as the BHF increases. On the other hand, at point B, the material is 
hardened at the initial stage by the high BHF; with the lower BHF needing to be applied during the middle stage in 
order to prevent tearing. Finally, the material is again hardened by the high BHF at the final stage. 
Based on the numerical results, the experiments using a servo press (H1F200, Komatsu Industry Corp.) are carried 
out. The photos of punch and blank holder are shown in Fig. 7. Points A and B shown in Fig.6 is used for the 
experiments. An expert commented that the blank holder will be injured if the optimal blank obtained the 
numerical result is directly used in the experiment. Based on his suggestion, the blank shape considering the 
tolerance of 5 mm is used, which is shown in Fig. 7. The VBHF trajectory and the product through the experiments 
are shown in Figs. 8 and 9, respectively. It is found from the experimental results that no tearing/wrinkling can be 
observed. The validity of the proposed approach is confirmed through the numerical and experimental results. 
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6. Concluding Remarks 
This paper proposes a method to determine the optimal blank shape minimizing the earing and the optimal VBHF 
trajectory. The numerical result indicates that there are two kinds of VBHF trajectories for the successful sheet 
forming whereas the optimal blank is qualitatively same. Based on the numerical results, the experiments using 
servo press is carried out. No tearing/wrinkling can be observed through the experiments, and the validity of the 
proposed approach is then confirmed. 
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1. Abstract
Our paper adresses the noise reduction level in acoustic cavities subject to uncertain parameters. Such issue is

nowadays of paramount importance when treating inflight conditions of commercial planes or boats. The noise

level is represented by an energy density in the cavity. This objective function is provided through an energy

method called Simplified Energy Method. We use a transformation function mapping a given 3D cavity surface

on a 2D domain. The optimization process directly relies on this function and thus avoids remeshing of the initial

geometry. We consider geometrical and material uncertainties during the shape optimization process. Such uncer-

tainties are usually generated by involved manufacturing processes. Robust optimization is performed using the

non-dominated sorting genetic algorithm (NSGA-II) together with the Kriging surrogate model. We will show in

our presentation the influence of geometrical and material characteristics on the optimal solution.

2. Keywords: Shape optimization, Simplified energy method, Robust optimization, Kriging, Genetic algorithm .

3. Introduction
Reducing noise level in cavities enable human transport means to increase their attractively and wellness. From a

research point of view the noise level can be considered as a design objective, when proceeding with robust shape

optimization of such cavities. This noise level can be described with the Simplified Energy Method (here and after

referred as MES). This method has been fully validated for transient and stationary cases [1, 2], and for various

elastic media such as membranes and plates [3].

We already demonstrated that such method can be efficiently used in an iso-geometric like description of a cavity,

enabling efficient optimization loop scheme [4] We focus here on the robust shape optimization with regards to

geometrical and material uncertainties.

4. MES in curvilinear coordinates

4.1. Short description of the MES

Detailed description of the MES can be found in [5, 6, 7].

Φ

Wdir

Wrev Ω

∂Ω

P

Figure 1: MES formulation: direct and reverberated fields

Since W is a quadratic variable made of partial energy quantities corresponding to both direct and reverberated

fields (see Fig. 1), the superposition principle can be applied:

W =Wdir +Wrev. (1)

The energy density inside the cavity can then be expressed as a function of the primary sources and fictitious

sources (reverberated field sources) located on the boundaries:

1
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W (P) =
∫

∂Ω Φ(M)uPM ·n(M)G(M)d∂Ω+
∫

∂Ω σ(M)uPM ·n(M)G(M)d∂Ω, (2)

where P is a point inside the cavity where W is measured, M is a point of integration on the cavity surface,

G(r) = 1/(4r2Πc), uPM = PM/‖PM‖, n(M) the unit normal at the point M, Φ(M) are the acoustic boundary

sources and σ(M) are the fictitious boundary sources. We will use the term “boundary source“ to denote the

sources located on the cavity boundary (which may be due, for example, to external excitations).

For every point M0 of the boundary ∂Ω, σ(M0) depends on the absorption coefficient α , acoustic boundary sources

of the system Φ and fictitious boundary sources in all other points of ∂Ω:

σ(M0) = (1−α)
∫

∂Ω σ(M)uM0M ·n(M)G(M)d∂Ω
+(1−α)

∫
∂Ω Φ(M)uM0M ·n(M)G(M)d∂Ω.

(3)

Energy variables are given as a solution of a Fredholm equation, corresponding to an energy balance at the bound-

ary of the domain.

4.2. Curvilinear coordinates

We choose to described 3D cavity by parametrized functions of two variables. This approach is fully described in

[11]. Such approach enable the used of complex geometries to described the cavity, such as Bezier curves, Splines,

NURBS and so on. Moreover the discritization is conducted on a 2D domain, while design variables are coefficient

of transformation function thus avoiding the remitting during the optimization procedure. The matrix formulation

of our proposed approach is then

W = [S] σ +[R] Φ, (4)

where [S] and [R] are matrices corresponding to the discretization of the integral formulations of MES.

σ is expressed as follows:

σ =
(
[Id] − [α]

)
[T ] σ +

(
[Id] − [α]

)
[Q] Φ, (5)

where [Id] is the identity matrix and [α] the diagonal matrix of the absorption coefficients. Expressing σ as a

function of Φ gives:

σ =
(
[Id] − [T ]+ [α] [T ]

)−1(
[Id] − [α]

)
[Q] Φ. (6)

Using (4) and (6) we obtain:

W =
(
[R]+ [S]

(
[Id] − [T ]+ [α] [T ]

)−1(
[Id] − [α]

)
[Q]
)

Φ = [M]Φ. (7)

Such matrix formulation gives an advantage when computing the robustness towards material absorption coeffi-

cients. These coefficients are given in matrix [α], while other matrices depend only on geometrical properties

of the cavity. That is why calculation of W distribution for given geometry and α following normal law doesn’t

demand high computational cost. We have to obtain geometry matrices once and after calculate W for every α
changing just the values of [α] matrix.

6. Robustness problem
The quantity f to be minimized can be formulated as follows:

f = ‖W (xi,α)‖. (8)

After specifying the geometry of the cavity Ω with bounding surface ∂Ω and the function of transformation

r̄(ξ1,ξ2) = [x(ξ1,ξ2), y(ξ1,ξ2), z(ξ1,ξ2)] the geometrical design variables xi can be defined as characteristics

of the transformation function, i.e. the parameters of the functions x(ξ ), y(ξ ) and/or z(ξ ). Absorption coefficients

α are chosen to be material design variables. Geometric uncertainties due to cavity manufacturing process are

modeled by considering normally distributed design variables with the standard deviation σ1 around its nominal

value μ1, i.e., it is represented as a normal random variable N(μ1, σ2
1 ). Absorption coefficients are assigned to each

panel, and these values are assumed to be independent, represented as a normal random variables N(μ2, σ2
2 )

6.1. Optimization method

The first step samples values of objective function at several different values of design variables, and approximates

a response of objective function using the Kriging surrogate model [8]. It enables an optimizer to promptly esti-
mate objective function values at other points where the values of objective function are not given.

2
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The next step performs robust optimization using the non-dominated sorting genetic algorithm (NSGA)-II [9] di-

rectly on the Kriging surrogate model. The present robust optimization considers minimizing both the mean and

standard deviation of objective function against uncertainties.

6.2. Application exemple

We applied the robust optimization scheme to a parallelepiped acoustic cavity. It takes an area Ω = {x ∈ [0;4];y ∈
[0;2];z ∈ [0;2]} (Fig. 2). The cavity surface is considered to be assembled with six patches of Bezier surfaces.

Every patch is determined by (4 × 4) control vertices as presented in Fig. 2.

An acoustic source is applied on the surface (Fig. 2, marked with cross); the test point inside the cavity with

Figure 2: Cavity shape characteristics: control vertices distribution for the Bezier surface definition; position of

acoustic source (cross); control points chosen to be optimization variables (triangles)

coordinates (1.33; 0.6; 0.6) was chosen to compute energy density vector. Two control vertices were chosen to

be design parameters (Fig. 2, marked with triangles). The coordinate of these vertices perpendicular to the patch

plane are under consideration, so the optimization problem depends on two design variable x1 and x2 .

6.3. Results and discussion

Results of the optimization process performed by the NSGA-II algorithm are given in Fig. 3. In Fig. (3, a), we

can see these non-dominated solutions only appear for a few ranges of the criterion corresponding to the mean of

W, which shows the importance of the design: for example, two points are near from .0004 in term of standard

deviation of W ; nevertheless, the first one leads to W = 7 dB and the second one leads to W = 7.25 dB. If we want

to obtain this kind of value for the standard deviation, it is obvious that the first point should be chosen. Hence, the

optimization problem under geometric uncertainties appears to lead to several optimal solutions, and the choice of

the design should be done carefully to favor one criterion or the other. Fig. (3, b) is radically different since the

optimal solutions are the same for both W and its standard deviation. This means that the two considered criteria

are changing in the same direction: thus, it is not useful to consider the material uncertainties for this kind of

problem.

In

a) b)

Figure 3: Solutions searched by the robust optimization of cavity shape a) under geometric uncertainties b) under

material uncertainties

3

831

Leo
Rectangle



In Fig. 4 an optimal cavity shape for the non dominated solution is presented, where μ(F) = 7.02 dB; σ(F) =
0.00041; x1 = 10 m; x2 = 2.58 m. Changing of the color reflects the change in the coordinate normal to the

parallelepiped side. This solution corresponds to the compromise between mean and standard deviation of the

objective function toward geometrical uncertainties.

Figure 4: The resulting shape of the cavity after the optimization process. Compromise solution. μ(F) =
7.02 dB; σ(F) = 0.00041; x1 = 10 m; x2 = 2.58 m.

7. Conclusion
In this paper we introduced a robust shape optimization of cavities under vibroacoustic criteria and uncertain

parameters. We used MES approach combined with a projection function to reach, for any cavity described by

parametric functions, the energy density value W . We investigated the effect of geometrical as well as material

parameters uncertainties on such genetic algorithm (NSGA II) based optimization loop on a Kriging meta model

representing the first and second moment order of W with regard to uncertain parameters variation. We applied

our approach on an exemple and conclude that material uncertainties can be ignored in such optimization scheme,

but not geometrical uncertainties which lead to antagonist behavior of the average and standard deviation of the

objective function W .
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1. Abstract
Wind energy as one of the alternative energy sources is growing at a rapid rate for its property of renewability 
and abundancy in the current society. However, high power losses have been witnessed due to the intervention of 
air flow induced by the upstream wind turbines in the wind farm. Though researches show that the great power 
losses can be reduced through the optimal design of wind farm layout and control strategy, up to now only 
separate optimization of wind farm layout or control strategy, i.e., either the wind farm layout optimization with 
the constant wind turbine operations or the control optimization with the fixed wind turbine positions is reported 
in literatures. Meanwhile, even though it is convinced that the unrestricted coordinate method is superior to the 
grid based method for the wind farm layout optimization due to its flexibility to place wind turbines, the 
comparison between these two wind farm design methods is not made by considering the control optimization. 
Therefore, this paper aims to fill these research gaps. The combined wind farm layout plus control optimization 
is conducted in this paper for the first time, and the results of which are compared with the separate wind farm 
layout optimization and control optimization to demonstrate its effectiveness using both wind farm design 
methods. The comparative results show that the layout optimization is most inefficient in the optimal wind farm 
design. The control optimization has most stable performance almost without deviations for repeated 
calculations, and it is able to attain the best optimization results under 45 degree constant wind direction 
condition using the unrestricted coordinate method. Even though the combined layout plus control optimization 
is theoretically superior to the other optimizations which obtains the better results, it is apt to be stuck into the 
local optima while the global optima cannot be guaranteed with single calculation. 

2. Keywords:
Layout optimization; Control optimization; Combined layout plus control optimization; Grid based method; 
Unrestricted coordinate method 

3. Introduction 
The exploitation of wind energy transformed into the electric power is accomplished by wind turbines 

placed in clusters to take full advantage of the local wind resources. Compared to the single-placed wind turbine, 
the dense placement of wind turbines in close proximity results in the problem of the wind shadowing from the 
upstream turbines to the nearby downstream ones, which is known as the wake effects or wake interventions [1]. 
With the reduced wind power output of the downstream wind turbines, the total wind farm power production is 
decreased affecting the cost competitiveness of the wind power. To alleviate the wake effects in the wind farm, 
great efforts have been made to the wind farm optimization study. And the wind farm layout optimization, i.e., 
changing the wind turbine positions is one approach to achieve this, while the optimization of wind farm control 
strategy, i.e., changing the wind turbine operations is another approach. 

The study of wind farm layout optimization begins with Mosetti et al. [2], who applied the Genetic 
Algorithm (GA) to optimize the wind turbine positions for a square-shape wind farm in which the wind farm 
area is subdivided into 10 × 10 identical small square grids. The results indicate it has a great improvement for 
both total wind farm power production and the cost per unit power with the optimized wind farm layouts under 
all three tested wind conditions compare to the random wind farm layouts. Since then, large number of 
researches have been reported regarding the wind farm layout optimization problem through the employment of 
the other optimization algorithms or the improved wind farm models [3]. Nevertheless, it is found that they all 
share one same setting for the wind farm layout optimization studies in literatures, that is the uniform operation 
is applied for all wind turbines enabling every single wind turbine produces the maximum power for itself. 
However, researches show that the self-optimum wind farm control strategy is not the optimum choice for the 
total wind farm power output when taking the wake effect into account. 

The improvement of the wind farm performance achieved by the wind farm control optimization has also 
been witnessed by researches. A wind tunnel test with 8 rows of 3 turbines was done by Corten [4] under  
constant wind speed condition. With the optimized control strategy by pitching the first row of wind turbines to 
the maximum angle, the total wind farm power output increase of 4.6% is identified. The Energy Research 
Centre of the Netherlands (ECN) conducted a full scale field test which consists of five variable speed, pitch 
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controlled turbines of 2.5 MW and 80 m diameter in a row at a spacing of 3.8 RD. It was reported that the 
optimized WF power output can increase up to over 0.5% containing all wind directions [5]. And the big 
discrepancy of the power increase percentage between the wind tunnel test and the field test was claimed to be 
because the realistic wind conditions is quite different from the constant wind condition in the wind tunnel. 
Reference [6] was one of the few researches that computationally study the optimization of wind farm control 
strategy. In the research, four different wind farm cases were tested in the research and the performance increase 
was about 4% to 6% depending on the cases. However, all the above mentioned control optimization studies are 
proceed based on the fixed wind turbine positions while no combined optimization study of the wind farm layout 
plus control strategy is reported. 

Therefore, this paper aims to fill the research gaps. The combined layout plus control optimization is 
performed for the first time and the results are compared with other two optimizations which included the layout 
optimization and control optimization using the two wind farm design methods. The comparative results are able 
to shed light on the effectiveness of the different types of optimization studies as well as the two design methods. 

4. Description of the wind farm optimization problem 
For the study of the optimal design of wind farm, the main objective is to reduce the wake power losses 

caused by the wake interventions between wind turbines. To incorporate the wind farm wake interference into
optimization study, one of the critical procedures is to establish the wind turbine wake model using the explicit 
mathematical expressions. Among all the applied wake models, PARK model [7] is most widely used for the 
wind farm optimization due to its cost-effective property and accuracy compared to the real wind farm data.

Fig. 1 Diagram of PARK wake model [8] 

The PARK model assumes a linear expansion of the wake (see Fig. 1). Based on the theory of 
momentum conservation, the velocity in the wake of an upstream wind turbine at a distance of x towards the 
wind direction can be given by: 

2

0
0

0

1 2x

r
v v a

r x



  (1) 

where r0 is downstream rotor radius,  is the wake spreading coefficient, x is the proximity of the two wind 
turbines parallel to the wind direction, and a is axial induction denoting the percentage of wind speed decreasing 
from the free stream air to the air at the rotor place which is given by: 

0

0

v u
a

v
  (2) 

According to the actuator disk theory [9], the single wind turbine power efficiency CP and thrust 
efficiency CT are related to the axial induction as follows: 

2turbine
P

wind

T

4 (1 )

Thrust Force
4 (1 )

Dynamic Force

P
C a a

P

C a a









 (3) 
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According to the Eq (3), the theoretic maximum power efficiency can be achieved when the a is equal 
to 1/3, which is known as the Betz limit (CP equals 16/27). Therefore, for only one wind turbine it should be 
operated at the self-optimum point to produce the maximum wind power. For multiple wind turbines in a wind 
farm, the traditional control strategy is to ensure every single wind turbine produces the maximum wind power 
of its own with a equaling 1/3. However, the self-optimum control strategy is proved to be sub-optimum when 
considering the wake effect, which is explained numerically in reference [6]. For the situation of more than two 
wind turbines in a wind farm, the total power output increase achieved by adjusting the individual control 
strategy for different wind turbines has been witnessed through the numerical simulation and optimization [10, 
11]. However, these wind farm control optimization studies are all conducted based on the fixed wind turbine 
positions. And no study of the combined wind farm layout plus control optimizations has been reported in 
literatures, which is theoretically convinced to be able to find better results since both optimization variables are 
free to change. 

Based on the design method that is applied for the wind farm layout optimization studies, they can be 
divided into two categories: the grid based method and unrestricted coordinate method. For the grid based 
method, fist the wind farm area is divided into a large number of identical grids and only fixed position within 
the cell is allowed to place the wind turbine. By employing the grid based method for wind farm layout 
optimization, both the placement and the number of wind turbines can be optimized during the process. For the 
unrestricted coordinate method, the location of each wind turbine is represented by the X-Y Cartesian coordinates 
for the two dimension region. Compared to the counterpart method, the advantage of the unrestricted coordinate 
method is that it helps to find better optimization results with more flexible wind turbine placements. Even 
though the unrestricted coordinate method is reported to be more superior to the grid based method in literatures 
[12, 13], from the authors' point of view the conclusion lacks the powerful evidence due to two reasons. Firstly, 
the coarse grid density of 10 × 10 is applied for the grid based method when making comparison, while 
researches indicate that the better results can be obtained with finer grids [14]. Secondly, the comparison is made 
with fixed self-optimal control strategies for all wind turbines, and the results maybe different when 
incorporating the control optimization. Therefore, it is necessary to conduct the comparative study of the two 
wind farm design methods in a more comprehensive manner for both wind farm layout and control 
optimizations. 

The wind farm optimization problem studied in this paper is mathematically described in Fig. 2. The 
objective function of this study is the cost of per unit wind power and a traditional wind farm cost which is 
applied in reference [2] is employed, and the total wind farm power production is calculated as the summation of 
the individual wind turbine power output Pi. For the layout optimization study, the individual wind turbine 
power is simply related to the incoming wind speed which is calculated based on the wake deficit model 
described above. For the control optimization as well as the combined optimization, however, it is dependent on 
both the incoming wind speed and selection of axial induction value a. The optimization is carried out under the 
proximity constraint which ensures the minimum distance (chosen to be 5 wind turbine diameters in the study) 
between any two wind turbines to prevent from the damage. And the expressions of the proximity constraint for 
the two wind farm design methods are different. The wind turbine position using the grid based method is 
represented by the row number (m) and column number (n), while it is represented by the x and y coordinates for 
the unrestricted coordinate method. 

  

20.00174

1

3

2 3

2

Objective function: 

2 1
CoE ( ) /

3 3

0.3 (for layout optimization)
where,

2.032 (1 ) (for control optimization and the combined optimization)

Constrained by: 

2.5 ( ( ) ( ) 2.5

N
N

i
i

i i

i i

N e P

P v

P a a v

D m j m i D



 × 





   

   

N-1 N
2

1 1

N-1 N
2 2

1 1

( ( ) ( ) 5 (for grid based method)

( ( ) ( ) ( ( ) ( ) 5 (for unrestricted coordinate method)

i j i

i j i

n j n i D

x j x i y j y i D

  

  



 

Fig. 2 Mathematical description of the wind farm optimization problem for different kinds of 
optimizations and different wind farm design methods 
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5. Results and Discussion 
In order to investigate the relationship between different optimizations using the two wind farm design 

methods, C++ codes tailored for the different optimization studies implementing the Genetic Algorithm (GA) 
tool are developed for the two cases. They share the same wind farm square shape of 2 km × 2 km dimensions 
with flat terrain, and the wind conditions for the two cases are shown as follows:

1) The constant wind speed of 12 m/s and constant wind direction of 0 degree (from the east to the west). 
2) The constant wind speed of 12 m/s and constant wind direction of 45 degree (anticlockwise rotation). 

5.1 0 degree wind direction case 
The three different types of wind farm optimization study are performed under the 0 degree constant 

wind condition in the first place. Fig. 3 (a) reports the optimization fitness values using the grid based wind farm 
design method while the deviations of the repeated optimization results are indicated in the bar chart. It is 
apparent that the wind farm layout optimization yields the worst fitness value, and the combined wind farm 
layout plus control optimization yields the best results. For both of the two optimizations, large deviations of the 
repeated optimization results are detected implying that the results are highly dependent on the repeated 
calculations and the best optimization results cannot be ensured with single run. For the control optimization, 
however, even though the results are sub-optimal, they are extremely stable for different calculations with 
approximately no deviations. The fitness results of the three different optimizations using the unrestricted 
coordinate method are reported in Fig. 3 (b). It should be noted that the optimal number of turbines obtained 
from the grid based method optimization is used as the midpoint value of the X axis (number of wind turbines) in 
the plotting of the unrestricted coordinate method optimization results. Same as the grid based method result, it 
can be seen that the layout optimization yields the worst results as well for the unrestricted coordinate method. 
And the best results are obtained for the combined layout plus control optimization. For both the two 
optimizations, large deviations are witnessed while the deviation of the control optimization is negligible. By 
comparing the fitness value results of the two design methods, it is obvious that the better results are attained for 
the unrestricted coordinate method (approx. 1.36 × 10-3) in comparison to the grid based method (approx. 1.38 ×
10-3).

Fig. 3 Fitness value results for Layout optimization, control optimization and layout plus control optimization 
with (a) the grid based method and (b) the unrestricted coordinate method under 0 degree wind direction 

Fig. 4 (a) reports the distribution of the wind turbine axial induction values according to the 
optimization results using the grid based method, and Fig. 4 (b) reports the distribution of the wind turbine axial 
induction values according to the optimization results using the unrestricted coordinate method. For both figures, 
the optimal wind farm layout is also indicated with circles denoting the wind turbines. As can be seen, most of 
the wind turbines are distributed along the wind farm two sides perpendicular to the wind direction. As a result, 
the wake interventions between wind turbines can be alleviated with enlarged distances. The leeward 
(downstream) wind turbines have the largest axial induction values of Betz limit 1/3, since there are no other 
turbines affected by them and they adopts the self-optimum control strategy to produce the maximum wind 
power of their own. The windward (upstream) turbines have smaller axial induction values ranging from 0.28 to 
0.31 according to the optimization results using the grid based method, and ranging from 0.29 to 0.32 according 
to the optimization results using the unrestricted coordinate method. For the two design methods, the axial 
induction values of the windward turbines for the optimization using the unrestricted coordinate method are 
relatively bigger than that using the grid based method.
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Fig. 4 Optimal wind turbine position and the optimized axial induction values with (a) the grid based method and 
(b) the unrestricted coordinate method under 0 degree wind direction. And the wind turbines are denoted with 

painted circles. 

5.2 45 degree wind direction case 
In this section, the different types of wind farm optimization study are performed under the constant 45 

degree wind direction condition. Fig. 5 (a) reports the fitness results using the grid based wind farm design 
method while the deviations of the repeated optimization results are indicated. Like the results of the 0 degree 
wind direction case, the wind farm layout optimization yields the worst fitness value as well in this case, and the 
combined wind farm layout plus control optimization yields the best results. For both of the two optimizations, 
large deviations of the repeated optimization results are detected. For the control optimization, however, the 
deviations of the fitness are negligible indicating the stable optimization results for the repeated calculations. 
Then, the fitness results of the three different optimizations using the unrestricted coordinate method are reported 
in Fig. 5 (b). Like the above 0 degree wind direction case, the optimal number of turbines obtained from the grid 
based method optimizations is used as the midpoint value of the X axis (number of wind turbines) in the plotting 
of the unrestricted coordinate method optimization results. It can be seen that the layout optimization yields the 
worst results using the unrestricted coordinate method which has the same conclusion as the above case. 
Nonetheless, for all different number of wind turbines the control optimization achieves much better results than 
the combined layout plus control optimization in the 45 degree wind direction case, and it is because the 
combined optimization is stuck into the local minima. 

Fig. 5 Fitness value results for Layout optimization, control optimization and layout plus control optimization 
with (a) the grid based method and (b) the unrestricted coordinate method under45 degree wind direction 

In the same manner as above case, the optimization results of the axial induction distribution under 45 
degree wind direction are reported as well using both the grid based and unrestricted wind farm design methods 
(see Fig. 6 (a) and (b)). Unlike optimal wind farm layout under 0 degree wind direction, most of the wind turbine 
are scattered along all four sides of the wind farm under 45 degree wind direction. The leeward wind turbines are 
operated at the self-optimum point with 1/3 axial induction value while the windward turbines are operated with 
the axial induction value ranging from 0.29 to 0.31 for the optimization using both wind farm design methods. 
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Fig. 6 Optimal wind turbine position and the optimized axial induction values with (a) the grid based method and 
(b) the unrestricted coordinate method under 45 degree wind direction. And the wind turbines are denoted with 

painted circles. 

6. Conclusions 
The topic of the optimal wind farm design considering both the wind turbine placements and controls is 

investigated in the current paper. Among which, the combined wind farm layout plus control optimization study 
is carried out for the first time The comparative results show that the layout optimization is most inefficient in 
the optimal design of the wind farm obtaining the worst optimization results with large deviations for repeated 
calculations. The control optimization has most stable performance and it finds the best optimization results 
under 45 degree wind direction condition using the unrestricted coordinate method. In comparison, even though 
the combined layout plus control optimization is theoretically superior to the others, it is dependent on the 
studied wind conditions which tends to be stuck into the local minima. 
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1. Abstract  
Small changes in the structural dynamic properties of wind turbine components can have a large influence on the 
ultimate and fatigue loads they experience. This is due to strong coupling between the aerodynamic (aero), 
control-system (servo) and structural (elastic) behaviours of the wind turbine system. Therefore attempts to design 
these structures using algorithm-driven numerical parameter studies are more likely to lead to feasible designs 
when the load calculation is integrated into the optimization problem formulation. Industry-standard 
aero-servo-elastic (ASE) simulation codes are, however, too computationally expensive to iterate in the constraint 
evaluation of a highly-dimensional design optimization problem. More efficient load simulation methods are 
needed to make optimization algorithms practical for the structural design of major wind turbine components. 
A reduced-fidelity ultimate and fatigue load approximation method is proposed as a means to conduct sizing 
optimization for lightweight structures. The new method, termed ROSS for reduced order load simulation 
surrogate, leverages FEM substructuring operations and surrogate modelling to reduce the degrees of freedom in 
the load simulation. This speeds computation and reduces the dimensionality of the design space (to select terms in 
the condensed mass and stiffness matrices). In the first step, all design load cases are simulated for each sample 
point in a design of experiments (DOE) on the reduced design space. Then ultimate loads and damage equivalent 
fatigue loads (DEL) are calculated and a metamodel is calibrated to approximate the DEL for arbitrary mass and 
stiffness matrices. Finally, the constraints can be analysed for the original set of design variables by a sequence of 
substructuring, metamodel evaluation and static FEM analysis using the approximated ultimate loads and DEL. 
The additional FEM calculations and metamodel evaluations are orders of magnitude faster than the many ASE 
time series simulations which they replace. This enables optimization algorithms to design lightweight (flexible) 
turbine structures with a highly dimensional design space exhibiting a large range of natural frequencies. Uses for 
ROSS extend beyond constraint evaluation for frame optimization problems; the method can also be utilized to 
replace the static load assumption in topology optimization schemes. 
2. Keywords: approximation, sizing, frame design, reduced order simulation surrogate (ROSS) 
  
3. Introduction 
The Intergovernmental Panel on Climate Change recently ranked onshore wind as having the lowest lifecycle 
equivalent CO2 emissions per kWh of all commercially-available electricity generation technologies. In many 
scenarios, it also has the lowest cost per kWh [1]. Structural optimization research is a priority for the wind 
industry since lightweight structures improve both the numerator and denominator of these key selling points 
which have driven the growth of wind power.  The steel and concrete mass in the tower and foundation are the 
primary sources of emissions [2] and costs related to wind energy. Lighter structures enable more cost-effective 
manufacturing, logistics and erection of taller towers supporting larger rotors (which increase energy production 
and amortize fixed costs) [3]. A 2014 review of optimization methods applied to wind turbine structures references 
130 scientific papers, 90 % of them published since the year 2000, demonstrating the emergence and rapid 
development in this research niche [4]. The authors identify computationally-expensive simulations as the main 
obstacle preventing search algorithms and automated design of experiments from replacing “manual optimization” 
in selecting the design parameters of wind turbine structures. 
 
3.1 Load Calculation 
The structural finite element models used in wind turbine simulation models are generally very simple. Coarsely 
discretized beam models with as few as 28 degrees of freedom (DOF) are used in industry to model the entire 
rotor-nacelle-tower-foundation system [5]. The computational expense involved in load simulation is driven by the 
need to increment the states of the aerodynamic and controller models together with the structural response in 
small time steps. This co-simulation of the entire turbine system operating state in the time domain is necessary to 
account for the significant non-linear coupling effects between the wind field, rotor aerodynamics, structural 
kinematics and control systems (e.g. active blade pitch, generator torque, nacelle yaw control, etc.). This requires 
numerous ASE time series with different initial conditions and simulated events (including emergency stops and 
system failures). In this way, all possible scenarios which could generate an ultimate load are simulated. 
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Additionally, accurate calculation of the fatigue load necessitates that all normal operating conditions are also 
included in the simulation. Thus any change in a wind turbine’s structural design that affects its dynamic response 
(i.e. changes in stiffness, mass and damping matrices) will have a unique influence on each time series history and 
an unpredictable influence on the ultimate and fatigue loads [6]. This necessitates that new structural designs can 
only be analysed in conjunction with new ASE simulations (typically using proprietary ASE codes which contain 
aerodynamic and controller parameters closely guarded by wind turbine manufactures). A notable consequence is 
that wind turbine structures must be designed together with the wind turbine system. It is therefore very difficult to 
change the rotor, tower or foundation design for an existing turbine without working together with a manufacturer 
to simulate the loads; accommodating modifications to other components or systems are usually needed 
(especially controller modifications).   
 
3.2 Existing Methods to Accelerate Load Simulation 
As it is impractical to iterate an expensive simulation for each point sampled in a design space, all previous efforts 
to apply optimization algorithms to wind turbine structures have sought to avoid or limit the number of ASE time 
series used to evaluate structural design candidates. The most common approach is to assume fixed ultimate and 
fatigue loads if the natural frequency for the candidate design remains within a given tolerance from the design 
used to calculate the applied loads. This engineering assumption is permissible under some wind turbine design 
certification codes. (A natural frequency calculation tolerance of 5 % is allowed in the GL certification guideline 
for towers [7].) This method, depicted in Fig.(1), has been applied by Yoshida at Fuji Heavy Industries in 2006 [8] 
and the wind turbine design consultancy Windrad in 2014 [9] to optimize the thickness and diameter distributions 
of tubular steel towers. The computational savings of this technique are, however, limited to applications where the 
design variables have a small effect on the natural frequency and mode shapes (i.e. fine-tuning of a design using a 
small range of inputs). 
Alternatively, Long, Moe and Fischer recently demonstrated in 2012 that a frequency domain analysis technique 
can be applied to estimate the ultimate and fatigue loads for design spaces with a wide range of structural dynamic 
responses [10]. This method cannot, however, model time history-dependant ASE effects which have a large 
influence on ultimate and fatigue loads, such as controller response to gust disturbances. Other published methods 
include the use of readily-computable proxy data to steer search algorithms toward designs with favourable 
structural dynamic response. A recent example is the use of tower top deflection under static load as a measure of 
fatigue damage in the sizing optimization of a tower and foundation by Nicholson in 2013 [11]. 
 

 
 

Figure 1: (left)   Optimization via static loads assumption for structural constraint analysis 
Figure 2: (right)  Proposed reduced order simulation surrogate (ROSS) method 
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4. Proposed Aero-Servo-Elastic Surrogate Optimization Method 
The present work introduces a new approach that models loads independently for each design point using a 
surrogate model. The metamodel is calibrated from a DOE of industry-standard aero-servo-elastic time series 
simulations. The ultimate and fatigue load responses are approximated for select parameters in the generalized 
mass and stiffness matrices, which are linked to the original design variables using an intermediate substructuring 
operation. 
 
4.1 Process Flow 
The general process flow for using ROSS to accelerate constraint calculations for structural component design is 
depicted in Fig.(2). To initialize the ROSS approximation the following procedure is proposed: 
 

(0) Perform “SubDOE” using the design variables (and their bounds) as inputs and the reduced stiffness and 
mass matrices as outputs. (Optional.) A 2-level fractional-factorial experiment such as an orthogonal 
array is recommended if the number of parameters is very large. 

(1) Perform “SimDOE” using select terms in the mass and stiffness matrices as inputs for the 
aero-servo-elastic time series simulation and the post-processed ultimate and fatigue loads as outputs. 
Use results from (0), if available, to eliminate unnecessary factors and establish bounds for the 
intermediate variables. 

(2) Fit “ROSS” approximation to the SimDOE. 
(3) Integrate load simulation approximation into the constraint evaluation of the design optimization process. 

 
The dotted lines shown in the process flow represent alternative pathways that may further accelerate a ROSS 
optimization. Depending upon the computational expense involved in the substructuring and constraint evaluation, 
it may be beneficial to calibrate additional approximations for these processes. Particularly, the SubDOE data from 
step (0) can be leveraged to build an approximation without any additional (sampling) computation, provided the 
error is acceptable. 
 
4.2 Reduced Order Structural Model 
Modal condensation is commonly applied to reduce the degrees of freedom in ASE wind turbine simulation codes, 
which are based on the general equation of motion for linear dynamic systems, Eq.(1), 
 

 (1) 
 

where  
 

: are reduced mass, stiffness and damping matrices of the structure,   
:  is a vector of external time- and position dependent forces acting on the reduced structure and 
:  is a time-dependant displacement vector of the nodal positions of the reduced structure. 

 
A practical example of this so-called substructuring process is the common practice of using static condensation 
and Guyan reduction to generate reduced mass and stiffness matrices for an offshore foundation [5, 12]. Although 
the designer may have a very large set of design variables to select (e.g. cross section dimensions, frame element 
endpoints, etc.), the detailed FEM model might be reduced to a single node with 6 degrees of freedom (or less) so 
that the loads can be calculated with the ASE code. If off-diagonal terms of the reduced mass and stiffness are 
sufficiently small, orthogonality conditions can be assumed and the mass and stiffness matrices can be further 
reduced to 6 terms each. Thus regardless of the number of design parameters and their values, only 12 parameters 
must be passed to the industry-standard ASE simulation in order to evaluate a design alternative for this example. 
(The damping matrix can be calculated from the mass and stiffness matrices using the Rayleigh method [13]). In 
fact, it is sometimes possible to reduce this number of “ASE matrix parameters” to 8 due to symmetry (as is the 
case for a rotationally-symmetric foundation or a tripod structure) or even less if the range of values for a specific 
term in the reduced mass and stiffness terms is small and therefore has a negligible influence on the ASE load 
calculation. 
The proposed ROSS method simply exploits this existing reduction method built into the ASE by performing the 
SimDOE on the few significant and unique degrees of freedom in the ASE simulation, rather than the larger set of 
design variables.  This saves computational expense when the structural design parameter count is large, as the 
dimensionality of the SimDOE is comparatively smaller.  
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4.3 Parameter Bounds for ASE Simulation 
The minimum and maximum values for the studied terms in the reduced mass and stiffness matrices have a strong 
influence on the performance of the ROSS method. Ideally, these limits are calibrated to the most extreme possible 
output values for the substructuring process considering the given bounds of the structural design variables. If the 
bounds are too wide, the density of sample points in the design space is reduced (costing surrogate accuracy) and 
the computational expense must be increased to compensate. If the bounds are chosen too narrow, the ASE loads 
approximation will be invalid and the optimization is likely to perform poorly and suggest many infeasible 
designs. 
 
4.4 Constraint Calculation using ASE-calibrated Surrogate 
The ultimate and fatigue loads estimated by the ASE surrogate require post-processing in order to calculate the 
constraints included in the design optimization. The structural constraints typically include verification of strength, 
stability, extreme deformation and fatigue. These analyses are possible by statically applying the ultimate loads 
and fatigue DEL using nonlinear static FEM. Although such FEM calculations are orders of magnitude faster than 
the ASE, it is likely that FEM is still too slow to search the design space unless the number of parameters is very 
low. Therefore metamodel optimizations methods are likely necessary.  
Examples of surrogate-based structural optimization using static load under stress constraints can be referenced 
from Rudolf et al. [14] and the aforementioned work by Nicholson [11]. Some structures, such as tubular towers, 
can be verified against all constraints using simple engineering equations in place of FEM. This negates the need to 
use a surrogate (other than the ASE) to search the design space (and avoids the error associated with the additional 
approximation). 
 
4.5 Limitations and Assumptions of ROSS Method 
The modal reduction schemes used by most ASE turbine simulation codes assume linear-elastic behaviour of the 
substructure elements. Effects such as the catenary sag in guyed supported structures and nonlinear soil stiffness 
cannot be modelled within (single node) condensed matrices and require additional degrees of freedom. As the 
number of active ASE matrix parameters increases, the computational expense associated with the use of these 
terms for the SimDOE rapidly increases. In these cases it may be more beneficial to perform a surrogate model 
optimization using the original structural design variables for the SimDOE rather than a potentially larger set of 
ASE matrix parameters, especially if this will reduce the dimensionality of the ASE experiment.  
Additional limitations are associated with the excitement and damping of higher-order modes in the reduced 
structure. The higher-order mode shapes and frequencies of the substructure are omitted from the ASE model. 
Therefore the resonance of individual members (if any) in the substructure is not accounted for in the load 
calculations. This should be considered if applying ROSS to study a truss structure. Similarly, geometry-specific 
external forces (such as aerodynamic damping, hydrodynamic loading and wind loading) are held constant under 
the ROSS method despite them being a function of the structural design. Regardless of these shortcomings it is 
important to remember that ROSS is a design tool – not a verification tool – and the method is an improvement 
versus optimization under a static load assumption. 
 
5. Conclusion, Recommendations and Future Work 
This work addresses a major obstacle to the widespread adoption of computer-aided structural design optimization 
in the wind industry by introducing a faster alternative to time series simulation that is also more accurate than 
assuming static loads. The proposed decoupling of the design variables and load simulation suggested by the 
ROSS method takes advantage of the existing substructuring operations used in modal ASE codes. This enables 
the loads for a very large number of design variables to be approximated from a dataset calibrated from a reduced 
set of parameters. In addition, the same ROSS model can be reused to study new design problems with unrelated 
variables. For example, only one ASE matrix parameter DOE could be used in the design optimization of both an 
offshore tripod foundation and a jacket foundation. Main limitations of the ROSS method are associated with 
having too few nodes in the AES simulation (i.e. the excitement and damping of higher-order modes, modelling of 
structural nonlinearities and modelling of external forces). Attempting to resolve these issues by using larger 
substructures defeats the purpose of ROSS if the number of ASE matrix parameters exceeds the number of design 
variables. 
Applications for the ROSS method extend beyond sizing optimization and frame design. Cast components such as 
slab foundations, rotor hubs and some nacelle structures might use ROSS within topology optimization schemes to 
update their boundary conditions and penalizations functions between iterations. In this way the changing mass 
and stiffness matrix terms of the lighter and more flexible structures are accounted for in the loads and beneficial 
dynamic characteristics can be used to arrive at lighter designs. The published method remains in development and 
is currently being applied to optimize the design of a cable-truss tower for a 2.5 MW commercial wind turbine 
prototype with 140 m hub height. 
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1. Abstract
The existing direct sensitivity analysis of optimal structural vibration control based on Lyapunov’s second method 
is computationally expensive when applied to finite element models with a large number of degree-of-freedom and 
design variables. A new adjoint sensitivity analysis method is proposed in this paper. Using the new method the 
sensitivity of the performance index, a time integral of a quadratic function of state variables, with respect to all 
design variables is calculated by solving two Lyapunov matrix equations. Two numerical examples demonstrate 
the accuracy and efficiency of the proposed method. Finally, we use the adjoint sensitivity analysis scheme to 
solve a topology optimization problem. 
2. Keywords: Adjoint method, sensitivity analysis, topology optimization 

3. Introduction 
In time domain, there is a classic problem formulation of passive structural vibration control that deals with the 
dynamic system disturbed by initial conditions. The objective is to find design parameters of the damped vibration 
system that minimize the performance index in the form of time integral of the quadratic function of state variables 
(displacement and velocities, e.g. see Eq.(5)). This performance index can be evaluated by Lyapunov’s second 
method [1]. 
Based on the Lyapunov equation, the evaluation of performance indices are simplified into matrix quadratic forms 
and do not require the time domain integration. Parameter optimization problems with a quadratic performance 
index have been solved by this method [2~8]. Wang et al. [9] applied the Lyapunov equation to solve the transient 
response optimization problem of linear vibrating systems excited by initial conditions. In their work, the 
Lyapunov equation was expanded to a set of linear equation and direct sensitivity was carried out by use of the 
same system of linear equation. The computational effectiveness of the method is illustrated by applying it to the 
classical vibration absorber and to a cantilever beam carrying an absorber at its midpoint. Du [10] applied the 
Lyapunov equation to obtain the optimum configuration of dynamic vibration absorber (i.e., DVA) attached to an 
undamped or damped primary structure. The Lyapunov equation is also used in other fields of optimal design.  
In this paper, we consider one case of passive control optimization problem, that is, to minimize an integrated 
quadratic performance measure for damped vibrating structures subjected to initial conditions. The goal of this 
paper is to present an adjoint sensitivity analysis method considering the above mentioned objective function 
based on Lyapunov’s second function. The results indicate the potential of application of the proposed method to 
topology optimization under the special time domain criterion. 

4. Application of Lyapunov’s second method to optimize transient response of mechanical systems 
Consider a viscously damped linear vibration system governed by the equation: 

0KuuCuM                                                                      (1) 
where M(N N) is the mass matrix, C(N N) is the damping matrix, K(N N) is the stiffness matrix, and u(N 1) is 
displacement vector. N is the structural degree of freedoms.  
Assume the system is excited by initial displacements or velocities. The design problem is to find in M, K and C
matrices to minimize a performance matrix in the form 

 
T

tqJ
0

d,uu                                                                       (2) 

where,   uQuuQu  uuuuq TT,  is a quadratic function of u  and u . Transient dynamic responses have to be 
performed to evaluate the objective function. Direct or adjoint methods can be applied to evaluate the response 
sensitivity required for evaluation sensitivity of the performance. Alternative, if we replace the upper bound of 
integration to infinite, we can use Lyapunov’s second method to evaluate the performance without performing 
transient dynamic response analysis. 
To apply Lyapunov’s second method to this system, it is necessary to rewrite Eq.(1) in the state space form 
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AXX                                                                             (3) 
Where 


CMKM

IO
A 11 

u
u

X


                                                  (4) 

The matrix A is (2N 2N). The vector X is (2N 1). Structural design parameters such as mass density, damping 
ratio and spring stiffness are contained in the matrix A. The optimization problem is to choose these parameters to 
minimize the performance measure J defined by 

tJ d
0

T XQX                                                                    (5) 

for a given initial excitation X(0). In Eq.(5), Q(2N 2N) is a positive semi-definite symmetric weighting matrix 
and t denotes time. According to Lyapunov theory of stability, for an asymptotically stable system, there exist a 
symmetric positive semi-definite matrix P(2N 2N) satisfying

QPAPA T                                                                   (6) 
Eq.(6) is the well-known Lyapunov equation. Based on the Lyapunov’s second equation, the Eq.(5) can be further 
simplified as 

   00 T PXXJ                                                                    (7) 

That is to say, to minimize J in Eq.(5) is equivalent to minimize    00 T PXX , where  0X is the initial state 
vector and the unknown symmetric matrix P can be obtained by solving Eq.(6).

5. Sensitivity analysis scheme 
To apply gradient-based optimization method to solve the above optimization problem, sensitivity (gradient) of the 
objective functions with respect to the design variables is needed. The adjoint method will be developed in this 
paper. The new method just needs to solve the Lyapunov function twice to obtain the sensitivities with respect to 
all the design variables. 
For ease of presentation of the new sensitivity analysis scheme, we adopt Du’s approach of using Kronecker 
product and column expansion to expand the Lyapunov equation as a system of linear equation. The column 
expansion of matrix V is defined as a vector that stacks all columns of this V matrix. For example, for the 3 3
matrix V



333231

232221

131211

VVV
VVV
VVV

V                                                                   (8) 

the column expansion cs(V) of V is 

   T333231232221131211 VVVVVVVVVcs  VV                          (9) 

Note that cs(V) is a 9 1 vector. The operator cs(*) refers to the expansion operation. For an N-dof system, using 
the Kronecker product, (6) can be written as 

QPG                                                                         (10) 

where  PP cs ,  QQ cs  and the matrix G can be obtained from the matrix A by Kronecker product. That 
is

 TT AEEAG                                                             (11) 
and E(2N 2N) is an identity matrix with the same size of A. Now, by direct calculation, the objective function in 
Eq.(7) can be written as 

PSTJ                                                                             (12) 
where 

 SS cs    T00 XXS                                                        (13) 

S also is a positive semi-definite symmetric matrix as matrix Q. From the Eq.(10), the term
kd

P
can be obtained 

by
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kkk ddd

QPGGP 1                                                           (14) 

Thus sensitivity can be expressed as 

    
kkkk dddd

J QPGGSXPX 1TT 00                                       (15) 

The right hand of Eq.(15) can be rewritten as 

    k

kk dd
J DXPX TT 00                                                        (16) 

where 
1TT  GS                                                                         (17) 

 PGQD
kk

k

dd
                                                                 (18) 

Note that  and kD  are the column expansion of matrices  and kD , respectively. 

0T  SAA                                                                    (19) 
, the adjoint matrix, can be obtained by solving the above Lyapunov matrix equation. kD can be also computed 

by

kkk

k

ddd


APPAQD
T

                                                         (20) 

Finally, the sensitivity of the objective function with respect to the design variable can be expressed as 

 


N

i

N

j

k
ijij

kkk

D
ddd

J 2

1

2

1

T
T )0()0()0()0( XPXPXX

                             (21) 

For the case X(0) independent of design variables, the Eq.(21) can simplified as 

 


N

i

N

j
ijij

k

D
d
J 2

1

2

1
                                                                 (22) 

6. Numerical example 
Two examples are presented in this section. The first example is used to demonstrate the accuracy and efficiency of 
the proposed methods. The optimal support location is solved as a topology optimization problem in the second 
example.

6.1. Example 1 
In this example, we consider a clamped-free beam (3m 0.02m 0.02m) attached with several identical damped 
springs (along Y direction). The beam material is linear elastic with the elastic modulus 2.1 1011Pa and mass 
density 7850Kg/m3. The spring stiffness ks is to be determined (N/m), and the damping coefficient is 103N·s/m. 
Figure 1 shows the beam model used in this example. Specially, the beam is uniformly meshed into 50 2-node 
beam elements. Each node has 2 DOFs (lateral displacement and rotation about Z-axis). Five equally spaced 
damped spring supports are considered. The initial displacements and velocities of all nodes are zero and 10m/s 
respectively. The stiffness k of each spring is chosen as the design variable. Thus, there are 5 design variables. 
Firstly, we compare the sensitivity results from three methods, central difference method, adjoint method and 
direct method to validate the proposed adjoint method.  

3m

0.6m

Y

X

Figure 1: The beam model with 5 damped springs 
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The objective function is 




R

i
i dtyJ

1
0

2                                                                        (23) 

where yi is the Y-direction displacement of the ith node of the beam, R is the total number of the free nodes of the 
beam.  
To study the effect of step size in central difference analysis, we calculate the approximation of sensitivity of 
spring stiffness of the spring at right hand of beam at ks=105N/m for three different step sizes. The results are 
shown in table 1. We choose ks=100N/m for further study in this example. 

Table 1: Sensitivity results at ks=1.0 105N/m from different step sizes 

Step size 104 103 102

Sensitivity result -2.4858 10-11 -2.4715 10-11 -2.4714 10-11

The sensitivity results of the objective function with respect to ks of each spring at ks=1.0 105N/m from central 
difference method, adjoint method and direct method are shown in figure 2 and are represented by the black 
crosses, red squares and blue rounds, respectively. The results show that the adjoint method obtains identical 
results with the central difference method and direct method.

1 2 3 4 5

2

1.6

1.2

0.8

0.4

0
x 10 10

Figure 2: Sensitivity results of the stiffness k of each spring from three methods 

In this paper, the CPU time results are the average values of CPU time of 10 repeated analyses. The computer used 
in this paper is i7-3770 3.4GHz, Windows 7. 
Now, we compare the CPU time of direct method and adjoint method. The CPU time results of these two methods 
are summarized in table 2. The results show that total CPU time of the sensitivity analysis process of adjoint 
method is less than direct method, especially when the problem has large number of DOFs. TA is the CPU time of 
the sensitivity analysis process of adjoint method, and TD is the CPU time of the sensitivity analysis process of 
direct method. 

Table 2: CPU time of two methods vs. number of DOFs in the model 

Number of 
DOFs

CPU time (s) TA/TDTA(adjoint) TD(direct)
100 0.091 0.232 39.34% 
600 22.095 61.802 35.75% 

6.2. Example 2 
Topology optimization problems always have large numbers of design parameters. We construct a topology 
optimization problem to test the new sensitivity analysis methods. In this example, we consider a 1m 1m 0.01m
plate attached with several identical damped springs(ks=106N/m, cs=100N·s/m). One edge of the plate is clamped 
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and other three edges are free. The material of the plate is linear elastic with elastic modulus 2.1 1011Pa, Poisson 
ratio 0.3, and mass density 7850Kg/m3. The initial velocity of Z direction of all the free nodes of plate is 10m/s. 
The design problem is to decide the optimized location of H damped springs to minimize a criterion defined below. 
We formulate this problem as a topology optimization problem. This is achieved by introducing an artificial 
density variable to describe the spatial distribution of the damped springs and use interpolation model of SIMP to 
obtain 0-1 design. Specifically, an identical potential damped spring (along Z direction) is placed between every 
free nodes and the ground.  
Set a virtual density i  to every spring as the design variable. i  is a continuous variable, and  1,mini .

We introduce an artificial relation between density ( i ) and the parameters of the damped springs. 

0KK l
ii  , 0CC l

ii                                                                (24) 
where l is the penalty parameter. In this example, l is chosen as 1.2. The analysis model is shown in Figure 3, where 
the purple lines are the dumped springs and the blue square elements are the 4-node square plate elements (shell63 
in Ansys). Each node of the element has 3 DOFs, zu , x  and y . The element size of the plate is 0.1m (there are 
110 free nodes). The analysis model has 330 DOFs and 110 design parameters. The topology optimization 
problem can be expressed as 




110

1
0

2min
i

i dtzJ

Hconst
M

i
i 

1

.                                                                        (25) 

10 min i
where H specifies the material volume available for the damped springs. Here we assume each spring, if any, uses 
material volume 1, H will be the number of damped springs in the final optimum design. zi is the Z-direction 
displacement of the ith node of the plate. The model has 110 free nodes, so the objective function concerns the 
displacements of all the free nodes. It should be noted this example mainly serves to compare different methods of 
sensitivity analysis through solving the topology optimization problem described by Eq.(25).  

Figure 3: The analysis model in topology optimization 

The CPU time of solving processes of adjoint method and direct method is summarized in table 3. The computing 
time of adjoint method is much shorter than the computing time of direct method. 

Table 3: CPU time of sensitivity analysis of two methods 

 Adjoint Direct 
CPU time (s) 10.575 181.130 

Finally, we use above mentioned four sensitivity analysis schemes to solve the topology optimization described in 
Eq.(25). H is set to 2. Figure 4 shows that optimization using different sensitivity analysis methods have identical 
iteration histories and obtain same optimized designs. The CPU time of solving processes of topology optimization 
problem using different sensitivity analysis methods is summarized in table 4. The optimization process using 
adjoint method just takes about 10 minutes which is far less than the CPU time of other one. 
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Figure 4: Iteration histories of the objective function of optimization process: (a) Ajoint method; (b) Direct method  

Table 4: CPU time of optimization processes using different sensitivity analysis methods 

 AVMF DVMF 
CPU time (s) 636.852 10886.824 
   

7. Conclusion 
A new adjoint sensitivity analysis method for the integral square performance index is proposed in this paper. The 
new approach requires the solutions of two Lyapunov equations only, one for the performance index and one for 
the adjoint vector. In contrast, direct sensitivity analysis requires the solution of a Lyapunov equation for each 
design variable. This improvement in computational efficiency 
makes the approach applicable to optimal design problem with a large number design variable. The accuracy and 
efficiency of the proposed method are demonstrated by two numerical examples. 
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1. Abstract
Damage identification of structural system can be dealt with by means of an inverse problem approach; that is,
the location as well as the magnitude of damage is determined by inversely solving the relationship between the
damage and the corresponding change in structural characteristics. In this study, we adopt a definite number
of natural frequencies as such structural characteristics. A multi-layered neural network approach based on an
alternative error back-propagation with fixed connection weights is used to solve the inverse problem. The damage
identification based on change in natural frequencies inherently has ill-posed nature. We carry out a comprehensive
simulation study and discuss the capability of the proposed damage identification approach.
2. Keywords: structural health monitoring, inverse problem, neural network, natural frequencies, truss.

3. Introduction
Damage of a structural system has to be identified in order to repair or replace the damaged parts or members to
maintain its original system performance. This research field is referred to as non-destructive testing, structural
damage identification, or structural health monitoring. There are several approaches for the purpose. For exam-
ple, the eddy current approach[1] and the ultrasonic approach[2] are typical examples of non-destructing testing.
Giurgiutiu et al.[3] use piezoelectric devices to detect crack or defect. Approaches based on change in dynamic
characteristics such as the natural frequencies of the target structure have also been studied [4]-[6].
We deal with the damage identification based on the change in dynamic characteristics of the entire structure caused
by the damage on its constituent parts; the natural frequencies of the target structure are also adopted in this study.
The relation between the local damage and the change in natural frequencies is implemented as a multi-layered
neural network[7]. The error back-propagation technique with fixed connection weight [8][9] is adopted to solve
the inverse problem of determining the location and magnitude of the damage corresponding to the given change
in natural frequencies.
The inverse problem to be solved for the damage identification is a typical ill-posed problem in such a case, since
it is fundamentally impossible to identify all of the patterns of the damaged parts based only on a limited number
of natural frequencies[4]. The damage identification approach based on neural network, however, works fairly
well[10]; it has been demonstrated with examples that damaged members of truss structure are successfully iden-
tified based only on its limited number of natural frequencies, in the case that the number of damaged members is
small.
In the current study, we carry out comprehensive simulations in order to examine the capability of this damage
identification approach based on multi-layered neural network. On the basis of the numerical experiments with
truss structures, we investigate the characteristics of availability of the approach. We take into account the follow-
ing: such as the size of the neural network, the constituents of the learning data set, and so on.

4. Inverse Problem Formulation of Damage Identification
There are two types of damage identification approaches. One is to identify directly the location as well as the
magnitude of the damage by means of installed sensing devices or scanning equipments. The other is the indirect
approach, which deduces or estimates the location and magnitude of the damage based on the observed change in
some characteristics of the entire target structure. We deal with the latter approach from the inverse problem point
of view.

4.1. Basic Idea
Let x be the state variable vector corresponding to the condition of parts or members of the target structure, such
as thickness of structural elements or stiffness of truss members. Let y be the characteristics vector of the entire
structure affected by the structural damage, which is expected to be obtained by means of some measurement
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devices. The relationship between the two variables can be expressed in the following general form:

y y x . (1)

In the case that we have a structural characteristic value y∗ which is obtained by means of the measurement, the
corresponding damaged structural condition x∗ can be determined by solving the following problem:

Find x∗ such that y x∗ y∗, (2)

which is a typical inverse problem based on Eq.(1). This is the basic idea of our damage identification approach.

4.2 Adopting Natural Frequencies as Key Structural Characteristics
This damage identification approach significantly depends on the type of the structural characteristics y in Eq.(1).
We adopt the change in natural frequencies of the entire structure due to damage as such structural characteristics,
in this study. There are following reasons for this selection:

• the values can be numerically calculated for various damage patterns taken into consideration

• damage of any structural elements can affect these characteristics of the entire structure, to some extent

• the values are obtained by means of a non-invasive measurement in general; application to existing structures
can be possible

One of the issues in the case of adopting the natural frequencies for this purpose is that the inverse problem
(2) becomes inherently ill-posed since the order of natural frequencies to be measured is less than the number of
structural elements for damage identification in general. The aim of the current study is to investigate the feasibility
of the following neural network approach based on the natural frequencies.

5. A Multi-Layered Neural Network Approach
A multi-layered neural network has the ability to acquire its input-output relationship by the error back-propagation
learning[7]. The alternative error back-propagation with fixed connection-weights[8] is adopted to solve the in-
verse problem based on the acquired relationship. In order to make the article self-contained, we summarize this
approach to solve an inverse problem by means of multi-layered neural network.

5.1 Multi-Layered Neural Network and Error Back-Propagation Learning
Figure 1(a) shows a conceptual illustration of multi-layered neural network. Neurons are depicted as circles and

connected in a layered manner. The input and output layers placed at leftmost and rightmost sides are the 0th and
Nth layers; the so-called hidden neurons are placed between them and make up the 1st· · · N−1 th layers. The
behavior of the ith neuron of the kth layer is modeled as follows:

vk
i f uk

i , uk
i ∑

j
wk

i jv
k−1
j , f uk

i
2

1 exp −2uk
i

−1, (3)

where uk
i and vk

i are the internal state and the output value of the neuron and wk
i j is the connection weight between

the ith neuron of the kth layer and the jth neuron of the k−1 th layer. The characteristic function of a neuron

Input
layer

Output
layer

Hidden layers

-1

0

1

-2 -1 0 1 2

2 / (1+exp(-2 * x)) -1

(a) (b)

Figure 1: Multi-layered neural network
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is expressed as f , which is shown in Fig.1(b). The input-output relation as the entire neural network can be
represented in the following form:

vN vN v0,w (4)

where v0 v0
i and vN vN

i are the input and output vectors. The connection weights w wk
i j determines the

input-output relation.
On the basis of the error function to the desired output value vN vN

i expressed as

E
1
2

vN −vN T vN −vN 1
2 ∑

i
vN

i − vN
i

2, (5)

the following iterative modification of the connection weights are conducted for various input values and their
corresponding desired output values:

wk
i j ← wk

i j −Δwk
i j, Δwk

i j ε
∂E

∂wk
i j

(6)

where ε is an adequate small coefficient. The modification Δwk
i j is obtained in the following manner:

Δwk
i j Δvk

i · f ′ uk
i · vk−1

j , (7)

Δvk
i ε

∂E
∂vk

i
∑

j
Δvk 1

j · f ′ uk 1
j ·wk 1

ji , (8)

ΔvN
i ε

∂E
∂vN

i
ε vN

i − vN
i . (9)

Equation (8) denotes the error back-propagation process from the k 1 th layer to the kth layer.

5.2 Solving Inverse Problem by Means of Alternative Error Back-Propagation
We deal with the inverse problem (2) in terms of the following error minimization problem:

Minimize E
1
2

y x −y∗ T y x −y∗ with respect to x. (10)

The solution can be obtained by means of an iterative gradient procedure as

x ← x−Δx, Δx ε
∂E
∂x

(11)

based on an adequate initial value of x. After the input-output relationship (4) of the neural network has been
trained to represent the intended relationship (1), the gradient Δx ε ∂E/∂x can be obtained as the modification
to the input layer at the neural network, Δv0 ε ∂E/∂v0 , in terms of Eq.(8) as the result of the error back-
propagation process, since the error function (5) for the learning and the error in the minimization problem (10)
to solve the inverse problem are essentially the same at this point. This enables us to solve the inverse problem
(2) in terms of the minimization problem (10) by means of the neural network. Note that the connection weights
of the neural network are fixed in the case of the solving process of the inverse problem, so that the implemented
input-output relation should not be changed.
5.3 Damage Identification Based on Natural Frequencies by Means of Neural Network
The damage identification approach based on the change in natural frequencies by means of a multi-layered neural
network is performed as follows. First, the learning data set of various damages on the target structure and the
corresponding change in natural frequencies has to be prepared. This can be performed by means of numerical
calculation. Second, an adequate neural network is prepared and trained to represent the intended relationship with
the learning data set. After the learning process of the neural network is completed, it can be used to identify the
damage of the target structure based on the measured change in natural frequencies by means of the alternative
error back-propagation.

6. Comprehensive Simulation Study with Truss Structures
A number of numerical experiments are carried out in order to evaluate the capability of the proposed damage
identification approach.
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(a) Truss (b1) Damage (b2) Identified (c1) Damage (c2) Identified (d1) Damage (d2) Identified
assumed (error 0.01%) assumed (error 1.00%) assumed (error 2.76%)

(b) Correctly identified (c) Correctly identified (d) Incorrectly identified

Figure 2: Example damage identification results based on 5-unit truss (magnitude of damage exaggerated)

6.1 Simulation Condition
Figure 2(a) shows the 2D truss structure adopted in this simulation study. The square truss units are 1m×1m; all

the truss members are steel rod of 10mm diameter; a mass of 1kg is attached to the top node of the truss. Damage
is given in the form of degradation of stiffness of truss members; the maximum magnitude of the damage is
assumed to be 10% of the stiffness. Learning data sets for the neural networks are prepared by means of numerical
calculation of natural frequencies based on randomly generated various damage conditions. In the current study,
the number of back-propagation learning is 500 million for all of the cases, which is considered to be enough for
the convergence. The damage identification capability of the approach is examined based on all of the 5% stiffness
damage combinations of 1 to 4 truss members: that is, 22C1 22 single-member-damage patterns, 22C2 231
two-member-damage patterns, 22C3 1540 three-member-damage patterns, 22C4 7315 four-member-damage
patterns and 9108 patterns as the total. In these numerical experiments, an obtained damage identification result
is judged adequate in the case that the maximum error in the estimated member stiffness is less than 1%, that is,
the member stiffness is 94% to 96% of the original stiffness for the damaged members and 99% to 100% for the
non-damaged members.

6.2 Evaluation of Damage Identification Capability
Table 1 summarizes the damage identification results based on the approach with various neural networks. On the
basis of the results shown in Table 1, it is clear that the number of modes of natural frequencies has significant
influence on the damage identification capability. The results based on 5 natural frequencies show that even in
the case of single member damage, it is only 40% to 55% of the patterns (9 to 12 within 22 members) that are
adequately identified. In the case of 8 natural frequencies, the damage identification results are significantly im-
proved and 86% to 95% of the patterns (19 to 21 within 22 members) are adequately identified in the case of single
member damage; about half are adequately identified even in the case of two member damage patterns based on
the neural network having learned the data set consisting of 50,000 patterns of two member damage. In the case of
10 natural frequencies, all of the single member damage patterns are adequately identified; more than 80% of two
member damage patterns and about 60% of three member damage patterns are adequately identified based on the
neural networks having learned the data set consisting of two or three member damage patterns.
Composition of the learning data set should also be taken into consideration. In the case of neural networks hav-
ing only learned the data set of single member damage patterns, it is shown that the identification capability is
significantly limited even in the case of neural network based on 10 natural frequencies. This is considered to be
because such data set does not reflect the interrelation between the damages on different truss members. The neural
networks having learned two or three member damage patterns exhibit comparable identification capabilities. It is
interesting that the neural networks based on three member damage patterns show marginally lower performance
than those based on two member damage patterns in any case, regardless that the three member patterns are fun-
damentally extensions of the two member patterns.
The simulation studies are carried out based on neural networks of various sizes, that is, neural networks consist-
ing of different numbers of neurons of hidden layers. On the basis of the results, it is demonstrated that larger
neural networks have superior capabilities than smaller networks as a matter of course; however, this improvement
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Table 1: Damage identification results

learning data set neurons of adequately identified patterns (%)
natural damaged number of hidden total case of damaged number

frequencies members patterns layers 1-4 1 2 3 4
5 1 1,000 25, 25 0.4 50.0 7.8 0.5 0.0
5 1 1,000 50, 50 0.4 54.5 10.0 0.3 0.0
5 2 50,000 10, 10 0.7 40.9 9.1 1.4 0.2
5 2 50,000 25, 25 0.7 40.9 8.7 1.2 0.2
5 2 50,000 50, 50 0.7 40.9 9.1 1.4 0.2
5 2 50,000 80, 80 0.7 40.9 9.1 1.4 0.2
5 3 100,000 50, 50 0.7 40.9 7.8 1.2 0.2
5 3 100,000 100, 100 0.7 40.9 8.2 1.3 0.2
8 1 1,000 50, 50 1.5 95.5 38.1 1.6 0.0
8 2 50,000 50, 50 10.6 90.9 50.6 21.4 6.8
8 2 50,000 100, 100 11.5 90.9 51.9 22.5 7.7
8 3 100,000 50, 50 9.2 86.4 44.2 18.0 6.0
8 3 100,000 100, 100 9.6 90.9 46.8 18.7 6.2
10 1 1,000 50, 50 0.9 100.0 26.0 0.0 0.0
10 2 50,000 10, 10 26.2 100.0 81.0 45.8 20.1
10 2 50,000 25, 25 36.4 100.0 86.1 57.9 30.1
10 2 50,000 50, 50 38.7 100.0 86.1 59.3 32.7
10 2 50,000 80, 80 40.1 100.0 86.6 60.7 34.1
10 3 100,000 50, 50 36.0 100.0 83.1 55.5 30.2
10 3 100,000 80, 80 35.8 100.0 83.5 55.2 30.0
10 3 100,000 100, 100 37.0 100.0 83.5 56.3 31.3

converges at certain sizes. This indicates that the size of the neural network is not insignificant but the data set to
be learned is definitely significant in this damage identification approach.
Figures 2(b)-(d) show typical examples of damage identification results based on the neural network consisting
of two hidden layers of 50 neurons having learned the data set composed of patterns of 10 natural frequencies
corresponding to two damaged members. The member stiffness damage assumed for these examples is 5%; the
magnitude of damage in the figures is exaggerated based on this values. Figure 2(b) shows an accurate result.
Figure 2(c) is a result judged marginally adequate; in the damage identification result of Fig.2(c2), slight degra-
dation of stiffness is observed also in some of the non-damaged truss members such as the vertical members of
the uppermost square unit. Figure 2(d) is a damage identification result judged inadequate; the assumed damaged
members are two as shown in Fig.2(d1), but we can observe other degraded members around the two members as
shown in Fig.2(d2).

7. Concluding Remarks
In this article, structural damage identification was dealt with from an inverse problem point of view. The natural
frequencies of the entire structure are adopted as the key structural characteristics for the damage identification; the
multi-layered neural network is used to represent the required relationship and to solve the inverse problem based
on the relation, by means of the alternative error back-propagation with fixed connection weights. The approach
is applied to a damage identification problem of a truss structure and simulation studies are carried out in order to
evaluate its damage identification capability.
On the basis of the numerical experiment results with the 5-unit truss, the followings are concluded. It is theoreti-
cally impossible to identify all of the damage patterns of 22 truss members based only on 10 natural frequencies;
however, it has been demonstrated that the neural network approach has the capability to identify quite significant
part of the combination patterns in the case that the number of damaged members is limited. The damage identifi-
cation capability significantly depends on the number of adopted natural frequencies. The learning data set for the
neural network should include some patterns that represent the interrelation between the damaged parts.
It is obvious that the natural frequencies are not applicable to the case of identifying damage on symmetrical parts
of a symmetrical structure. Some additional structural characteristics in order to cope with this limitation are the
issue to be dealt with. From the viewpoint of practical application, sensing devices and signal processing method-
ologies should also be taken into consideration. These are the future works.
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Recherches de Royallieu, CS 60319, 60203, Compiègne Cedex, France, liang.xia@utc.fr

1. Abstract
This work develops firstly a nonlinear framework for concurrent topology optimization of material and structure.

It has been shown that though linear models are assumed at both scales, the structural equilibrium is in general

nonlinear due to the adaptation of local material microstructures. Secondly, the new regime of nonlinearity due

to material optimization is approximated by a precomputed database model. As a result of this off-line step, the

effective strain-energy and stress-strain relations required for the concurrent design are provided in a numerically

explicit manner, which significantly reduces computational cost and enables design of larger-scale problems.

2. Keywords: Model reduction, Homogenization, Multiscale analysis, Topology optimization

3. Introduction
Existing researches of topology optimization focus mainly on monoscale designs, either designing homogeneous

structures [1], or designing materials for expected effective performance [2]. A usual strategy applied to bridge

the two scales is designing an universal material microstructure either for a fixed [3] or concurrently changed [4]

structure at the macroscopic scale. In fact, earlier attempt traces back to [5], where simultaneous optimal designs

are performed for both structure and elementwisely varying cellular materials following a decomposed design pro-

cedure [6]. Concerning multiscale design, cellular materials are designed in response to the displacement solution

at the structural scale while their variations in turn modify the structural constitutive behavior. The equilibrium

problem at the structural scale is therefore in general nonlinear. Such nonlinearity has been neglected in the early

works (e.g., [4, 5]) where both scale design variables were updated simultaneously and the equilibrium at the

structural scale was not enforced.

Unlike the previous models, in [7] we revisited concurrent topology optimization of material and structure

while using a nonlinear iterative solution scheme, FE2 [8], to address the nonlinearity due to the optimization or

the adaptation of material microstructures. In addition, we have defined cellular material models pointwisely that in

the context of finite element analysis they were assigned at the Gauss integration points. A schematic illustration of

concurrent topological design of material and structure is shown in Fig. 1. Bi-directional Evolutionary Structural

Optimization (BESO) method [9] was applied for the designs at both scales. Note that, this concurrent design

framework requires intensive computational cost due to large number of repetitive material optimizations.

In our successive work [10], in viewing the material optimization process as a generalized constitutive behav-

ior, we made a step further and adapt the Numerically EXplicit Potentials (NEXP) model [11] to approximated

this new regime of nonlinearity. By this model, we constructed firstly a database from a set of numerical experi-

ments so as to describe the effective strain energy density in a test space of macroscopic strain tensor. By tensor

decomposition, a continuous representation of the strain energy density function is built as a sum of products of

one-dimensional interpolation functions. As a result of this a priori off-line step, the effective strain-energy and

stress-strain relations required for macroscopic structural evaluation and optimization are provided in a numeri-

cally explicit manner. The explicit material behavior representation given by the reduced database model is then

used to serve the concurrent design [7] at a negligible computational cost.

4. Multiscale structural topology optimization [7]
Let ρ(x) and η(x,y) denote the design variables at the two scales, respectively. A defines an integral admissible

set consisting of two subsets Aρ and Aη for ρ(x) and η(x,y), respectively. Both variables take binary values: 0 or

1, indicating void and solid materials, respectively. Volume fraction constraints are considered. Using the principle

of minimum potential energy, the minimum compliance problem in a displacement-based formulation is [12]

max
(ρ,η)∈A

min
u∈U

{
1

2

∫
Ω

Ci jkh (x,ρ,η)
∂ui

∂x j

∂uk

∂xh
dΩ− l(u)

}
, (1)

where Ci jkh (x,ρ,η) is the fourth-order elastic stiffness tensor at point x depending on ρ(x) and η(x,y). U denotes

the space of kinematically admissible displacement fields and l(u) is the loading potential term. Since ρ(x) and
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Ω
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Figure 1: Illustration of concurrent topology optimization of material and structure [7, 10].

η(x,y) are defined independently at two scales, Eq. (1) can be reformulated to

max
ρ∈Aρ

min
u∈U

{∫
Ω

{
max
η∈Aη

1

2
Ci jkh(x,ρ,η)

∂ui

∂x j

∂uk

∂xh

}
dΩ− l(u)

}
, (2)

where the pointwise maximization of strain energy density is treated as a subproblem. Note that, because materials

defined at the microscopic scale are optimized according to the current strain loading statuses and the optimized

materials in turn update the constitutive behavior at the macroscopic scale, the interface equilibrium is therefore in

general nonlinear even though linear models are assumed at both scales.

To address this interface nonlinearity, we employ a nonlinear iterative solution scheme, so named FE2 ac-

cording to [8]. In general nonlinear case, it asserts that each point of the macroscopic discretization is associated

with a Representative Volume Element (RVE). Then for each macroscopic equilibrium iteration, a nonlinear load

increment has to be computed for each of the (many) RVEs. In return the average stress across the RVE is then

used as the macroscopic stress tensor without the need of effective constitutive relations at hand. Therefore, the

macroscopic stress Σ(x) is computed as a function of the microscopic stress state by means of volume averaging

(or via surface integrals) according to

Σ(x) = 〈σ(x,y)〉= 1

|Ωx|
∫

Ωx
σ(x,y) dV =

1

|Ωx|
∫

∂Ωx
t ⊗ x dA. (3)

Similarly, the macroscopic strain E(x) defines the mean of the microscopic strain via

E(x) = 〈e(x,y)〉= 1

|Ωx|
∫

Ωx
e(x,y) dV =

1

|Ωx|
∫

∂Ωx
sym(u⊗n) dA, (4)

where n is the normal vector on the boundary of the microstructure. The interface equilibrium is solved iteratively

using the Newton-Raphson method

R(u,ρ,η) = fext −
∫

Ω
BT 〈σ(x,y)〉 dΩ = 0, (5)

where R(u,ρ,η) and fext are the residual and external force at the macroscopic scale, respectively, and B is the

linear strain-displacement matrix. It is important to emphasize that σ(x,y) is evaluated on the optimized material,

which is obtained using the BESO method [9] according to the imposed macroscopic strain 〈e(x,y)〉= E(x).

4.1. Material design for a two-scale bridge-type structure

In order to illustrate the equilibrium nonlinearity due to the material optimizations, a simple two-scale bridge-type

structure (Fig. 2(a)) is considered, where the cellular materials are optimized so as to maximize the global structural

stiffness. The bridge-type structure is discretized into quadratic 8-node elements. Four Gauss integration points

are defined for each finite element and each integration point is attributed with a cellular material model discretized

into 80× 80 bilinear 4-node elements. Young’s modulus and Poisson’s ratio of solid material at the microscopic

scale are set to be 1 and 0.3, respectively. Volume fraction constraint for each cellular material model is set to 60%.

2

858

Leo
Rectangle



fext = 1Macro
structure

Element

Micro cellular material

Mesh size
80 x 80 

(a). A two-scale bridge-type structure. (b). The first iteration topology . (c). The converged iteration topology.

Figure 2: Illustration of the equilibrium nonlinearity: material design for a bridge-type structure [7].

Element

fext = 1

Macro structure Micro cellular material

Mesh size
40 x 40 

Mesh size
40  x 16

(a). A two-scale half MBB beam.

(b). Linear design result for reference. (c). Structural topology and several typical microstructures.

Figure 3: Concurrent topological design of a two-scale half MBB beam [7].

The evolution rate in the BESO is set to 0.02, which determines the percentage of removed material at each design

iteration. Sensitivity filtering is used to avoid checkerboard pattern and mesh-dependency.

The topologies of the first and the converged (6th) iterations are shown in Figs. 2(b) and (c), respectively. The

difference between Figs. 2(b) and (c) demonstrates the necessity of considering the nonlinearity of the interface

equilibrium. Note that, in Figs. 2(b) and (c) the optimized cellular materials on the Gauss points are enlarged for

a clear visualization. Upon the homogenization theory, the optimized cellular material only represents the opti-

mal design at the microscopic scale for that material point, i.e., Gauss integration point. Therefore, the optimized

cellular materials in the neighboring points represent only the tendency of the topological variations while are not

necessarily continuous.

4.2. Concurrent material and structure design for a two-scale MBB beam

In this example, the so-called MBB beam [12] is considered and optimal designs are carried out concurrently at

both structural and material scales. Due to the symmetry of the problem, only half MBB beam is considered as

shown in Fig. 3(a). The macroscopic structure is discretized into 40×16 bilinear 4-node elements, which means in

total Ngp = 4×40×16, 2560 cellular material models are considered concurrently at the microscopic scale. At the

macroscopic structure, N = 40× 16, 640 design variables are accordingly defined. Microscopic cellular material

model is discretized into 40×40 bilinear 4-node elements with M = 40×40 design variables. Volume constraints

of solid material are set to 60% at both scales. The evolution rate in the BESO is set to 0.02 and sensitivity filtering

is applied as in the previous example.

It takes around 6 solution iterations to reach the macroscopic equilibrium for each design iteration. The final

topologies of both cellular materials and structure are shown in Fig. 3(c). The standard monoscale design within

the regime of linear elasticity is given in Fig. 3(b) for the purpose of comparison. Some typical microstructures

obtained in the nonlinear two-scale design is also given in Fig. 3(c). Similarly, the optimized cellular material

only represents the optimal design at the microscopic scale for that material point satisfying the assumptions of

scale-separation and periodicity. The optimized cellular materials in neighboring points represent only the ten-

dency of the topological variations. As can be observed in Fig. 3(c), uniaxial materials may be sufficient at the

main branches of the structure; while in order to have a higher structural performance, anisotropic materials have

to be used at the joints of the main branches due to the more complex loading status.
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Figure 4: Illustration of the monoscale structural design with the NEXP model [10].

5. Reduced multiscale structural topology optimization [10]
In viewing the local material optimization process as a particular regime of material nonlinearity, the main objective

of this part of work is to construct an explicit representation of the strain energy density W (〈e〉) in terms of 〈e〉 such

that the concurrent design can be performed with an effective stress-strain relationship provided at an extremely

reduced computational cost. For such reason, following the NEXP strategy [11], we construct an approximate

expression of W (〈e〉) using a precomputed database. An illustrative scheme is shown in Fig. 4.

The NEXP model aims to construct an explicit approximation W̃ (〈e〉) over the tensor space using a precom-

puted database and interpolation schemes, expecting W̃ (〈e〉) close enough to W (〈e〉)

W (〈e〉)≈ W̃ (〈e〉) = ∑Nq(〈e〉)Wq, (6)

where Nq are the interpolation functions and Wq are the strain energy density values stored in the database, which

are evaluated by means of a set of numerical experiments over the test tensor space. It is important to emphasize

that Wq corresponds to the energy density of an optimized material for a given 〈e〉q. Once the database model is

built, the effective stress-strain relationship is obtained as

〈σ〉 ≈ ∑ ∂Nq(〈e〉)
∂ 〈e〉 Wq, (7)

provided the interpolation functions Nq are continuously differentiable.

Still following [11], the precomputed full database is further approximated by a sum of products of one-

dimensional interpolation functions via higher-order tensor decomposition. The Voigt notation is applied such that

{〈e〉1,〈e〉2,〈e〉3,〈e〉4,〈e〉5,〈e〉6} corresponds to {〈e〉11,〈e〉22,〈e〉33,〈e〉23,〈e〉13,〈e〉12}. Let W denote the hyperma-

trix which stores the database. It can be approximated in a tensor decomposed representation

W≈
R

∑
r=1

φ r
1 ⊗φ r

2 ⊗·· ·⊗φ r
6 , (8)

where φ r
j are real-valued vectors corresponding to the effective strain tensor components 〈e〉 j and R is the number

of expanded terms. The vectors φ r
j involved in (8) are determined by solving the following least square problem

for a given value of R

inf
φ r

j

∥∥∥∥∥W−
R

∑
r=1

φ r
1 ⊗φ r

2 ⊗·· ·⊗φ r
6

∥∥∥∥∥
2

, (9)

where ‖ ·‖ is the Frobenius norm. Once the decomposed vectors in (8) are obtained, the continuous representation

of W (〈e〉) written in terms of separated components can be constructed by interpolation

W (〈e〉1,〈e〉2, . . . ,〈e〉6)≈
R

∑
r=1

φ̃ r
1(〈e〉1)φ̃ r

2(〈e〉2) · · · φ̃ r
6(〈e〉6), (10)

where φ̃ r
j (〈e〉 j) are the interpolated values of φ r

j . The tensor decomposed database requires only one-dimensional

interpolations for effective stress evaluation, which further reduces computing time.

5.1. Validation of the NEXP model

Consider the same cellular material model setting as in the previous section. The NEXP model is built over the

strain domain. Each dimension of the strain space is discretized into p = 21 uniformly distributed points, which

means in total 213 local material optimizations are carried out at the off-line phase. With a relative reconstruction
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Figure 5: Comparison of the exact and approximate values evaluated using FEM and NEXP [10].

error chosen as 0.01, we obtain R = 9 truncated modes in each dimension for the reduced approximation W̃ . To

validate the performance, we compare the values evaluated using the NEXP model and the exact computations. A

first comparison is given in Fig. 5, where 〈e〉2 = 0.2, 〈e〉6 = 0.8 are fixed and 〈e〉1 varies from −1 to 1. Several

observations can be found from Fig. 5. Firstly, the approximate values given by the NEXP model are in very good

agreement with the exact solutions. Secondly, the strain energy density is a convex function over the effective

strain space. Thirdly, the selected optimal material microstructures show the tendency of topological variation

along 〈e〉1, which introduces nonlinearity to the interface equilibrium.

5.2. Design of a two-scale half MBB beam with fine discretization

With the constructed NEXP model, we are now capable of designing a much larger scale or finely discretized

two-scale MBB beam with 120× 60 bilinear 4-node elements. Volume constraint at the macroscopic structure

is set to 60%. The evolution rate in the BESO is set to 0.02 and sensitivity filtering is applied. Fig. 6 gives the

optimized structure topology together with the retrieved optimal cellular material topologies. Three local zones are

selected and zoomed for a better visualization of microscopic material topologies. This test takes around 6 hours

for all 35 design iterations on the used personal computer. Retrieving microscopic material topologies at the final

design requires one additional hour computing. Assuming 6 substeps required in average for each structural design

iteration and one hour computing for each substep of each design iteration, then the concurrent design strategy [7]

would require in total more than 200 hours computing time for solving this problem on the used personal computer.

In the contrast, using the constructed NEXP material model, it requires only 7 hours computing to reach the final

design. Note that this time can still be further reduced with parallel computing.

6. Conclusion
This work develops a FE2-based multiscale structural topology optimization framework and adapts the NEXP strat-

egy into this framework to limit the computational cost. This framework is independent with the type of design

variables, other parameters such as geometrical or even manufacturing process parameters can be considered for

the design. Future works will focus on considering more realistic multiscale structures constituted by 3D knitted

or woven composites with more complex nonlinear constitutive behaviors.
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Figure 6: Two-scale design of half MBB beam with retrieved local optimal material topologies [10].
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1. Abstract
Numerical and analytical methods of analysis and optimization of elastic plastic plates are developed. The cases of

linear and non-linear yield surfaces are studied. Necessary optimality conditions are derived with the aid of varia-

tional methods. The obtained system of equations is solved numerically. The effectivity of the design established

is assessed in the cases of one- and multi-stepped plates made of Tresca or Mises materials.

2. Keywords: plate, optimization, elastic plastic material, minimum weight.

3. Introduction
Evidently, there exists the need for new computer-aided techniques for calculation and optimization of elastic plas-

tic plates. Optimization of axisymmetric plates operating in the range of elastic plastic deformations was studied

by Lellep and Polikarpus [2, 3] in the case of the material obeying Tresca’s yield condition and by Lellep and

Vlassov [4, 5] in the case of von Mises material.

New analytical and numerical techniques of optimization of axisymmetric plates are developed in the present pa-

per. The material of plates is an ideal elastic plastic material obeying a linear or non-linear yield condition and the

associated flow law.

a1
a2

an−1

an

R

O

h0 h1 h2

hn−1 hn

P

r
H

Figure 1: Stepped plate.

4. The cost function
Circular and annular plates with radii R (outer radius) and a (inner one) will be considered. Let us assume that

an axisymmetric plate is subjected to the axisymmetric transverse pressure of intensity p = p(r), where r is the

current radius. The analysis will be carried out under the assumption that the hypotheses of Kirchhoff hold good

in the regimes of elastic and plastic deformations. The plates with sandwich cross section will be considered. A

sandwich plate is a structure which consists of two carrying layers of thickness h and of a layer of a core material

between the rims. Let the thickness of carrying layers be piecewise constant, e. g.

h = h j, r ∈ S j (1)

where S j = (a j,a j+1); j = 0, . . . ,n.

Evidently, the plate can be subdivided into elastic and plastic regions in the case of a sandwich plate. Let us denote

the elastic region by Se and the plastic region by Sp. In principle, both of these may consist of several regions Se j
and Sp j, respectively. Here Se j = S j if the region S j is a pure elastic one, e. g. if j ∈ Ke. Similarily, Sp j = S j,

1
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Figure 2: Yield conditions.

if j ∈ Kp. These intervals where both, the elastic and plastic deformations take place are denoted by Sep whereas

Sep = S j for j ∈ Kep. Evidently,

Ke ∪Kp ∪Kep = {0,1, . . . ,n}. (2)

The thickness of the rim is much smaller than the thickness of the core material H. Note that the quantities

h0, h j and a j ( j = 1, . . . ,n) are preliminarily unknown constant design parameters when solving a problem of

optimization.

As regards the formulation of an optimization problem, one can find in literature a lot of different particular

problems (see Lellep [1]).

In the general case the cost function can be presented as

J =
n

∑
j=0

(
G j +

∫
S j

Fjdr
)

(3)

where G j and Fj are given functions of design parameters. For the sake of simplicity it is assumed that the functions

Fj and G j are continuous and continuously differentiable with respect to their variables.

The optimal design to be established must satisfy the constraints imposed on the stress-strain state of the plate. Let

the additional constraints be presented as integral constraints

n

∑
j=0

∫
S j

F0
i jdr ≤ Ki (4)

for i = 1, . . . ,k. The functions F0
i j in Eq. (4) are given continuous functions of design parameters and Ki – given

constants.

In particular cases the optimization problem consists in the determination of design parameters so that the cost

function (total weight, for instance) attains its minimum value and the constraints imposed on the stress strain state

of the plate are satisfied. For instance, the cost of carrying layers can be presented in the form

V =
n

∑
j=0

h j(a2
j+1 −a2

j) (5)

where a0 = a and an+1 = R.

5. Basic equations
Making use of the classical plate theory the principal moments M1, M2 and the shear force Q are connected as

d
dr

(rM1)−M2 − rQ = 0,

d
dr

(rQ)+Pr = 0.

(6)
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Equations (6) hold good equally in elastic and plastic regions of a plate.

In an elastic region of the plate the Hooke’s law holds good. According to the generalized Hooke’s law

M1 = D j(κ1 +νκ2),

M2 = D j(κ2 +νκ1)
(7)

where ν is the Poisson ratio. In Eq. (7) and henceforth

D j =
EH2h j

2(1−ν2)
(8)

where E stands for the Young modulus. Here κ1 and κ2 stand for the curvatures (W is the transverse deflection)

κ1 =−d2W
dr2

,

κ2 =−1

r
dW
dr

.

(9)

It can be shown that the system of governing equations in an elastic region for r ∈ Se j can be presented as (see

Lellep, Vlassov [4, 5])
dW
dr

= Z,

dZ
dr

=−M1

D j
− νZ

r
,

dM1

dr
=− (1−ν2)D jZ

r2
− (1−ν)M1

r
+Q

(10)

whereas the following equation

M2 −νM1 +
D j(1−ν2)Z

r
= 0 (11)

must be satisfied for each r ∈ Se j. Note that here j ∈ Ke and j ∈ Kep and Z can be treated as an auxiliary variable.

In plastic regions of the plate the stress profile lies on a yield surface Φ = 0. It is assumed that the material of the

plate obeys a yield condition

Φ j(M1,M2,M0)≤ 0 (12)

for r ∈ Sp j, j ∈ Kp.

It can be shown that in the case of a von Mises material one can take

Φ j = M2
1 −M1M2 +M2

2 −M2
0 j. (13)

In the case of a Tresca plate one has to check the suitability of each side of the hexagon ABCDEF (Fig. 2)

separately. However, if it is clear previously that, for instance, M1 ≥ 0, M2 ≥ 0 for each r ∈ Sp one can concentrate

at the flow regime BC (AB is not suitable for most cases). Thus now

Φ j = M2 −M0 j (14)

for r ∈ Sp j, j ∈ Kp. The associated flow law states that

κ1 =
λ∂Φ j

∂M1
,

κ2 =
λ∂Φ j

∂M2

(15)

for r ∈ Sp j, j ∈ Kp. Here λ is a non-negative scalar multiplier. Thus combining Eq. (12), (15) with Eq. (6) one has

dW
dr

= Z,

dZ
dr

=
Z ∂Φ j

∂M1

r ∂Φ j
∂M2

,

dM1

dr
=

M2

r
− M1

r
+Q,

(16)
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Figure 3: Transverse deflection.

Figure 4: Bending moment.

where the quantity Q can be handled as a given function. Indeed it follows from the equilibrium equations that

Q =−1

r

∫ r

a
P(r)rdr. (17)

6. Necessary optimality conditions
In order to derive optimality conditions let us introduce an extended functional

J∗ =
n

∑
j=0

G j + ∑
j∈Ke j

∫
Se j

{
ψ1

(
dW
dr

−Z
)
+ψ2

(
dW
dr

+
M1

D j
+

νZ
r

)
+ψ3

(
dM1

dr
+(1−ν2)D j +

(1−ν)M1

r
−Q
)
+ν0 j

(
M2 +

D j(1−ν2)Z
r

−νM1

)}
dr

+ ∑
j∈Kp j

∫
Sp j

⎧⎨⎩ψ1

(
dW
dr

−Z
)
+ψ2

⎛⎝dZ
dr

−
Z ∂Φ j

∂M1

r ∂Φ j
∂M2

⎞⎠+ψ3

(
dM1

dr
− M2

r
+

M1

r
−Q
)⎫⎬⎭dr

+
n

∑
j=0

∫ a j+1

a j

[φ0 j(φ j +Θ2
j)+Fi +νiF0

i j]dr

(18)

where Θ j are new control functions and ψ1−ψ3 – the adjoint variables. The boundary conditions are not presented
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Figure 5: Circumferential moment.

in Eq. (18); these must be taken into account when solving the equation ΔJ∗ = 0. Calculating the total variation

of Eq. (18) and equalizing it to zero leads to the set of optimality conditions. The procedure of the variation of

Eq. (18) is similar to that performed in [4, 5].

7. Numerical results
In the case of a non-linear materials the problem is solved numerically making use of finite elements and the

method of wavelets. The results of calculations are presented in Fig. 3–5 in the case when the number of steps

n = 1.

The distributions of transverse deflections, radial and circumferential bending moments are presented in Fig. 3, 4

and Fig. 5, respectively. Different curves in Fig. 3–5 correspond to the plates made of a Hill material and subjected

to the uniform transverse pressure. Here the labels of curves correspond to p = 3.15; p = 3.25; p = 3.45 and

p = 3.65, respectively, and

p =
PM00

R2
, αi =

ai

R
, mi =

Mi

M00
. (19)

The results depicted in Fig. 3–5 correspond to the case when h1 = 0.6h0; a1 = 0.35R. The region of plastic defor-

mations reaches to r = 0.304 for p = 3.15 and to r = 0.385 for p = 3.65.

The distributions of M1 and M2 are depicted in Fig. 6–7 in the case of the Tresca material. It can be seen from Fig. 6,

7 that the hoop moment is discontinuous and the radial moment is a continuous non-smooth, as might be expected.
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Figure 7: Circumferential moment.

8. Concluding remarks
Methods of optimal design of axisymmetric plates are developed under the assumption that the plates are operating

in the elastic plastic stage of deflection. Necessary conditions of optimality are derived making use of variational

methods. Numerical results are obtained for plates obeying the Mises or Tsai-Wu criterion with the aid of Haar

wavelets. Calculations carried out showed remarkable material saving can be achieved when using the design of

stepped plate.
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1. Abstract
The proper parameterization of structural shape which is suitable for creating structural form and shape optimal 
design is a great challenge. The demand for large design spaces with large and very large numbers of design 
parameters is in conflict with the robustness of the numerical model. There is a need for regularization. The 
currently most successful techniques which overcome those burdens and, simultaneously, are most intuitive and 
easy to be used are so-called filter techniques. They directly use the coordinates of the discretization nodes as 
design parameters. Filters are applied to smooth the shape sensitivity fields as the generator of the design update 
towards the optimum. However, the filters are much more than mathematical means to prevent numerical 
problems such as mesh distortion or checker board patterns. Even more important, from the point of view of shape 
design they deal as a design tool to controlling the local and global shape properties. The actual presentation will 
show that filtering is equivalent to the implicit definition of standard spline models. Impressive applications in the 
fields of CSD and CFD with problem sizes up to 3.5 million design parameters can easily be handled by this 
technique. 
2. Keywords: Shape optimization, sensitivity filtering, morphing, structural optimization, CFD optimization 

3. Introduction 
Sensitivity filtering is a well-established and very successful procedure in discrete topology and shape 
optimization. It is used to regularize the optimization problem by introducing an additional filter length scale 
which is independent of the discretization. The filter is both, a design tool controlling local shape or density 
distribution and a mean to prevent numerical problems such as mesh distortion or checker board patterns. Together 
with adjoint sensitivity analysis to determine the discretized shape gradient, the filter technique is a most powerful 
optimization procedure and successively applied to the largest optimization problems known. Filtering is the key 
technology for using the vertices of even the finest discretization mesh directly as design handles for discrete shape 
optimization. In contrast to standard shape morphing techniques and CAD methodologies no other design handles 
are used. 
Among those techniques which do not use CAD parameters to parameterize shape there are meshfree and 
node-based or parameter-free methods which means “free of CAGD parameters” (Le et al. 2011; Scherer et al. 
2010; Hojjat et al. 2014), the traction method (Azegami and Takeuchi 2006), for CFD problems (Pironneau 1984; 
Jameson 1995, 2000, 2003; Mohammadi and Pironneau 2000, 2004; Stück and Rung 2011). 

4. Continuous Shape control by using filters 
We start by introducing an additional field p. This serves as the control which steers the evolution of shape. In 
analogy to splines the control field can be identified as the continuous equivalent to the convex hull which is 
discretized by control nodes. As with splines where the coordinates of the control nodes are the design variables, 
now, the control field represents the design degrees of freedom which drive the shape. 
The considered shape optimization problem states as: 

( ) ( )( )( )

( ) ( )( )( )

( ) ( )( )( ) m...,,1j;0p,xz,xu,p,xz,xg

0p,xz,xu,p,xz,x:.t.s

p,xz,xu,p,xz,xfmin

j =

=R
p

 (1) 

where f and gj are the objective function and constraints and R are the state equations which may be non-linear. 
There are four fields describing the state u, the surface coordinate x, the geometry z as well as the design control 
field p, Fig. 1. For the sake of simplicity, (1) is formulated in 1D geometric space. As a consequence, the geometry 
z is a function of the one spatial surface coordinate x and the design control p. Extended to 3D, (1) represents the 
classical view at a surface controlled shape optimization problem following the ideas of Hadamard. Then, the 
shape relevant modifications of geometry z are identified as in the normal direction to the surface spanned by 
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surface coordinates x1 and x2.
The geometry z at x0 is generated from the design control field p(x) by a filter operation as integration over the 
surface  with filter function F0 of radius r and center at x0:

( ) ( ) ( ) ( )

rxxorrxxif0Fand1dxFwhere

r,x,xF
dp

dz
;dxxpr,x,xFdpFxz

000

rx

rx
0

01
x

x
rx

rx
000

0

0

1

0
0

0

+><==

===

+

+

 (2) 

Applying the chain rule of differentiation the derivative of a response function f with respect to the design control 
p at x1 is given as     

( )
=

=== dA
dz
dfdr,x,xF

dz
dfd

dp
dz

dz
df

dp
df

11
xxx 11

 (3) 

The geometry gradient df/dz is filtered by the adjoint filter function A1 where the center coordinate x1 and the free 
coordinate x are exchanged compared to F1.

Figure 1: Filtering of design control field to generate shape 

5. Shape discretization and discrete sensitivity filtering 
The design control field and the geometry derivative are discretized using shape functions Nj related to design and 
geometry parameters pj and zi, respectively: 

( )

i
i

jjjj

dz
dfN

dz
df

pxNpNp

=

==

 (4) 

The discrete versions of (2) and (3) are: 

i
ij

i
jiji

ij

jijjjii

dz
dfBd

dz
dfNFdAN

dz
df

dp
df

pBdpNFz

===

==

 (5) 

On regular grids together with symmetric filter functions Fi = Ai the filter operator matrix Bij is symmetric as well. 

6. Choice of filters and shape functions, relations to splines 
Linear hat functions are the simplest choice for filter and shape functions F and N. Filtering a linear shape function 
by a linear filter results in a cubic geometry. As a matter of fact the control field is the continuous equivalent of 
spline control polygons. For the special case of regular grids and linear hat functions for F = N, a cubic B-spline 
geometry is derived from a piecewise linear control field, Figs. 2 and 3, [3]. The filter technique is equivalent with 
the subdivision spline technique sharing important properties with general splines. The technique is straight 
forward extended to 3D [1]. 
As the filter modifies the gradient vector the filtering effect can be exploited best by first order gradient methods. 
Those methods converge to that local minimum which is characterized by a shape mode wave length that is not 
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smaller than the filter radius or the variance in case of Gaussian filters. The filter shape is not important at all. That 
allows to using any kind of filter for the sensitivity filtering as long as Bij remains non-singular. In turn, we can 
conclude that every simple gradient method with sensitivity filtering will converge to a solution of the original, 
unmodified problem. For non-convex problems, the choice of filter will affect which local optimum will finally be 
found. This is the intended effect which helps to efficiently explore the design space.

Figure 2: Cubic B-Spline by applying a linear hat-filter to a linear hat-shape design control field. 

Figure 3: Convex hull and approximation property of a piecewise linear design control field. 

7. Selected Example 
7.1. Staggered optimization of a fiber reinforced composite shell 
The shape of a bend cantilever is determined, assuming a composite shell with two layers of fiber reinforcement, 
Fig. 4. The filter technique has been applied to regularize the optimization of fiber orientation as well. The 
objective is maximum stiffness; altogether there are about 80,000 shape and fiber angle variables.  

7.2. VW-Passat side mirrors. 
The technique is successfully applied to all kind of structural and fluid shape optimization problems. As a 
representative example the shape optimization of the VW Passat side mirrors is presented which was done in close 
cooperation with Volkswagen and others partners of the EU-project FLOWHEAD, Figs. 5-6. The goal was to 
reduce the drag of the complete car by shape modifications of the mirrors only. That gives 32,000 design 
parameters for each mirror, i.e. 64,000 in total. A complete model of the car had to be simulated in an appropriate 
numerical wind tunnel using OpenFoam for CFD simulation, an adjoint solver provided by project partners, and 
CARAT++ for optimization which is the own optimization and structural simulation code. In further applications, 
the complete car body had been optimized which comes together with up to 3.5 Mio shape parameters. 
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Figure 4: Staggered shape and fiber optimization of a bend cantilever. Initial shape and loading (left), optimal 
shape equivalent to a B-spline surface, filter size relates to the visible bead width (right). 

Figure 5: Selected design scenarios for the VW-Passat side mirror. The dark parts are allowed to be modified by 
shape optimization. 
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Figure 6: Shape optimization of the side mirrors for drag reduction of the complete car referring to the center 
column of Fig. 5. Longitudinal section of the mirror body. The shape is morphed whilst the displayed feature lines 
are maintained. The shape of the mirror itself (left straight line) has been constrained to guarantee the usability. 

Therefore, the optimizer was prevented to simply remove the mirrors to reduce drag. 
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1. Abstract 
The use of giant boom cranes has gained an ever-increasing popularity due to their superior handling abilities. 

Lightweight design of a giant boom structure, which is usually achieved by topology optimization, becomes 
critical in reducing the energy consumption of the whole crane. In topology optimization of giant boom structures, 
geometrically nonlinear analysis has been adopted to capture the accurate structural response. A common issue is 
that the stiffness of some members keeps decreasing during the optimization process, which is often a generator of 
some slender struts leading to buckling issue. Therefore, a stability-ensured topology optimization algorithm for 
structural design is needed to maintain sufficient stability of boom structures while reducing the weight. 

The stability performance is studied either as a constraint or as an objective in topology optimization problems 
[1]. The evolutionary structural optimization (ESO) method was extended to linear buckling problems, and a 
simple method not involving variational calculus or Lagrangian multipliers was presented for the optimum design 
of columns and frames [2]. Kemmler et al. [3] considered the lowest critical load level as an inequality constraint 
and conducted topology optimization of structures including kinematics. The design problem of maximizing the 
buckling load factor of laminated composite shell structures was investigated using the discrete material 
optimization approach [4-6]. Lindgaard and Dahl [7] investigated a range of different compliance and buckling 
objective functions for maximizing the buckling resistance of a snap-through beam structure. The gradient-based 
optimization methods have been widely applied in many stability constrained problems, but they are not 
appropriate for topology optimization problems with large number of local stability constraints due to difficulties 
in calculating the sensitivities of numerous constraints with respect to each of the design variables. 

In the presence of aforementioned drawbacks of gradient-based methods, non-gradient-based methods are put 
forward to provide a convenient way for topology optimization of geometrically nonlinear boom structures. 
Although non-gradient nature-inspired methods are not viable alternatives for the vast majority of topology 
optimization problems, they actually solve discrete topology optimization problems with surprisingly high 
efficiency [8]. For example, the Soft Kill Option (SKO) method is a heuristic topology optimization method based 
on the simulation of the biological growth rule of biological growth carriers like bones [9]. It reduces human error 
to a minimum, and even in really complex cases makes it possible for the first time to find a draft design that is 
already close to the optimum [10]. Even though sensitivity analysis is not used, the  results obtained with the SKO 
method are very similar to those by gradient-based methods using OptiStruct [11, 12]. Our previous work [13] 
extended the SKO method into topology optimization of bars structures and sets the foundation for this research. 

A couple of member buckling judgment methods for bars structures have been presented in recent years. Shen 
et al. [14] proposed a middle plastic hinge model of the member, assuming that the member is in a completely 
elastic deformation condition before buckling. Fan et al. [15] adopted the curve of axial force-relative deflection of 
the member and the energy method to judge the member buckling. To better monitor the stability of the structure, 
global stability index (GSI) and compression member stability index (MSI) are defined in this paper. The global 
stability constraint can be easily formulated by GSI, while member buckling of any compression member can be 
detected by MSI. Apart from stability, the volume and stress should also be taken into consideration in topology 
optimization of boom structures so that the topology design is close to industrial application. However, it is very 
difficult to find optimization algorithms for discrete problems that can treat multiple non-trivial constraints [8]. 
The traditional volume constraint always conflicts with global stability and stress constraints, thus the 
predetermined target volume fraction may not be achieved. Adaptive volume constraint algorithm is proposed by 
Lin and Sheu [16] so that the maximum stress in the optimal structural configuration is guaranteed to be below the 
predefined stress limit. 

The stability indices are utilized as a part of a novel Stability-Ensured Soft Kill Option (SSKO) algorithm, 
which is a heuristic topology optimization approach proposed in this work on the basis of the existing SKO method. 
The objective is to minimize the discrepancy between structural volume and predetermined target volume, while 
the global stability, member stability and stress are regarded as constraints. To demonstrate the effectiveness of the 
proposed approach, the SSKO algorithm with different scenarios is applied to topology optimization of a ring 
crane boom, and stable topologies are achieved with high efficiency and consistency. 
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2. Keywords: boom structures, topology optimization, stability index, Stability-Ensured Soft Kill Option, 
geometric nonlinearity 

3. Stability indices 
3.1. Global stability index

For a static structure, the overall stiffness can be defined as the slope of load-displacement curve of a certain 
position at the last convergence incremental step, represented by gS . A positive gS infers a stable structure, while 

gS decreases to zero or a negative number when the structure becomes global buckling. In the process of topology 
optimization, we need to quantitatively express the global stability status for monitoring the global stability 
constraint, and the global stability index (GSI) is defined as 

( ) ( ) (0)/k k
g gGSI S S= , max0,1,...,k k=                                                          (1) 

where k is the indicator of iteration number, k=0 means the initial analysis of the structure, and kmax is the 
maximum number of iterations. GSI(k) is the global stability index in the k-th iteration, and ( )k

gS  denotes the overall 

stiffness of the structure in the k-th iteration. GSI(0) is equal to 1 if the whole structure is stable in the initial analysis. 
Similar to the overall stiffness, a positive GSI infers a stable structure, while it decreases to zero or a negative 
number when the structure becomes global buckling. 

3.2. Compression member stability index 
Fig.1 shows the deformation of a compression member in the global coordinate system O-XYZ. AB  is the 

initial configuration before deformation and A B  is the configuration after deformation. All the non-end loads 
have been converted to the end loads, such as gravity load and wind load. Two local coordinate systems, the 
member coordinate system -A xyz  and the member end coordinate system - o o oB x y z , are defined as follows. In 

the member coordinate system: the direction of vector A B  (pointing from A to B ) is defined as x+  direction, 
y+  direction is parallel to plane XY  and its angle with +Y  is smaller than or equal to 90°; in the case when axial 

x  is parallel to axial Z , axial y  is defined to be parallel to axial Y . In the member end coordinate system, the 
outward tangential direction at B  is defined as + ox  direction, oy+  direction is parallel to plane XY  and its angle 
with +Y  is smaller than or equal to 90°; similarly to the member coordinate system, when axial ox  is parallel to 
axial Z , axial oy  is defined to be parallel to axial Y . Both local coordinate systems are right-handed and depend 
on the configuration after deformation. The loading condition at the end B  is expressed in the member end 
coordinate system (Fig.1). They are three force components 

oxF ,
oyF ,

ozF  and three bending moments 

oxM ,
oyM ,

ozM .

Figure 1: Deformation of a compression member 

The axial vector of member AB  after deformation is 

A B=a                                                                              (2) 
The three force components 

oxF ,
oyF ,

ozF are projected onto the axial vector, and the projection sum is the 

axial force of member AB  after deformation 
( ) /aF = + +

o o ox y zF F F a a                                                                (3) 
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where  denotes the module of a vector, similarly hereinafter; a positive value of aF  means tension while a 
negative value means compression. 

The relative axial displacement between the ends of member AB  is written as 
u AB= a                                                                              (4) 

A positive value of u  means elongation while a negative value means shortening. 
For any member AB  in a frame structure, its axial stiffness at time t  can be defined as 

( ) /( )t t t t t t t
a a aS F F u u=                                                          (5) 

Here t t  is the time with a tiny time period t  difference prior to time t .
According to the definition of stability of compression members, when the axial compression force begins to 

decline and the absolute value of the relative axial displacement is still increasing, this member is buckling. In 
other words, a compression member is buckling when its t

aS  value changes from a positive number to a negative 
number. Hence, capturing the changes of axial stiffness can help judge whether a compression member is unstable. 
This judgment method is applicable to the elastic or elastoplastic, limit point, flexural or flexural-torsional 
buckling of compression member considering only the end forces. 

In the optimization process, we can quantitatively evaluate the compression member stability status by thee 
MSI defined as 

( ) ( ) (0)
( ) ( ) ( )/k k

j a j a jMSI S S= , max0,1,...,k k=                                                     (6) 

where ( )
( )

k
jMSI  is the stability index of member j in the k-th iteration. ( )

( )
k

a jS  denotes the axial stiffness of member j
in the k-th iteration, which is determined in Eq. (5). is equal to 1 if member j is stable in the initial analysis. When 

( )
( )

k
jMSI  decreases to zero or a negative value, the compression member j buckles. 

4. Optimization procedure 
4.1. Formulation of the optimization problem 

The stability-ensured topology optimization of boom structures with volume and stress considerations can be 
formulated as follows: 

find T
1 2( , , , )nE E E=E

min        
max target

1
( / )

n

oj j o
j

v E E V vf
=

× ( 1,2, , )j n=

s.t. 0GSI >                                                                                                (7) 
( ) 0>jMSI ( 1,2, , )j n=

[ ]max

min maxjE E E ( 1,2, , )j n=

Where jE is the Young's modulus of member j ( 1,2, , )j n= , ojv is the initial volume of member j ,
max

1
( / )

n

oj j
j

v E E
=

denotes the total volume of design domain, oV  is the total volume of initial structure in a design domain and 
targetvf is

the predetermined target volume fraction. GSI  is the global stability index defined in Eq. (1), max is the 
maximum stress, and [ ] is the allowable stress. minE and maxE are the lower and upper bounds of Young's modulus, 
respectively. 

4.2. SKO method for bars structures 
The SKO method has been used to obtain the optimal design of linear bars structures [13]. Using this method, 

once the maximum stress and reference stress of bars are obtained after finite element analysis, the temperature 
index of each bar is calculated by Eqs.(8)-(10) [9, 13]. The temperature index has no definite physical meaning, 
which is an intermediate variable bridging the stress to the Young's modulus. 

( ) ( 1) ( ) ( 1) ( )
( )( )k k k k k

j j j j ref jT T s=                                                                (8) 

( 1)

( 1) ( 1)

( 1)

100 100
0 0

otherwise

k
j

k k
j j

k
j

T
T T

T
=                                                                     (9) 
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( ) ( )
0 ( )/k k

j ref js T=                                                                             (10) 

where ( -1)k
j

is the maximum stress of member j in the (k-1)-th iteration, and ( )
( )

k
ref j

is the reference stress of 

member j in the k-th iteration. The reference stress equals either the average stress of all bars or the average stress 
of member j and its adjacent bars in a design domain. In general, the optimization process convergences faster by 
using the latter one as the reference stress, which is thus applied in this paper. ( )k

js is the step factor of member j in

the k-th iteration. ( )k
jT denotes the temperature index of member j in the k-th iteration, which has a linear 

relationship with the Young's modulus. (0) 0jT =  and 0 100T = . According to Eqs.(8)-(10), if ( -1)k
j

is higher than 
( )

( )
k

ref j
, the temperature index of member j will be reduced and its Young's modulus will be increased; otherwise, 

the Young's modulus of member j will be reduced. When ( 1) 0k
jT , maxE E= is the real material Young's modulus. 

When ( 1) 100k
jT , min max= = /1000E E E  [9]. 

4.3. Proposed Stability-Ensured Soft Kill Option (SSKO) algorithm 
This paper proposes a novel SSKO algorithm based on the SKO method for bars structures and stability indices. 

The SSKO algorithm is divided into three stages: initial analysis, preliminary optimization, and stability-ensured 
optimization, shown in Fig.2. Superior to other algorithms, SSKO detects the buckling chord members through 
MSI and subsequently freezes them and their relative web members during the stability-ensured optimization stage. 
The relative bracing system [17] is the most common bracing system applied in large scale three-dimensional 
frame structures, especially in boom structures. Fig.3 shows the initial structure of a typical standard section of 
boom structures, which is composed of chord members and web members. The exterior web members are located 
at the six outer surfaces of a standard section, and the other web members are interior web members. In order to 
reinforce the buckling chord members identified though MSI, we present a technique of “freeze”, which means 
that Young's modulus is set to the true value of the real material and cannot be modified. When a chord member is 
judged to be buckling we will first freeze itself and its exterior relative members (Fig.4(a)), then in the following 
iteration if the chord member is judged to be buckling again we will freeze its interior relative members (Fig.4(b)). 
A growth factor of the reference stress is introduced as a step function with respect to the iteration number to 
optimize the structure to have a volume close to the predefined target. All details will be explained in the 
following. 

    (2) Finite element analysis (FEA)
          and calculate      ,

   (1) Initialization: set all            ,           ,
                                           and generate
         the initial finite element model
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Figure 2: Flow chart of the SSKO algorithm 
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Columns
(Chord members)

Exterior bracing
(Exterior web members)

Interior bracing
(Interior web members)

(a)                    (b)
Figure 3: Initial structrue of a standard section        Figure 4: The relative members of a chord member 

In the initial analysis stage (STEPs 1-2), this algorithm defines an initial finite element model and conducts 
geometrically nonlinear analysis, then calculates the overall stiffness (0)

gS  and the axial stiffness of each 

compression member (Eq. (5)). 0jFr =  means that member j is not frozen, and 1jFr =  means member j is frozen. 

In the preliminary optimization stage (STEPs 3-4), the Young's modulus of each member is modified by the SKO 
Eqs. (8)-(10) directly, then the finite element analysis of the structure is carried out. Afterwards, the overall 
stiffness, the axial stiffness of compression members, GSI, MSI and the total volume change are calculated as the 
references of subsequent iterations. The stability-ensured optimization stage (STEPs 5-13) is the key part. 

STEP 5: If any of the following criteria (Eqs. (11)-(14)) is met, stop the procedure. Otherwise, move to STEP 6. 
( 1) ( 1) ( 2)k k kV V V=  and ( 2) ( 2) ( 3)k k kV V V=                                    (11) 

( 1)
target

kvf vf  and ( 1)kV                                                             (12) 

[ ]( 1)
max

k                                                                             (13) 

maxk k>                                                                              (14) 
In Eq. (11), the tolerance of total volume change  is a sufficently small positive real number. The total volume 
change among the last three iterations should be lower than . The volume fraction in the last iteration reaches the 
target volume fraction and the total volume change in the last iteration is lower than the tolerance, as shown in Eq. 
(12). Generally, the total volume change is required to be equal to zero in order to get a topology with the steady 
distribution of Young's modulus. The maximum stress in the last iteration is greater than the allowable stress (Eq. 
(13)). The maximum iteration number maxk  is a sufficently large positive integer. If the iteration number k becomes 
larger than maxk , the procedure terminates. 

STEP 6-STEP12: Check all members in a design domain one by one, and update the Young's modulus of each 
member. STEP 8 is to judge whether chord j is buckling by Eq. (6), and STEP 9 is to freeze chord j and its relative 
web members. If member j is not frozen, its Young's modulus can be modified by the SKO Eqs. (8)-(10). The 
reference stress ( )

( )
k

ref j
in the SKO equations should be raised by Eqs. (15)-(17) to make the structure to be close to 

the target volume fraction if the total volume change in the last iteration is lower than .
( ) ( ) ( )

( ) ( )
k k k

ref j ref j=                                                                     (15) 
( ) ( 1) ( )k k k= +                                                                    (16) 

( 1)
( )

max
target

1
1

k
k vf

vf
=                                                                  (17) 

Here, ( )k denotes the growth factor of the reference stress, and (0) 1= . ( )k means the increment of the growth 
fact, and max  is the maximum increment of the growth fact in each iteration, such as max 0.15= . When the 
volume fraction of the structure becomes closer to the target volume fraction, the increment of the growth factor 
gets larger. 

The modified reference stress may be larger than the allowable stress sometimes, so this procedure records the 
original reference stress ( )

( )
origin k
ref ref j= , then adjusts the reference stress and the growth factor by Eqs. (18)-(19). 

[ ]( )
( )

k
ref j =                                                                              (18) 

[ ]( ) /k origin
ref=                                                                         (19) 

STEP 13: Execute FEA, then calculate ( )k
gS , ( )

( )
k

a jS , ( )kGSI , ( )
( )

k
jMSI ( 1,2, )j n=  and ( )kV . Reset 1j = , go 

back to STEP 5. 
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5. An illustrative example 
A 45.5m-long combined boom of 2500-tonne ring crane (see Fig.5) is studied as an illustrative example. All 

the twelve standard sections are replaced by typical standard sections (Fig.3 and Fig.6). Considering the symmetry 
of the combined boom, only half structure is analyzed. Fig.7 shows the finite element model of the half-boom. The 
left part of Fig.7 is the view of the luffing plane (XY plane), and the right part is the view of the swing plane (YZ 
plane). The range of the boom is 10m (“range” refers to the horizontal distance between the center of boom foot 
pins and boom tip pins), a lifting load FQ=14320000N is applied at the lifting point, and a +X direction wind load 
FW=26778N is uniformly distributed on end points of chord members of standard sections. 

To improve the calculation efficiency, the plate structures at the ends of the boom are simplified as rigid bars, 
which belong to non-design domain. At the top of boom, only the Z-axis rotational and Y-axis translational 
degrees of freedom are released. At the bottom of boom, only the Z-axis rotational degree of freedom is released. 
At the symmetry plane of the whole combined boom, the Z-axis translational degree of freedom is constrained. 

Figure 5: A 45.5m boom structure    Figure 6: Dimensions of standard section    Figure 7: FE model of half-boom 

Three scenarios are applied in the topology optimization of this boom structure, and their performances are 
listed in Table 2. We make 

max
equal a large number in scenario 2-1, intentionally to get a fast convergence 

speed, but it turns out not to be the case. Fig.8 is the optimization results using scenario 2-1 (The layout of Fig.8(a) 
and Fig.9 is the same as Fig.7). It is obvious that this topology is not the optimal solution because the stress of most 
retained members is lower than 380MPa and the maximum stress which is above 500MPa happens at a local 
connection area (see Fig.8(a)). Fig.8(b) shows that the maximum stress begins to fluctuate divergently from the 
40th iteration and goes beyond the allowable stress in the 141st iteration resulting in termination of optimization 
process. The GSI decreases to a minimum of 0.5465 in the 139th iteration but the structure still keeps in a stable 
state. The volume fraction also begins to fluctuate divergently from the 40th iteration as a result of the growth 
factor of the reference stress  exceeding 2.5. When the growth factor becomes large, the reference stress gets an 
enormous growth at each step that leads to a sharp decrease of the volume fraction (Eq. (8)). It means that a 
considerable portion of material is removed which usually causes the occurrence of stress concentration (see 
Fig.8(a)). The maximum stresses of many members become higher than the reference stress in the subsequent 
iterations, so the volume fraction increases after its significant decrease. It has also been demonstrated by other 
case studies we conducted that under most circumstances  should not be larger than 2.5 in order to ensure the 
stability of optimization. 

Table 1: The performances of SSKO algorithm in boom structure problem 

Scenario targetvf max [ ] GSI Volume fraction Max. stress No. of Iterations 
2-1 0.5 0.90 500 0.8969 0.8163 571.14 141 
2-2 0.5 0.30 500 0.9860 0.7823 173.68 84 
2-3 0.5 0.15 500 0.9860 0.7823 173.68 129 
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(a)                                                                              (b) 
Figure 8:  Optimization results by scenario 2-1 (a) von Mises stress (b) Convergence history 

The maximum increment of the growth factor is reduced in scenarios 2-2 and 2-3 to make the optimization process 
more stable. The optimization results (see Fig.9) are the same by either scenario 2-2 or 2-3, which justifies the 
proposed SSKO algorithm. Fig.10 shows the convergence histories of the SSKO algorithm in boom structure 
problem by strategies 2-2 and 2-3 respectively. The procedures converge after several step growths of , and the 
scenario 2-2 has a higher optimization efficiency than the scenario 2-3. The anti-buckling mechanism works well 
since the GSI keeps at around 1. The volume fraction decreases to 0.7823 and the maximum stress becomes 
173.68MPa eventually. 

(a)                                                                        (b)
Figure 9:  Optimization results by either scenario 2-2 or 2-3 (a) von Mises stress (b) displacement 

(a)                                                                                        (b) 
Figure 10:  Convergence histories of SSKO algorithm by scenarios (a)2-2 (b)2-3, respectively 

The SSKO algorithm reduces the total volume significantly and gives a stable optimal design with the 
maximum stress being lower than the predetermined stress limit as long as we select an appropriate maximum 
increment of the growth factor. This example also demonstrates the high efficiency since it convergences to the 
same result through only a few dozens of iterations. 

6. Conclusions
This paper presents a Stability-Ensured Soft Kill Option (SSKO) algorithm for structural topology design of 

geometrically nonlinear boom structures including stress constraints. This algorithm is developed for bars 
structures with large number of constraints by employing the proposed global stability index (GSI), compression 
member stability index (MSI) and the knowledge of bracing systems for resisting buckling of columns. The MSI 
can be used to distinguish the buckling of almost any kinds of compression members in boom structures. The 
results of the boom structure problem indicates that an appropriate maximum increment of the growth factor plays 
a crucial role in converging to the optimal design. The consistent optimization results using different scenarios 
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demonstrate the applicability of the SSKO algorithm. The proposed algorithm can be applied to optimize other 
boom structures with different layout of web members as long as we develop a proper freezing strategy for the 
specific initial structure. 
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Abstract  
This article presents an algorithm that eliminates some of the adverse influences of the void elements used in 

nonlinear structural topology optimization with a buckling constraint by using moving iso-surface threshold 
(MIST) method. The basic idea of this algorithm is to conduct the finite element analysis in a sub design domain 
with solid and grey elements and to construct each updated response function in the full design domain. In this 
algorithm, void elements are excluded in all the finite element analyses but included in design variable update. In 
doing so in MIST, the material removed with void elements can reappear. In the present study, the strain energy 
density at the final state in a nonlinear finite element analysis is selected as the response function in MIST to 
minimize the nonlinear compliance, and the iso-surface threshold value is determined by using a prescribed 
volume constraint and then used to define optimal topology containing solid materials only. Exclusion of void 
elements in all the finite element analyses allows avoidance of several numerical issues, such as material 
reappearance, discontinuous design and numerical instability encountered in topology optimization for structures, 
in particular, with large displacements. In the present algorithm, a buckling constraint is also introduced to 
consider the influence of load level on nonlinear topology optimization. 
Keywords: optimization, nonlinearity, void element, numerical stability, buckling constraint 

1. Introduction 
It is known that the inclusion of large displacements in topology optimizations, for example, to minimize the 

structural compliance, can significantly affect the final designs and serious numerical issues were encountered in 
nonlinear topology optimizations owing to the use of void elements [1-6]. These issues include: 1) the 
geometrically nonlinear finite element analysis (FEA) is hardly convergent to the full level of an applied loading 
state due to excessively large displacements caused by rather low stiffness of the void elements; 2) the 
convergence is poor as the excessively large displacements cause mesh distortions which in turn deteriorate the 
displacement fields; and 3) numerical instabilities can occur in a localized region with a cluster of void elements so 
that the obtained topology may not be well defined and practical. Therefore, an adequate treatment of the void 
elements is essential in order to effectively conduct topology optimization for geometrically nonlinear structures. 

A number of methods have been proposed to attempt to circumvent the influences of void elements in 
topology optimization problem to minimize nonlinear compliance. One direct approach to completely solve the 
issues is to remove all void elements. However, this creates other issues, e.g. material reappearance, disconnected 
or disjointed structure and design domain re-meshing. This study aims to develop an effective algorithm that 
resolves these issues by excluding all void elements in FEA and including all of them in design updates. 

As the optimum topology obtained via minimizing the nonlinear compliance can be highly dependent on the 
level of the applied loads, in this paper, we propose a novel algorithm by introducing a buckling constraint in 
which the applied load varied with iteration is constrained by the critical buckling factor.  This is because buckling 
is one of the most serious structural failure mechanisms, particularly for the optimized structures as they are often 
thin-walled, therefore the introduction of the buckling constraint in general form is also important in topology 
optimization. 

For topology optimization problems involving buckling, there also exist severe numerical difficulties due to 
the adverse effects of low density and void elements [7-13]. In the present novel algorithm, these adverse 
influences can also be eliminated effectively via the exclusion and inclusion of all void elements in FEA and 
design updates. 

2. Problem statement 
Let us consider the minimum mean compliance problem for nonlinear structures. To use MIST [14], the 

nonlinear compliance needs to be expressed in an integral form.  When the external loads are expressed as a 
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function of time nt  and the total Lagrangian formulation is used to describe the equilibrium equations in 
( nn tt ), the nonlinear compliance can be expressed as: 
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where }{ iF  denotes the stress resultant vector in the state of time it ; u  is the displacement vector; Lt  denotes a 
final equilibrium state with full loads; 1 denotes design domain 1 that contains solid and grey elements only; ijS
and ij  are the Piola-Kirchhoff stress and the Green-Lagrange strain. For linearly elastic material, 
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We now define the MIST formulation for the problem of minimizing nonlinear compliance with a buckling 
constraint as follows: 
Minimize: C                                                                                                                                                       (2a) 
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where ex  denotes the design variables, e.g. representing solid ( 1ex ), grey ( 1ex ) and void ( ex0 )

elements;  is the small parameter (e.g., 310 ); Ve and V represent volumes of element e and the design 
domain ( ); Vf is the prescribed volume fraction; sN  is the number of solid and grey elements in domain 1 
( 1 ); 2  is domain 2 with void elements only; eN  is the total element number;  denotes the response function; 

ij
t SL  and ij

tL  are the Piola-Kirchhoff stress and the Green-Lagrange strain in a final state with the full load; }{R

is the residual force; 1  is the buckling factor of mode 1.   

 The residual force }{R  in the equilibrium equations and the buckling factor 1  are defined as: 
}{}{}{ rFFR                                                                                                                                                (3) 

nnnn PPP 111                                                                                                                                          (4) 

where }{F  is the external force vector; }{ rF  denotes the stress resultant vector in the final state; kF  and ku  are 
the external force component and the corresponding displacement; FN  and LN  are numbers of force components 
and load increments; nP  represents the final state of load increments; 1nP  is the last 2nd load step; and 1n  is the 
buckling factor of mode 1 due to load increment nP .
 It is worth noting that equation (2b) shows that all FEA are conducted in 1  and equation (2c) reveals that 
the response function  is constructed in  which enables design updates in full design domain. 

3. An efficient MIST algorithm
The MIST involves finding and updating an iso-surface threshold value for the chosen response function 

subjected to a prescribed constraint.  The objective function in MIST can be expressed as [14]: 
dxtHxJ ))(,()(                                                                                                                                    (5) 

where )(x  is the response function; ))(,( xtH  is the Heaviside function: 1))(,( xtH  for every x in the set 
of tx)( , and 0))(,( xtH  for x in the set of tx)( ;  represents the full design domain. When the 
threshold level t is determined, the design variable x is defined by: 
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                                                                                                                                        (6) 

where x = 1 and x = 0 represent solid and void at location x.
In the finite element based optimization, the response function is constructed using the nodal physical 

quantities and the material density ex  (e = 1, 2 … Ne) defined by the fraction of the solid material in element e are 

used as the design variables. At iteration k, 1)( )1(
kex  if kk t at all nodes of element e; 0)( )1(

kex  if kk t  at 

all nodes and eepjke AAx /)( )1(  when kk t  at some nodes, where epjA  is the project area of the )( kt  ( kt )
within the element. The design variables are updated by: 
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where mvk  is the move limit and 10 mvk .
A distinctive feature of the present MIST algorithm is the use of two meshes that facilitate element removal 

and reappearance easily. One mesh is fixed for the full design domain  used for constructing the  function and 
determining design variable updates, and the other is dynamic denoted 1  with solid and grey elements only for 
conducting all FEA. As all void elements are excluded in the FEA, thus the associated adverse effects are 
completely eradicated. The re-meshing issue can be solved by renumbering the elements in 1  and the material 
reappearance is automatically realized by using equations (2c), (7) and (8). Another feature of the MIST algorithm 
is that it can be easily interfaced with any commercially available FEA software.  In this study, the MIST algorithm 
is interfaced with NASTRAN. 

4. A MIST algorithm for including a buckling constraint 
It is known that the topology optimization of geometrically nonlinear structures can rely on the magnitude of 

an applied load. This raises an issue which one is the optimal topology in a topology design optimization. We 
propose that the topology obtained by the maximum load without causing buckling be the optimum one. This can 
be defined by applying the buckling constraint as given in Eq. (2b). 

By using the MIST, the optimization can be conducted by applying load: 

1
1

1 k
k

k PP                                                                                                                                                        (9) 

where 1kP   and kP  are the applied loads at iteration (k-1) and k; 1
1
k  is the buckling factor in equation (4) at 

iteration (k-1). 
As discussed in [9, 15], an accurate calculation of a linear buckling factor can be very difficult in topology 

optimization due to the impact of low density and void elements. It is even more difficult to accurately calculate 
the nonlinear buckling factor, as indicated by equation (4). Hence it is evident that the removal of all void elements 
is of paramount importance in solving design optimization problem, such as to minimize nonlinear structural 
compliance. An approach for the removal of void elements and material reappearance in MIST has been developed 
to minimize the nonlinear compliance of a structure with material and geometric nonlinearities [16]. This method 
is extended in this study to the topology optimization for minimum nonlinear compliance with the buckling 
constraint as the optimal design depends on the magnitude of the applied load. 
 When the material nonlinearity is not considered, the linear buckling factor may be used to reduce the 
computational cost as it is usually slightly larger than the nonlinear buckling factor, and hence it is used in this 
study for simplicity. When there is no buckling mode in an optimal structure, the maximum stress constraint may 
be introduced to obtain the optimal topology for the nonlinear compliance. In the early iterations, the buckling 
factor may be sharply altered due to the effects of low density elements. In practical computations, the buckling 
constraint can be introduced after certain number of iteration. In all the present computation, the buckling 
constraint is applied when the removal of void elements commences. 

3. Numerical results and discussion 
Numerical results are presented for the two samples shown in Figure 1 to illustrate the effectiveness of the 

present MIST algorithm for topology optimization of geometrically nonlinear structures.   
3.1 Optimization for a specific load 

Sample 1 of Figure 1(a) was studied in [17-19]. The data given in Figure 1(a) are the same as those in [19]. 
When F = 2 MN, the optimal topologies btained by using the present algorithm are illustrated in Figure 2(a) and 
2(b), which are similar to those in [19]. However, the linear and nonlinear compliances predicted by the present 
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computation are 24.5% and 9.64% lower than those (C* in Figure 2(a) and (b)) in [19].  Variations of the nonlinear 
compliance (C), the buckling factor (Eig_1) and the numbers of void (N_void) and solid (N-solid) elements are 
illustrated in Figure 2(c). 

                   1500                  1500 
                                       F

(a) 

E = 2 GPa,  = 0.3; Vf = 0.3 

Size: 3000 1000 100 (mm3)

                                      (b)                                     F

E = 3 GPa,  = 0.4; Vf = 0.5 

Size: 1000 250 100 (mm3)

Figure 1 Design domains of samples 1 (mesh: 120 40) and 2 (mesh: 160 40) 

 Sample 2 in Figure 1(b) was investigated by many researchers [1, 2, 6, 19, 20]. When F = 144 kN, the optimal 
topologies obtained in the present computation are plotted in Figure 3, which collate well with those in [1]. The 
present linear and nonlinear compliances are 8.74% and 9.03% lower than those (C* in Figure 3) in [1]. 
 Figures 2 and 3 show that the present nonlinear compliances are around 9% lower than those in the literature 
even though the topologies were similar; this could be due to the effects of the void elements on the accurate 
estimation of the nonlinear compliances. Figure 2(c) also indicates that the all the quantities converge almost 
within 30 iterations. Material distributions or densities at iterations 1, 5, 10 and 30 are given in Figure 4. It can be 
seen that the removal of void elements and material reappearance can be realized in the present computation. At 
iteration 30, C = 432.7 kJ, 1 = 6.402, N_void = 3214 and 1296; and at iteration 100, these data are 430.5 kJ, 6.418, 
3234 and 1308, respectively.  Figures 2(c) and 4 reveal a fast convergence rate of the present algorithm. 

(a) C = 595 kJ (C* = 788 kJ) 

(c) Nonlinear compliance versus iteration (b) C = 431 kJ (C* = 477 kJ) 
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Figure 2 Optimization for sample 1: (a) optimal topology for linear analysis; (b) optimal design for nonlinear 
analysis; (c) nonlinear compliance and removal of void elements 

(a) C = 24.64 kJ (C* = 27.00 kJ) (b) C = 23.58 kJ (C* = 25.92 kJ) 
0 200 400 600 800 1000

-100

0

100

0 200 400 600 800 1000
-100
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Figure 3 Optimization for sample 2: (a) topology for linear analysis; (b) optimal design for nonlinear analysis 

(a) Iteration = 1; C = 1579 kJ (c) Iteration = 10; C = 457.7 kJ 

(b) Iteration = 5; C = 577.8 kJ (d) Iteration = 30; C = 432.7 kJ 

Figure 4 Material distributions at iterations 1, 5, 10 and 30 
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(a) linear analysis (b) nonlinear analysis 
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Figure 5 A comparison of the compliances predicted by the MIST and SIMP [19](quantities with asterisks) 

A comparison of the compliance versus iteration curves for linear and nonlinear cases computed by the 
present algorithm and in [19] is illustrated in Figure 5. It is evident that the numerical stability, convergence 
performance and the minimum compliances of the present computation appear better than those in [19] where the 
SIMP was used by combining a meshless method with a density interpolation to treat void elements. 

For the cases of F = -10 kN and F = -1 MN, the present optimal designs are plotted in Figure 6.  It is obvious 
that the two designs are different. Different designs were also observed for different load levels in [1] for sample 2. 
That is, topologies can be dependent on the load levels in optimization for nonlinear compliance. In the present 
algorithm, the buckling constraint is used to find the optimal designs. 

(a) F = - 10 kN; C = 14.1 J (b) F = -1 MN; C = 163 kJ (c) F = -1.445 MN; C = 277 kJ 
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Figure 6 Optimization for nonlinear compliance of sample 1 

3.2 Optimal design with buckling constraint 
In the present iteration process, equation (9) is applied when the removal of void elements starts. The optimal 

topology to minimize the nonlinear compliance for sample 2 predicted by the present algorithm is shown in Figure 
6(c), which is different from those in Figure 6(a) or 6(b). Figure 7(a) illustrates the variations of C, 1, load level, 
the numbers of void and solid elements with iteration number. In the iteration process, F is chosen as - 1MN 
initially.  It can be seen that: 1) 1 1 after iteration 33; 2) the maximum load level is F = -1.445 MN; 3) good 
convergences are achieved for these quantities in Figure 7(a). Figures 6 and 7(a) indicate the importance of 
introducing the buckling constraint in the optimization of geometrically nonlinear structures. Figure 7(b) 
illustrates the convergence histories of the iso-surface level (t) and compliance (C) in linear and nonlinear 
analyses. It is interesting to note that the fluctuation in t in the linear analysis is larger than that in the nonlinear 
analysis. After iteration 60, t and C are converged for linear and nonlinear cases.  

(a) Iterative process for nonlinear compliance (b) Variations of iso-surface level and compliance  
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Figure 7 (a) optimization for nonlinear compliance with the maximum load of -1.445 MN; (b) variations of t and C

4. Concluding remarks 
Topology optimization for geometrically nonlinear compliance is re-defined as new formulation by 

removing void elements in FEA and introducing the buckling constraint. Numerical results show that the 
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numerical issues in topology optimization for geometrically nonlinear structures can be resolved by excluding 
void elements in all nonlinear FEA and including them in the design variable update allowing reappearance of the 
material removed in previous iteration in the present MIST algorithm. By introducing a buckling constraint, 
optimal design can be obtained for geometrically nonlinear structures and the maximum load level without 
buckling can also be determined. 
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1. Abstract 
A further improvement in the drawability may lead to a further light-weight cylindrical drawn cup, hence to a 
more environment-friendly and sustainable industrial product such as an aluminium beverage can & bottle.
A pulsating blank holder force (BHF) with a frequency ranged from ultra-high to ultra-low values, is reported 
that can improve the drawability, as compared with a static constant BHF. However, it still needs a lot of 
efforts before applying the pulsating BHF industrially, for example, investigation into the optimum property 
of vibration added to the blank holder during deep drawing of cylindrical cups. 
This study implemented an optimization on the properties of the vibration such as the oscillation amplitude, 
frequency and phase, by applying the structure optimization technique, based on numerical simulations of the 
cup drawing process. Parameters used to determine a sinusoidal vibration wave are taken as design variables. 
Wrinkling and tearing are major defects in deep drawing, therefore are considered as design constraints. The 
limit drawing ratio (LDR) is one of indicators to evaluate the drawability, therefore LDR is maximized
through maximizing the limiting drawing depth that could be achieved for a specified drawing ratio. A 
sequential approximate optimization method is successfully applied to perform design optimization, which 
leading to a satisfied improvement in the drawability.
2. Keywords: Deep drawing process, Formability, Cylindrical cup, Pulsating blank holder force, Optimum design.

3. Introduction
As shown in Figure 1, during deep drawing of a cylindrical cup, the circular punch forces the blank through 
the draw die and forms into a cup. The blank holder is used to prevent it from wrinkling due to the tangential 
compressive strain in the forming zone. The limit drawing ratio (LDR), defined as the ratio of the maximum 
blank diameter which is successfully drawn to the punch diameter, is one of indicators to evaluate the 
drawability. Factors causing wrinkling, tearing and earring during deep drawing, such as material properties 
and shape dimensions of the blank / tools, lubrication condition between the blank and tools, temperature and 
forming speed, have been extensively studied experimentally, theoretically and numerically [1-10].
A further improvement in the sheet formability may lead to a further light-weight cylindrical drawn cup, 
hence to a more environment-friendly and sustainable industrial product, for example, an aluminium 
beverage can & bottle (Figure 2) [11]. To improve formability and forming quality, a lot of techniques have 
been investigated, for example, groove pressing the blank, coating the tools, shaping the surfaces of the blank 
holder, adding lubrication holes on the die shoulder, applying an adaptive blank holder force (BHF) varying 
with the punch stroke, and applying a circumferentially segmented BHF [12-18]. Moreover, forming 
processes with hydraulic pressure [19-21], with high-pressured water jet [22], with a radial inward force in 
the flange region [23], are also being developed.
Recently, a pulsating BHF with a frequency ranged from ultra-high to ultra-low values is reported that can 
reduce friction and deformation resistance, hence can increase LDR, as compared with a static constant BHF
[24-27]. With industrial technology fast developing, practicality of the pulsating BHF may be expected. 
However, it still needs a lot of efforts before applying the pulsating BHF industrially, for example, 
investigation into the optimum property of vibration added to the blank holder during deep drawing of 
cylindrical cups. 
On the other hand, research and development of the structural optimization technique and its applications on
the metal sheet forming process have been going on. The response surface approximation method is one of 
practical optimization methods, therefore is applied widely in industry. To efficiently obtain accurate 
response surfaces, the orthogonal array in the design-of-experiment technique is used [28]. Recently, several 
new techniques have been proposed and applied to improve accuracy of the approximation. The sequential 
approximate optimization (SAO) method using radial basis function (RBF) network has been applied to 
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Figure 1: Deep drawing of cylindrical cups                                    Figure 2: An aluminium beverage bottle

optimize a series of sheet metal forming processes, for efficiently searching a highly accurate global optimal 
solution [29-31].
This study optimizes the properties of the vibration such as the amplitude, frequency and phase, based on 
deep drawing simulations. Parameters used to determine a sinusoidal vibration wave are taken as design 
variables. Wrinkling and tearing are considered as design constraints. LDR is maximized through 
maximizing the limiting drawing depth that could be achieved for a specified larger drawing ratio. The SAO 
method using RBF network is applied to perform design optimization.

4. Deep drawing process simulation 
A three-dimensional finite element analysis model is established to simulate deep drawing process of the 
cylindrical cup with the static constant BHF and with various pulsating BHF. 

4.1. Finite element model
Figure 3 shows the deep drawing analysis model used in this study [18]. The flat circular blank is clamped by 
the circular die ring and the blank holder with smooth surfaces. In order to save calculating cost, one-forth 
finite element model is adopted due to symmetry. The explicit finite element code, LS-DYNA is utilized to 
perform the deep drawing simulation.
The blank with 83.44mm diameter and 0.208mm initial uniform thickness t0, is divised by four-node shell 
elements. The aluminium blank is defined as an elasto-plastic body, and the material properties are assumed 
as Young’s modulus: 68.9GPa, Poisson’s ratio: 0.33. 
The diameter of the punch is 45.72 mm; hence, the draw ratio comes to be 1.8, which is larger than usual. The 
punch moves at a constant speed of v0 = 350 mm/s. The diameter of the die is 46.74 mm. Both the die and 
blank holder are defined as rigid bodies. The friction coefficient between tools and the blank is assumed as 
0.05.
The pulsating BHF used in this study is defined in Eq. (1),
                               PBHF = F0+ aF0sin( ft + )                                                                                      (1) 
Where, F0 is a primary BHF, f denotes the pulsating frequency, denotes the phase, and aF0 represents the 
amplitude, a is a scalar ranged from 0 to 1, t is punch moving time. Figure 4 shows example sine curves for 
calculating the pulsating BHF defined by the same parameters of F0, a, f but different 

                          
Figure 3 : Numerical analysis model                     Figure 4: Example curves of palsating BHF
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4.2. Simulation results
In deep drawing process, excessive material flow causes wrinkling at the flange (Figure 5(a)) while 
insufficient material flow leads to thinning and tearing of the cup (Figure 5(b)). For convenient, the ratio (rw
= Dmax / t0) of the maximum axial distance Dmax between the blank holder and the die during the deep drawing 
process to the initial blank thickness t0, is used to predict the risk of wrinkling. The ratio (rt = tmin / t0) of the 
minimum thickness tmin of the cup to the initial blank thickness t0, is used to predict the risk of tearing. In this 
study, defects of the drawn cup are determined when rw is more than 1.2 or rt is less than 0.8.
To a given relatively large draw ratio, the limiting drawing depth La that can be achieved before wrinkling or
tearing occurs, during the deep drawing process, is used as an indicator to compare the drawability. 
In order to observe the influences of the parameters of the pulsating BHF on the drawability, deep drawing 
simulations were carried out for several models with the static constant BHF as well as with various pulsating 
blank holder force, as shown in Table 1 and Figure 6. Model 1 and Model 2 were applied by the static 
constant BHF, while else models were applied by the pulsating BHF of various vibration properties defined 
by Eq.(1) in terms of four parameters. The points at where wrinkling or tearing occurred, are marked with 
symbols for each model in the same figure, respectively.

(a)  Wrinkling                                              (b) Tearing

Figure 5: Defects in deep drawing process

Table 1 Finite element analysis results
Model F0 / kN a f / Hz La / mm Results

1 1.000 N/A N/A N/A 12.20 Wrinkling
2 2.000 N/A N/A N/A 9.10 Tearing
3 4.786 0.815 5.536 3.899 13.7 Wrinkling
4 2.264 0.332 14.062 4.866 9.45 Tearing
5 0.539 0.768 15.815 3.421 2.45 Wrinkling
6 3.835 0.624 1.249 2.497 4.20 Tearing

Figure 6: Simulation results of models applied by various BHF
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Simulation results, for example, results of Model 1 and Model 2 show that the given blank cannot be drawn
successfully into a cup with the given tooling systems. Wrinkling occurs if BHF is too small as that in Model 
1, and tearing occurs if BHF is too large as that in Model 2. 
Simulation results of Model 3 and Model 4 show that, by applying the pulsating BHF, the limiting drawing 
depth La can be extended, in other words, failure can be delayed, and a deeper cup may be obtained. 
However, simulation results of Model 5 and Model 6 show that, by applying the pulsating BHF, the limiting 
drawing depth La also may be shortened, which is not expected.
On the basis of numerical simulation results, it is confirmed that the parameters of the pulsating BHF do 
influence the deep drawing process, and that need to be investigated and optimized to obtain a drawn cup of a 
deeper depth, hence, to achieve a larger drawing ratio.

5. Optimization of pulsating BHF
5.1. Formulation of the optimization problem
The parameters of the pulsating BHF are selected as design variables. The objective of the optimization is to 
maximize the limiting drawing depth La for a specific larger drawing ratio. The ratios rw and rt are defined as 
design constraints to avoid wrinkling and tearing. The optimization problem is then posted as 
Find design variables:  X = {xi}, i = 1, …, n       (n: the number of design variables)                                   (2)
Maximize f (X) = La (X) ,                                                                                                                                    (3)
Subject to
g1 = rw / rwmax - 1 0,                                                                                                                           (4)
g2 = rtmin / rt - 1 0,                                                                                                                           (5)
xi

L xi xi
U, i = 1, …, n                                                                                                                             (6)

where rwmax is the allowable upper bound of the ratio rw, and rtmin is the allowable lower bound of the ratio rt.
xi

L and xi
U are the upper and lower bounds of design variables i, respectively. It is noted that if the given blank 

is successfully drawn into the cups without defects determined by Eq.(4) and Eq.(5), the values of the design 
variables are considered as optimal values, though La may not be the deepest one. Therefore, the optimal 
solution for the pulsating BPF may not be only one.

5.2. Optimization results
The SAO method using RBF network is adopted to perform design optimization. In the optimizing process, 
at first, the response surface of the objective and constraint functions in terms of design variables, is
constructed and optimized based on the numerical simulation results of a number of sampling design points.
The optimal solution of the response surface is then added as a new sampling design point to improve the 
local approximation accuracy, and several new sampling points around the unexplored region in the design 
space are also added to improve global approximation accuracy. At last, the response surface is reconstructed 
and optimized to get a better optimal solution. This process is repeated until the prescribed terminal criterion 
is satisfied.
The pulsating BHF applied in the deep drawing process described in this study is optimized. Four parameters 
of pulsating BHF, F0, a, f and are selected as design variables. The upper and lower bounds of the design 
variables are given as [0.10, 5.00] for design variable F0, [0, 1] for a, [1, 20] for f, and [0, 2 ] for The rwmax
and rtmin are considered as 1.2 and 0.8, respectively.
The optimal values of the design variables are obtained as F0= 4.78 kN, a = 0.826, f =4.177, , and 
the optimal pulsating BHF is then calculated by substituting the above four optimal values into Eq.(1), as 
shown in Figure 7. It is clear that the optimal pulsating BHF curve bypassed both of the wrinkling zone and 
the tearing zone. The objective value is 29.75 mm, and it is observed that the given blank is drawn 
successfully into a cup without wrinkling and tearing, as shown in Figure 8. Consequently, it is also may 
concluded that, a specified larger LDR may be achieved by applying an optimal pulsating BHF during the 
deep drawing process.

6. Conclusions
This paper proposed a technique to optimize the pulsating BHF to maximize the limiting drawing depth, 
consequently, to achieve a specified lager LDR. The finite element analysis model was built to simulate deep 
drawing process of the cylindrical cup using the pulsating BHF, and effects of the pulsating BHF on the 
drawability were investigated. It’s found that the drawability may be improved by applying a proper 
pulsating BHF. The sequential approximate optimization method was then applied to efficiently search for 
the optimal pulsating BHF. The proposed optimization technique also can be applied to other optimization 
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problems of the pulsating BHF under different conditions. 

Figure 7: Optimized pulsating BHF

Figure 8: Drawn cup using optimized pulsating BHF
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Abstract  
The objective of this study is to develop a computational method for calculating the acoustic radiation and 
sensitivity analysis of a structure subjected to a stochastic excitation, based on the finite element method (FEM), 
the indirect boundary element method (IBEM) and the pseudo excitation method (PEM). In this work, FEM and 
IBEM are used respectively to calculate the dynamic and acoustic responses of a structure, and PEM is used to 
determine the acoustic stochastic responses for the acoustic radiation problems via transforming the random 
responses into the structural-acoustic harmonic ones. Using the PEM, the acoustic radiation sensitivities of the 
structure are developed in the context of the transformed harmonic sensitivity analyses, and they are validated by 
comparing with the results predicted using the finite difference method. Numerical example is given to 
demonstrate the effectiveness of the methods proposed in this paper. 
Keywords: Sensitivity analysis, Stochastic Excitation, FEM, IBEM, PEM 

1. Introduction 
The sensitivity analysis and design optimization have become an effective means of reducing vibration and noise 
in many areas of practical engineering in recent years. Wang and Lee [1] developed a global design sensitivity 
analysis of exterior noise with respect to structural sizing design variables. Allen et al. [2] presented a study on the 
stochastic acoustic radiation and sensitivity analysis. Liu et al. [3] proposed a new effective method for computing 
the acoustic radiation and its sensitivity analysis of a structure subject to a stochastic excitation. 
The aim of the present work is to determine the acoustic power spectral density (PSD) and its sensitivity on a 
structural-acoustic system subjected to a stochastic excitation. FEM and IBEM are combined with an accurate and 
highly effective algorithm for stationary/non-stationary random structural response analysis, named as PEM, to 
solve the acoustic random radiation problem. PEM and FEM are used to calculate the pseudo responses of the 
structural vibration when the stochastic excitations are applied on the structure. IBEM is used to calculate the 
random acoustic radiation analysis, in which the structural pseudo response constitutes the boundary condition in 
acoustic indirect boundary element analysis. Thus, the acoustic PSD analysis could be obtained by means of 
harmonic analysis, and this method will make the calculation procedure of random acoustic analysis highly simple 
and efficient. 

2. Structural random response analysis 
A brief introduction of the structural random response analysis is given based on the PEM in this section [4], and 
that constitutes the boundary condition of the subsequent acoustic random response analysis. The finite element 
system equation for a structure subjected to a single random excitation can be expressed as follows: 

.. .
[ ]{ } [ ]{ } [ ]{ } { } ( )xM y C y K y R x t   (1) 

where ( )x t  is a stationary random process with a specified PSD ( )xxS  for which the transformation between 
them is not considered, and { }xR  is a given constant vector represents the distribution of the random excitation.

According to the PEM, substituting ( ) ( ) i t
xxx t S e , as a pseudo excitation ( #  represents the pseudo variable 

of the random variable # ), into Eq.(1), it leads to the following traditional harmonic equation: 
.. .

[ ]{ } [ ]{ } [ ]{ } { } ( ) i t
x xxM y C y K y R S e   (2) 

The solution of Eq.(2) can be easily obtained , such as { ( )} { ( )} i ty t Y e , by using mode-superposition method 
or other methods, the PSD matrix of { }y  can be computed as follows: 

* T * T[ ( )] { } { } { ( )} { ( )}yyS y y Y Y   (3) 
where the superscripts * and T represent the complex conjugate and transpose respectively, and a detailed 
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2

description of the PEM for the structural random response analysis can be found in Ref. [4]. 

3. Acoustic random radiation analysis 
Considering a structural velocity boundary condition for simplicity, the acoustic system equation in IBEM can be 
expressed as follows [5]: 

[ ]{ } { }A q f   (4) 
where [ ]A  is the acoustic system matrix, { }q  is the vector of unknown primary variables on the surface of the 
boundary element model, { }f  is the vector of the excitation derived linearly from the velocity boundary 
condition. 

1 1 2 1 2{ } [ ]{ } [ ][ ]{ } [ ][ ]{ }nf T v T T y T T y   (5) 
where 1[ ]T  is the transformation matrix to convert element normal velocities { }nv  into the exciting vector { }f ,
and 2[ ]T  in which a factor ( )i  has been included is the transformation matrix to convert nodal displacements 
{ }y  into element normal velocities { }nv .
Once Eq.(4) has been solved, the pressures at several field points (e.g., m) within the acoustic domain can be 
written as 

{ } [ ]{ }f fp A q   (6) 
where [ ]fA  is the matrix with m row vectors depending on the frequency, the structural surface and the locations 
of m field points. 
Substituting Eqs.(4) and (5) into Eq.(6) results in 

1 1
1 2{ } [ ][ ] { } [ ][ ] [ ][ ]{ } [ ]{ }f f fp A A f A A T T y T y   (7) 

where 1
1 2[ ] [ ][ ] [ ][ ]fT A A T T  is for simplicity. 

After the PEM is applied to the structural random response analysis, the PSD matrix [ ( )]yyS  of { }y  is already 
decomposed in Eq.(3). By using Eq.(5), the pseudo response of { }f  can be easily obtained, 

1 2( ) { ( )} [ ][ ]{ ( )}i t i tf t F e T T Y e , and that constitutes the pseudo excitation on the right-hand side of Eq.(4). 
Then, the pseudo response of { }q  can be computed when the PEM is used in the IBEM, and the responding 
acoustic PSD matrix [ ( )]qqS  can be computed as follows: 

* T[ ( )] { ( )} { ( )}qqS Q Q   (8) 
Similarly, the responding acoustic PSD matrix of the acoustic pressures at m field points can be computed as 
follows:

* T[ ( )] { ( )} { ( )}
f fp p f fS P P  (9) 

The output auto-PSD of the acoustic pressure response at field point n can be represented as a sound pressure level 
(SPL) in decibel via 

2

| |
10 log n np p

n
ref

S
SPL

p
  (10) 

where 52 10 Parefp is the reference acoustic pressure. 

4. Acoustic pressure PSD sensitivity analysis 
The sensitivity of the acoustic field pressure PSD with respect to a given structural design variable can be obtained 
through the differentiation of the acoustic field pressure PSD, Eq.(9), with respect to a structural sizing design 
variable id

* T T
T * *

( ) ( ) ( ) ( )
( ) ( ) ( )

[ ] { } { } { }
{ } { } 2{ }f fp p f f f

f f f
i i i i

S P P P
P P P

d d d d
  (11) 

{ } [ ] { ( )}{ }
( )

( ) [ ]f

i i i

P T YY T
d d d

  (12) 

where { ( )}Y  is the structural harmonic displacement response derived from the finite element analysis. The 
change in sizing design variable is very small compared to the wavelength in our problem, so the sensitivities of 
the matrix [ ]T  with respect to sizing design variable are assumed to be equal to zero, that is, they are independent 
of the sizing design variable. Hence Eq.(12) is simplified as follows: 
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3

{ } { }[
( ) (] )f

i i

P YT
d d

  (13) 

From the above equation, it can be seen that the sensitivity of the pseudo acoustic pressure response is transformed 
into structural harmonic sensitivity analysis based on the PEM. 

5. Numerical results and discussion 

0.4
m

0.
3m

Figure 1: Structure used in the numerical simulations 

In this section, as an illustrative example, the numerical results of an open box are presented to demonstrate the 
effectiveness of the present method in calculating the acoustic pressure PSD and its sensitivity with respect to the 
thickness of the open box. The open box is comprised of 4 aluminum plates: top, bottom, front and back as shown 
in Fig.1. The aluminum plate has a thickness of 2×10-3m, Poisson’s ratio 0.33, Young’s modulus 6.9×1010Pa, and 
density 2.7×103kg/m3. The open box is fixed at four bottom corners. The finite element model of the box consists 
of 308 nodes and 506 3-node plate/shell elements. The analysis of this structural-acoustic system is conducted over 
the frequency range of 10-200 Hz, and the damping is not considered in the structural response analysis of this 
example. The length of the large element side satisfies the inquiry of the six-element-per-wavelength rule in the 
BEM model. 

Thickness Configuration 1              Thickness Configuration 2 

Figure 2: Thickness configurations for the top plate of the open box 

A single stochastic excitations is applied on the open box’s top plate. The PSD of the excitation is constant unity 
throughout the band frequency. The thickness of the top plate is used as the structural design variable. There are 
two kinds of configurations as shown in Fig.2. The first configuration consists of four strips positioned 
longitudinally. The thickness of the top plate at each strip is considered as an independent design variable. The 
second configuration consists of five strips running transversely along the top plate, and the corresponding plate 
thicknesses of the strip constitute the design variables. A uniform thickness 0.003m is considered as the initial 
thickness for all sensitivity computations. There are five field points considered, which are shown in Fig.2. All the 
five field points 1-5 are located at (-0.25, 0.20, 0.15) m, (0, 0.20, 0.15) m, (0.25, 0.20, 0.15) m, (0.50, 0.20, 0.15) m 
and (0.75, 0.20, 0.15) m respectively. 
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Figure 3: SPL response of the open box at field point 3 for the mid-point excitation 

An acoustic pressure spectral density curve is obtained in Fig. 3 that shows the results of the analyzed frequency 
band. In Fig. 3, the acoustic pressure spectral density is the equivalent decibel value calculated from Eq.(10). Not 
all the natural frequencies of the open box are observed in the results of the analyzed frequency band from the 
curve. This is mainly due to the fact that the point at which the response is sought corresponds to a nodal point of 
the corresponding mode, Such as, the first system resonance (40Hz) is not stirred from the swinging back and forth 
mode, while the following two system resonances occur at 60 Hz and 78 Hz, and these frequencies coincide with 
the second and the third mode of the open box. 

Figure 4: Acoustic PSD sensitivity values of field point 3 with respect to design variables in configuration 1 

Figure 5: Acoustic PSD sensitivity values of field point 3 with respect to design variables in configuration 2 

It should be pointed out firstly that the blue symbols represent positive sensitivities and the purple symbols 
represent negative sensitivities in all the following Figures. The acoustic PSD sensitivity values for field point 3 
with respect to t2 and t3 are shown in Fig. 4, because of the symmetry of the box and that the excitation applied at 
the centre of the top plate, the acoustic PSD sensitivity values for field point 3 with respect to design variables t2 
and t3 are expected to be the same. The acoustic PSD sensitivity values of field point 3 with respect to t6 and t8 are 
shown in Fig. 5, similar results can be seen and they are considered reasonable. 
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To further validate the sensitivity computation, the numerical results of the acoustic pressure PSD computed using 
the present method are compared with those calculated by using the finite difference method (FDM). The finite 
difference method applied here is the central difference procedure 

' ( ) ( )
2

i
i

ip
p

p
  (14) 

and the step length  is chosen as 0.01 in Ref. [6]. 

Figure 6: Acoustic PSD sensitivity values of field point 3 with respect to design variable t1

Figure 7: Acoustic PSD sensitivity values of field point 3 with respect to design variable t6 

Figures 6 and 7 show the comparisons of the acoustic PSD sensitivities with respect to the design variables t1 and 
t6 in configurations 1 and 2, respectively, predicted using the present method and the finite difference method. As 
shown in both figures, overall there exists a very good correlation between the predictions by these two methods in 
several broad frequency bands except for some natural frequencies (This is perhaps mainly due to the neglect of 
the damping in the structural response analysis). As the exciting frequency increases, the modal density of the 
structure increases too. Hence the structure would be excited more strongly in the associated modal frequency. The 
differences in the computed sensitivities at some natural frequencies between these two methods represent a 
response shift into the very sharp acoustic resonance at these frequencies. This reflects the difficulty in capturing 
accurately the changes when moving in an extremely narrow resonance peak. These differences were also 
observed in the results for other design variables. 

6. Conclusions 
In this paper, a new method is developed to solve random acoustic radiation problems. The acoustic pressure PSD 
and its sensitivity of a randomly excited structure are investigated based on FEM and IBEM combined with PEM. 
When the PEM is applied to random acoustic radiation problems, the random response is transformed into the 
harmonic response, and the sensitivity analysis of the random response is transformed into that of the harmonic 
response. The formula for computing the sensitivity for a structural acoustic radiation random response is derived. 
The sensitivities of acoustic response with respect to structural design variables are calculated for one example and 
validated by comparing with the results using the finite difference method. The present integrated FEM/IBEM 
combined with PEM procedure provides an efficient and convenient method for engineers to solve acoustic 
radiation problems under stationary stochastic excitations. 
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1. Abstract
Gradient-based optimization algorithms are highly advantageous for computer intensive simulations such as fluid-

structure interaction (FSI) problems. Typical simulation involves solution of the Navier-Stokes equations and their

response sensitivities. Due to the use of body conformal meshes, mesh topology modification is required in struc-

tural shape optimization; however, this can be time consuming for complex structural boundaries. In this research,

we introduce a method based on adding force terms to the Navier-Stokes equations to decouple the solid boundary

definition from the mesh. Therefore, the governing equations can be solved on a Cartesian grid with efficient

solvers. Decoupling the solid boundary from the mesh enables us to deform the solid domain without mesh modi-

fication allowing a significant reduction in computational costs. To calculate the sensitivity response of the system,

the continuum sensitivity method is developed. Force terms are used to represent the solid boundaries and con-

vective terms are removed in boundary conditions sensitivity equations because the boundaries do not depend on

domain configuration. The methodology is verified using the sensitivity of laminar flow over a Joukowsky airfoil

with respect to change in camber radius. The force terms are applied using the regularized Heaviside function to

satisfy the no-slip condition in the solid domain.

2. Keywords: Fluid-solid interaction, Sensitivity analysis, Immersed boundary method.

3. Introduction
The analytical methods for calculating the design sensitivities can be divided into discrete and continuum meth-

ods. In the discrete method, the continuous governing equations are discretized and then differentiated resulting

in equations that govern the sensitivity of responses [1]. However, discrete methods require the modification of

the source-code of the black-box CFD/FEA solvers. This might not be possible due to the unavailability and

complexity of the solver [2].

Continuum sensitivity analysis (CSA) involves solving a set of partial differential equations called the con-

tinuum sensitivity equations (CSEs). Choi and Kim developed the CSA formulation extensively for structural

optimization [3]. Pelletier and Etienne have applied CSA to fluid-structure interaction (FSI) problems [4]. Liu and

Canfield [5] used the finite element method to solve the potential flow around an airfoil and applied CSA to find the

sensitivity of the solution to the airfoil’s maximum camber. These works are built around using body-conformal

meshes to discretize the domain. Since the shape of the immersed structure can change, mesh deformation algo-

rithms are required to generate a new mesh that can be utilized to calculate the new response of the system. Mesh

deformation and boundary movement are also reflected in the definition of boundary conditions for the CSEs [5].

Mesh deformation schemes are separated into algebraic and elasticity-based methods. Algebraic mesh move-

ment methods are efficient but limited to small changes in shape [6]. Elasticity methods, including the spring

analogy, are based on continuum mechanics. The use of spring analogy can result in tangled meshes and negative

cell volumes, particularly for large deformations. To enhance the robustness of the scheme, nonlinear torsional

stiffness has been introduced to mesh nodes; however, this increases the required computational cost.

Body conformal meshes require the computational mesh to contact all the boundaries, resulting in the depen-

dence of mesh topology on the shape of the immersed body. By decoupling the boundary definition from the mesh

topology, the mesh deformation step can be removed from the solution scheme. Moreover, the boundary conditions

for the CSEs will be greatly simplified. This can be achieved by using the body-force terms in the Navier-Stokes

equations in such a way that the effect of immersed bodies can be captured within the governing equation. Since

the immersed boundary effect is included in the governing equation, its shape can be modified without changing

the topology of the computational mesh. The effect of certain boundary conditions can be modeled with an external

force field rather than with specification of boundary parameter values. The immersed boundary method uses this

technique to decouple the solid and fluid domains. The term immersed boundary (IB) method refers to techniques

that simulate viscous flows with immersed boundaries on grids that do not conform to the shape of the immersed

boundaries [7].

1
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In this research, we use the idea of IB method to add force terms to the governing equations. The force term

is responsible for generating the pressure drop which represents the existence of solid boundaries in the domain.

This approach is in contrast to the usual IB method that uses the velocity data to calculate the required force terms.

Moreover, the force terms are linearly related to the flow parameters and no extra effort is needed to calculate them.

The force terms are added to the governing equations using a regularized Heaviside function [8] which defines the

boundary contour of the solid region. This is similar to a smooth representation of a step function. Regularized

Heaviside functions are widely used in the topology optimization community as filters to eliminate checkerboards

and mesh-dependencies. This is in contrast to their application in this paper, where they are functions of space [9].

4. Numerical Method
The Navier-Stokes equations permit the presence of an externally imposed body force that may vary in space and

time. The force term is used to introduce the pressure drop that is proportional to the velocity of each point. The

Navier-Stokes equation with body force Si is defined as

∂
∂ t

(ρui)+u j
∂

∂x j
(ρui) =− ∂ p

∂xi
+μ

∂τi j

∂x j
+Si (1)

with the force term

Si =−μDui ·H [C (x)] (2)

where C is the contour representation of the boundary of the solid region. The regularized Heaviside function,

H, is used to assign the force term, Si, to the regions within the contour represented by C . Using this method,

the shape of the solid domain is modified through changing the location of force terms which does not change the

mesh topology.

In this formulation, the zero velocity (no-slip condition) is satisfied both inside and also on the surface of the

solid boundary contour. The force terms are defined with no extra interpolation from the the velocity field. This

also adds to the simplicity of the method compared to the IB techniques where a further interpolation is usually

required for calculating the force terms. It is also noteworthy to mention that the force terms are calculated at

the same time as the velocity components; therefore, no extra cost is introduced in the solution of the discretized

governing equations.

For a two-dimensional case, curve C , is a non-self-intersecting continuous loop that defines the boundary of

the solid region. The technique used for assigning the force term to mesh cells needs to be differentiable since

the governing equation (1) is differentiated for deriving the CSEs. To satisfy these requirements, the regularized

Heaviside function is used to assign the force terms. Different regularized Heaviside functions used in the literature

are shown in Figure 1.
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Figure 1: Comparison between different regularized Heaviside functions.

In this work, the regularized Heaviside function shown below is used due to its fast transition from zero to one.

H(X ) =
1

1+ e−κX
(3)

As shown in Figure 1, the regularized Heaviside function, H(X ), gives one for positive values of X and zero

otherwise. The positive and negative values of X correspond to cells outside and inside the solid boundary curve.

It should be noted that near the boundary, there is a transition region where the value of the regularized Heaviside

function is between zero and one. Therefore, it introduces error in the simulation result by generating unrealistic

2
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pressure drop in the domain. These cells are known as gray cells in the topology optimization community. One

way to alleviate this problem is to force the transition region to occur within one cell. This is done by modifying

the Heaviside function as shown in Figure 2.
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Figure 2: Effect of modifying the regularized Heaviside function in the transition region.

It should be noted that the center of each cell defines its location with respect to the solid boundary curve.

Because the force terms are assigned to each volume, it is not possible to capture the exact boundary curve on

a coarser mesh. However, by refining the mesh near the boundary curve, the effect of curvature can be captured

almost completely on the solution of the problem.

Consider the following general, nonlinear boundary value system defined in a domain Ω with a boundary Γ

A (u,L(u)) = f (x, t;b) (4)

with boundary conditions defined as

B(u,L(u)) = g(x, t;b) on Γ (5)

for which we seek a solution u(x, t;b). In the above equation, u = u(x, t;b) is dependent on design variable b

implicitly and L is a linear differential operator, such as
∂

∂xi
, that appears in the governing differential equations

or boundary conditions. A and B are vectors of algebraic functions of u and L(u). B(u,L(u)) can be a simple

function of u, such as a prescribed boundary condition for Dirichlet boundary conditions, or involve a differential

operator for Neumann boundary conditions.

The CSE is formulated by directly differentiating the governing equations of Equation (4) as shown below

where u′ =
∂u
∂b

.

∂A

∂u
u′+

∂A

∂L
L(u′) =

∂ f (x, t;b)
∂b

(6)

For a problem with moving boundaries, the boundary conditions for Equation (6) can be derived by taking the total

derivative of boundary condition Equation (5). The total derivative is needed here because the shape of boundaries

can change [5]. This arises mostly when calculating the sensitivities due to change in shape of the domain. The

total derivative is written as

Du
Db

=
∂u
∂b

+
∂u
∂x

∂x
∂b

(7)

where
∂x
∂b

is the geometric sensitivity or design velocity, which is dependent on domain parameterization. After

taking the total derivative of Equation (5), the CSE boundary conditions are written as

∂B

∂u
u′+

∂B

∂L
L(u′) = ġ(x, t;b)− ∂x

∂b
·
(

∂B

∂u
∂u
∂x

+
∂B

∂L
L
(

∂u
∂x

))
(8)
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where ġ(x, t;b) is the material derivative of the boundary condition. Within the scope of this paper, the boundary

conditions are only applied at the outer part of the computational domain. It is assumed that these boundaries

are independent of the domain configuration and their locations are not affected by the design variables. This is

a valid assumption because the outer boundary conditions are typically defined as far-field values for flow-field

variables(i.e. velocity and pressure, or their gradients). Their locations do not change and the design sensitivity is

equal to zero at the boundaries; therefore, the material and local derivatives are equal on the boundaries. Equation

(8) can be simplified as

∂B

∂u
u′+

∂B

∂L
L(u′) = g′(x, t;b) (9)

The CSE of Equation (6) with the boundary conditions given in Equation (9) is a well posed system of equations

in terms of sensitivity variable u′ that can be solved using same numerical method used for solving the analysis

problem. The spatial gradient of u in Equation (9) can be found from the solution of governing equation (4).

5. Demonstration Results
Laminar flow over a Joukowsky airfoil is selected to verify the methodology. The fluid-solid interaction is defined

by mounting the airfoil on an elastic sting. The load and moment from the aerodynamic loads are transferred to

the structure through the mounting point. The sting is 4 m in length, with a cross-sectional area of 0.002 m2, and

modulus of elasticity of 200 GPa. The initial angle of attack is selected at 8 degrees with a freestream velocity of

26 m/s. This gives the Reynolds number of 2600 for this simulation.

The airfoil is defined using the Joukowsky transformation shown in Equation (10), it is possible to map a circle

passing through z1 = 1 and containing the point z2 = −1 to a curve shaped like the cross section of an airplane

wing. The Joukowsky transformation is done in a complex plane.

J(z) = z+
1

z
(10)

By changing the location of the original circle, it is possible to change the airfoil camber. More importantly, the

airfoils have analytical definition that will be used in imposition of the force terms to the mesh cells. The effect of

change in the location of original circle to the camber of the airfoil is shown in Figure 3. It should be noted that

after generation, the airfoils are normalized such that the chord length is always equal to one.
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Figure 3: Airfoil definition by Joukowsky transformation (not normalized).

The governing equations, along with the boundary conditions, are differentiated to derive the CSEs. The

resulting system of equations is solved to get the sensitivity response of the system. As shown in Figure 3, the

y coordinate of the center of the original circle defines the camber. Thus, the sensitivity of the pressure field to

airfoil’s camber can be calculated by differentiating the governing equation by the y coordinate of the center of the

original circle (design variable, b).

The differentiated governing equations can be written as

u
∂U

∂x
+ v

∂U

∂y
=−∂P

∂x
+μ
[

∂ 2U

∂x2
+

∂ 2U

∂y2

]
+

∂Sx

∂b
−U

∂u
∂x

−V
∂u
∂y

(11a)

u
∂V

∂x
+ v

∂V

∂y
=−∂P

∂y
+μ
[

∂ 2V

∂x2
+

∂ 2V

∂y2

]
+

∂Sy

∂b
−U

∂v
∂x

−V
∂v
∂y

(11b)

∂U

∂x
+

∂V

∂y
= 0 (11c)
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where U =
∂u
∂b

, V =
∂v
∂b

, and P =
∂ p
∂b

. The values for u and v (velocity components in x and y direction) are

known from the solution of governing equations. Furthermore, the spatial gradients of u and v are calculated via

the QUICK scheme using the surrounding cell data. This is the same method that is used for discretizing the

spatial gradients in the governing equations. The QUICK scheme is based on a quadratic function and has third

order accuracy on a uniform mesh.

The derivative of the force terms on the right hand side of Equation (11) has the following form.

∂Sx

∂b
=−μU DH(X ,b)−μuD

∂H(X ,b)
∂b

(12a)

∂Sy

∂b
=−μV DH(X ,b)−μvD

∂H(X ,b)
∂b

(12b)

In the above equations, the derivative of the regularized Heaviside function introduces the effect of shape change

in the solution of the sensitivity equations. In previous works [5], this was included in the boundary condition

definition through convective terms. Boundary conditions are selected independently from the configuration of the

domain. Therefore, the specified values for the CSE boundary condition are assigned as zero values. It should

be noted that the derivative of shape boundaries to design variable, b, is buried in the derivative of the Heaviside

function. This can be calculated analytically by using the chain rule on Equations (10) and (3).

Comparing Equations (11) and (1), it is evident that the same solver can be used for solving both systems of

governing equations; the difference is in adding additional source terms to Equation (1). It should be noted that

this does not affect the numerical method used to solve the problem as these terms can be incorporated in the body

force terms. The solution of Equation (1) is used for initializing the convective terms, i.e. u and v, in Equation (11).

This results in faster convergence of the sensitivity solution compared to the governing equations. The sensitivity

of pressure around an airfoil based on original circle location at (−0.1,0.1) is shown in Figure 5.

(a) Pressure contours for original circle at (−0.1,0.1) (b) Pressure sensitivity contours for original circle at

(−0.1,0.1)

Figure 4: Sensitivity of pressure field around airfoil to camber line variation.

The sensitivity of pressure field on top and bottom surfaces of the airfoil to camber line variation is shown in

Figure 5. It should me noted that the method of moving average with 4 points is used to further smoothen the data

over the boundaries.
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(b) Pressure sensitivity on the top surface

Figure 5: Sensitivity of pressure field on airfoil surface to camber line variation.
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6. Conclusions
In this work, force terms are added to the Navier-Stokes equations to represent the solid boundaries inside the

domain. The force terms act as a high pressure drop that results in satisfying the no-slip boundary condition in the

solid domain. Using this method, it is possible to decouple the definition of solid boundary from the computational

mesh; therefore, it is not required to deform the mesh topology when the solid boundary shape changes. Moreover,

using this method, the governing equations are solved on a Cartesian structured grid where efficient solvers can be

utilized. This reduces the computational time and memory requirements for the simulations.

The regularized Heaviside function is used to apply the force terms on the mesh volumes. Several regularized

Heaviside functions are introduced and a model with the fastest transition is selected. One of the problems of using

the regularized Heaviside function is the gray region within the domain and the numerical error associated with it.

To remove the gray-cells from the computational domain, the regularized Heaviside function is forced to have a

transition region within one cell. Using this approach, errors from the existence of gray-cells are minimized within

the domain. The noise is further reduced by using the method of moving average when reporting the results on

immersed boundary surfaces.

The continuum sensitivity equations are derived by differentiating the governing equations and their corre-

sponding boundary conditions. In this approach, the interface boundary conditions are removed from the sim-

ulation by introducing the force terms. The outer boundary conditions usually do not depend on the domain

configuration. Therefore, in most cases, the boundary conditions will be zero for sensitivity analysis using this

approach. On the other hand, the effect of shape change is introduced to the domain through the derivative of the

regularized Heaviside function. This acts as an additional force term in the governing equations. These equations

have the same structure as the original governing equations and they can be solved using the same solver.

The applicability of this method is investigated by solving the flow and the sensitivity response of the laminar

flow over a Joukowsky airfoil. The requirement of mesh deformation and use of body conformal mesh are removed

from the simulation, which can save a significant amount of computational time and resources for conducting op-

timization.
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Abstract 
This article extends the moving iso-surface threshold (MIST) method to solve the topology optimization problem 
of bending plates under static loading.  In the extended MIST, multiple layer-wise objective functions and volume 
constraints are employed in the optimization formulation of multiple-layered bending plates.  Considered are three 
types of objective functions: minimum mean compliance, maximum mutual strain energy and fully-stressed 
design.  The associated response functions chosen are, respectively, the strain energy density, mutual strain energy 
density and the Von Mises stress for each layer.  The nodal values of these response functions in a fixed FE mesh 
are smoothed using a modified filter.  Numerical examples are presented to validate the extended MIST in 
application to topology optimizations of single- and multi-layered plates under static loading. 

Keywords: MIST topology optimization, multi-layer plate, minimum mean compliance, compliance mechanism, 
fully-stressed design. 

1. Introduction 

Topology optimization of bending plates is about finding the optimum material distribution to achieve optimum or 
better performance. Bending plates can come in the form of a single-layer or multiple-layers and its topology 
optimization is conducted for one or multiple layers. Topology optimization of bending plates and shells under 
static loading has attempted by a number of researchers using different optimization methods [1-10].  In this study, 
we extend the MIST method [11-12] to the case of topology optimization with multiple layer-wise objective 
functions and volume constraints. MIST method has applied for solving some 2D plane stress or strain or 3D 
problems, but has not been used to study the topology optimization of bending plates, in particular multiple layered 
plates, under static loading. The article is organized as follows. Section 2 presents the problem statement with 
multiple layer-wise objective functions and volume constraints. Section 3 presents some implementation details of 
the MIST method.  Section 4 presents several numerical examples including single-layered or multiple-layered 
bending plates under static loadings. A brief summary is provided in Section 5. 

2. Problem statement 

For a single- or multiple layered bending plates under static loading, we define its topology optimization problem 
as follows: 

),...,2,1;1()(

)2,1(:subject to
),...2,1(maxmin

11

)()(

nixAAx

j
nifor

ki
N
k ki

N
k kki

jj

i

EE

FKU (1) 

where if  and i  are the objective function and the material volume fraction for the ith layer, n is the total number 
of layers in a multiple-layered plate, K  is the global stiffness matrix of the plate structure, jU  and jF  are the 
nodal displacement and load vectors for the jth load case (where j=1 refers to the real load case, whereas j=2
represents the dummy load case with an applied unit load at chosen degree of freedom, kix  is the weighting factor 
or density of the kth element for the ith layer and varies from 0 to 1 ( 0kix  means void and 1kix  indicates solid), 

kA  is the volume or area of the kth element, and EN  represents the total number of elements for each layer (In this 
study same EN  is used for the numerical examples).  In the literature, 001.0  is typically chosen in numerical 
computations to avoid stiffness matrix singularity. 
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Three types of objective functions are considered in this study and the corresponding statements are: 
(a) to minimize the mean compliance i.e. 

df i
T
ii i 2

1min                   (2a) 

(b) to maximize the deflection in the direction of a chosen degree of freedom, i.e.  
duf T

outi )1()2(max , or duf T
outi )1()2(min           (2b) 

and
(c) to minimize the maximum Von Mises stress, i.e. 

Nnode

k

i
vmkif

1

)(min                   (2c) 

Where )(i
vmk  denotes the Von Mises stress at the kth node for the ith layer and nodeN  denotes the total number of 

nodes for each layer. 

3. MIST algorithm and implementation  

The MIST algorithm can be schematically depicted in the flowchart in Figure 1. 

Figure 1: MIST algorithm flowchart 

The MIST method is interfaced with ANSYS to solve all the FEM problems. In each iteration after each FEA run, 
selected FEA results, such as strain energy density, strain and stress are imported from the ANSYS output files and 
then used to construct the response function  for the design domain. For the three types of problems given in 
equations (1) and (2), the function for the ith iteration is, respectively, given by: 

i
T
ii tx 2

1),( (3a) 

)1()2(2
1),( i

T
ii tx (3b) 

vmii tx ),( (3c) 

where )1(i  and )2(i  represent the strain and stress vectors for load case 1 and 2 respectively.  Nodal values of 
function can be either output from ANSYS or calculated by using relevant stress or strain values at Gaussian or 
nodal points.  
In MIST, a filtering scheme is applied to the nodal values of  function.  Consider node j , the filtered value of 

j , denoted by j
ˆ , can be determined by 

uj

qj
j c

ˆ (4a) 

Calculate t threshold of iso-surface S by using bisection method and update densities

Converged? 
Yes

Finish

MIST preparations: 
1. Element, node IDs and node coordinates(mesh and material property 

assignment stage) 
2. Introduce optimization parameters 
3. Pre-filtering

Create ),( tx surface

Run FEA 

Reading: stress, strain, strain energy and etc… 

Filter and normalization ),( tx Surface

No

Importing element densities 
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where 
qN

q fquj cc 1 (4b) 

q
N
q fqqj

q c1 (4c) 
and

2
min )( jqfq Rrc (4d) 

where minr  is the spatial radius (typically of the value of approximately 3 times of element length), qN  denotes the 
number of nodes that lie within the circle with a radius of minr , jqR  is the distance between node j and q. q  is 
the value at node q which lies within the circle.   
The elastic modulus of an element in a structure is updated using: 

isolidi
p
kik ExxE )()()( (5) 

Where kx  represents the fraction of solid area to the total one of the kth element and p is the penalty factor.  

4. Numerical results and discussion 

4.1 Minimum mean compliance 

The problem considered in this section is the minimum mean compliance problem or the problem of minimizing 
the total strain energy of the structure. Firstly, for single-layer plate, we study the effects of spatial radius and the 
volume fraction on the selected results of topology design optimization using MIST, e.g. the objective function 
versus iteration histories and the final topologies; Secondly, we investigate the topology optimization of multiple 
layers in multi-layered plates.  In all the calculations for this problem, the function defined in equation (3a) is 
adopted.  For the case of multiple-layered plates, the function given in equation (3a) is used to construct the 
relevant response function for every design layer. 
 
4.1.1 Effect of spatial radius minr
Consider the topology optimization of a four-side clamped square plate with side length of 60mm and thickness of 
0.5mm subject to a point load Fz=-5N at its centre and a volume fraction of 0.5.  Assume E=70000 MPa and v=0.3.
The square plate is meshed with 3600 (60 elements by 60 elements) solid181 elements in ANSYS. As in MIST, we 
use the following parameters: move limit=0.1, penalty factor=3. Figure 2 depicts the curve of the total strain 
energy versus iteration for minr =7mm.  It is evident that the objective function converges rapidly and smoothly. 

Figure 3 depicts the final optimum topologies for various values of spatial radius minr  e.g., 1, 3, 6 and 7 mm or 1, 
3, 6 and 7 element lengths.  As shown in Figure 3, for small spatial radius hinges exist in the optimum topologies, 
whereas for large spatial radius these hinges disappear, which makes the topology more practical in the sense of 
load diffusion. 
    

Figure 2: The objective function- iteration history Figure 3: The effects of filtering radius on the optimal topology 
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4.1.2 Influence of volume fractions 
Consider the same plate as used in example 4.1.1 except for the four-side clamped boundary condition being 
replaced by four-side simply supported one. This example is to illustrate the effect of the volume fraction on the 
convergence history of the objective function and the final optimum topologies. Figure 4 depicts the curves of the 
objective function versus iteration number for four different volume fractions, e.g. 20%, 40%, 60% and 80%. It is 
noted that the objective function converges with 50 iterations for 20% and 40% volume fractions and with 30 for 
the cases of 60% and 80% volume fractions.  Figure 5 depicts the final topologies for the four volume fraction 
cases.  It can be seen that the topologies for the 20% and 40% or the 60% and 80% volume fractions resembles to 
certain extent, the difference between the topologies for the 20% and 40% volume fractions are quite different 
from the other two topologies with 60% and 80% volume fractions.  There appears a topological shape change 
when the volume fraction varies from 40% to 60%.     
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Figure 4: Variations of strain energy versus iteration for different 
vf

Figure 5: Different optimal shapes with different vf

4.1.3 Multiple-layered plate 
Consider a four-side clamped four-layer square plate. The side length is 300 mm, and the thickness of each layer is 
1 mm (t1=t2=t3=t4=1mm).  The material properties for all four layers are: E1=E4=69 GPa, E2=E3=220 MPa, 
v1=v3=v4=0.3, v2=0.49. At the centre of the square plate a vertical point load Fz=-200N is applied.  A total number 
of 3600 (ANSYS Solid185) elements are used to uniformly mesh each layer.  In all the MIST calculations, the 
following parameters are used: dynamic move limit of minimum=0.1, spatial radius=0.0125mm in filtering, and 
penalty factor = 3.  Layers 2 and 4 are the design layers with vf2 = vf4= 50%.  Figure 6 depicts the convergence 
histories of the total strain energies calculated for the second layer, the fourth layer and all layers. Evidently, the 
total strain energies for the second, fourth and all layers converge within 100 iterations. 

Figure 6:Iteration histories for different layers Figure 7: Optimum shapes of layers 2 and 4 
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Figure 7 depicts the sketch of the four-layer plate and the optimum topologies of layers 2 and 4.  The material 
distribution of layer 4 is discontinuous whereas that for layer 2 has a continuous load diffusion path with the layer. 

4.2 Compliance mechanism 
The objective function for this example is to maximize deflection under dummy load based on function
introduced in equation (3b).A three layer plate which layer 3 (top layer ) is under design layer with volume 
fraction   vf3=50%, is considered. Two other layers are non-design layers (figure 9). The plate dimensions and
material properties are the same as example 4.1.3 except at this example there is not layer 4. The
elements, meshing scheme and solver used are also the same as example 4.1.3. The plate is clamped
at left edge. Two load cases are applied. Load case 1, NFR 200  is real load and applied vertically at the 
centre of plate and load case 2 is dummy load NFU 1 applied in z direction same as direction of real load at 
the centre of opposite edge. 
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Figure 8: iteration histories versus deflection under 
dummy load

Figure 9: optimal shape 

As can be seen from figure 8, deflection under dummy load is maximised alongside of optimization increment and 
finally it is stabled. The initial value for objective function is approximately 177e-6 mm which reaches to a stable 
value around 207 e-6 mm in just 20 iterations. It is a considerable maximization about 1.169 times of initial value. 
Small fluctuations as seen in iteration history curve can be removed by considering low values of move limit say 
lower than 0.1. Corresponding optimal shape is demonstrated in figure 9 and it is shown that material distributed in 
the right half side of design layer.  

4.3 Fully-stressed design 

The aim of this example is to use the function given in equation (3c) to develop fully stressed designs for 
selected layers.  The plate is clamped at four sides and a force of Fz=-200 N is applied at the center.  The plate 
dimensions and material properties are the same as example 4.1.3.  The elements, meshing scheme and solver used 
are also the same as example 4.1.3.  As shown in Figure 11, the inner two layers are non-design layers whereas the 
outer two layers are the design layers with different volume factions, e.g. vf1=70% and vf4=20%.  Figure 10 shows 
the iteration histories of the total von Mises stress in layer 1, layer 4 and all layers.  Once again, all three quantities 
converge within 60 iterations. As shown in this figure, minimizing total Von Mises stress happen as expected for 
all the design layers. It is seen that for layer 4 the reduction happens visibly although these values are so small since 
its volume fraction is much lower than layer 1. Figure 11 depicts the corresponding topologies of layer 1 and layer 
4.  It is noted that the topology in layer 4 resembles to that in layer 4 in example 4.1.3 as both layers are in 
compression in the bending plate. 
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Figure 10: Iteration histories for fully stressed design Figure 11: optimal shapes for top and bottom layers 

 
5. Concluding remarks 
The salient points of the present study can be summarized as follows: (a) an extended MIST formulation is 
presented for topology optimization of multiple-layered plate structures with multiple volume fractions; (b) three 
problems with different objective functions are considered and then solved by using three different response 
functions; and (c) the present numerical results illustrate the effects of the spatial radius in the filter used and the 
volume fraction on the optimum topologies as well as the stable convergence history observed. 
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1. Abstract
This paper provides an overview of the challenging class of structural optimization problems with 
complementarity conditions, generally known as a “mathematical program with equilibrium constraints” (MPEC). 
Complementarity, mathematically defined by the perpendicularity of two sign constrained vectors, describes such 
common mechanical behaviour as elastoplasticity and contact conditions. The MPEC is in effect the inverse 
counterpart of a state problem formulated as a “mixed complementarity problem” (MCP), and is moreover far 
more challenging to process since an MPEC is in general nonsmooth and nonconvex. We briefly describe a 
promising class of solution methods, all based on some regularization technique, to convert the MPEC into a 
standard nonlinear programming (NLP) problem, and illustrate its application for the optimal design of 
engineering structures. 

2. Keywords: complementarity, nonconvex and nonsmooth mathematical program, structural optimization. 

3. Introduction 
Complementarity (the requirement that two nonnegative vectors are orthogonal) is a typical and recurrent 
mathematical feature in the nonlinear analysis of structures, e.g. to represent elastoplasticity and contact-like 
conditions. The resulting state problems lead to instances of mathematical programs known generally as “mixed 
complementarity problems” (MCPs) [1] for which, under certain conditions (e.g. definiteness of some key 
matrices), can be efficiently solved. However, the inverse problem that for example arises in structural 
optimization under complementarity conditions is far more challenging to process since the underlying 
mathematical programming problem, known as a “mathematical program with equilibrium constraints” (MPEC) 
[2], is nonsmooth and/or nonconvex. 
We introduce the concept of complementarity, and review the state problem and its solution before presenting the 
generic formulation for structural optimization under complementarity constraints [3-7]. We then provide an 
overview of a promising class of solution methods that can be used to solve the resulting MPECs [2]. These all 
involve application of some regularizing technique followed by conversion of the MPEC into a standard nonlinear 
programming (NLP) problem. Finally, we give two illustrative examples to illustrate this approach. 

4. Complementarity Conditions in Engineering Mechanics 
Various engineering state problems can be formulated as a standard MCP [1] which, in general, consists of three 
pieces of basic information, namely lower bounds l

lz , upper bounds l
uz  and functions l)(zY . The 

aim is to 

0k0zzk

0v0zzv

zzz
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kvz
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          find
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u

l
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where ul zz  and Y(z) are continuously differentiable. As an illustration, we briefly review in the 
following two engineering mechanics problems (see e.g. [7]) formulated as MCP (1); one involves elastoplasticity, 
the other contact conditions with complementarity conditions schematically shown in Fig. 1.  
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Figure 1: Complementarity conditions (a) softening material, (b) contact forces, (c) friction law. 

4.1 Analysis of Elastoplastic Structures 
The governing state problem for the holonomic (path-independent) analysis of structures (suitably discretised into 
n number of elements, d degree of freedoms, m generalized stresses/strains and y yield functions) with inelastic 
material properties can be cast as an MCP in variables (Q,u,z) as follows [4]: 

0TT

T

=++=

=+

=+

zw0z0rHzQNw

0SNzSCuQ
0QCf

,,

 (2) 

Clearly problem (2) is an instance of MCP (1), where the first two relations in Eq.(2) correspond to the first 
condition in Eq.(1) with z0 , 0wv =  and 0k = .
Physically, the first equation in MCP (2) describes linear equilibrium between the externally applied forces 

df  and the generalized stresses mQ  through a constant compatibility matrix dm×C , where  and 
df  denote a positive load scalar and a basic force vector, respectively. The second equation expresses the 

relationship between stresses Q and the elastic strains defined as mpq , where mm×S , mq  and 
mp  are, respectively, the conventional (unassembled) elastic stiffness matrix, generalized strains written in 

terms of nodal displacements du , and generalized plastic strains. In the third and final relation, an associative 
flow rule prescribes the plastic strains p as functions of plastic multipliers yz , where ym×N  collects the 
normal directions to all piecewise linear (PWL) yield hyperplanes [8] in Fig. 1a. The yield functions yw
mathematically describe the PWL yield model of this Fig. 1a in terms of Q and z, where yy×H  and yr
denote a hardening/softening matrix and a plastic limit vector, respectively. Finally, the complementarity 
condition 0T =zw  (describing a componentwise relationship 0jw , 0jz  and 0=jj zw  for j = 1 to y)
between the two positive sign constrained vectors 0w  and 0z  implies either elastic ( 0>jw  and 0=jz ) or 
plastic ( 0=jw  and 0>jz ) behaviour, and also allows reversal (holonomy) of plastic strains
An elastoplastic analysis maps out the complete load versus displacement responses of the inelastic structure by 
collecting the resulting variables Q, u and z obtained from a series of MCP (2) solves under specified increasing 
values of load multiplier . MCP (2) can be processed directly using, for instance, the industry standard 
complementarity solver PATH [1]. For computational and modelling convenience PATH is often called from 
within some mathematical programming environment such as GAMS (an acronym for “general algebraic 
modelling system”) [9]. 

4.2 Analysis of Structures with Frictional Contacts 
We consider rigid perfectly plastic structures with c unilateral frictional contacts as shown in Figs. 1b-c. The state 
problem can be formulated as the following MCP in variables ( ,Q, u& , z& ,rn,rt, & ) [7]:
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Solution of this MCP (3) provides one set of response variables ,Q, u& , z& ,rn,rt, &  for the structural system 
considering rigid perfectly plastic material properties and nonassociative frictional contact conditions. 
The first relation represents a (normalised) positive dissipation produced by f and displacement rates du& .
Linear equilibrium between f , Q and the two contact forces in the normal c

nr  and tangential c
tr

directions is given in the second relation, where dc
tn , ×CC  are the corresponding compatibility matrices at the 

contacts. Compatibility between u&  and the plastic multiplier rates yz&  is described by the third relation. The 
fourth relation indicates the compatibility between tangential displacement rates uC &t  along the contact interface 

and the sliding rates V &
t , where c2&  and cc

t
2×V  are sliding multiplier rates and a constant matrix, 

respectively. Finally, the three complementarity conditions between (i) w and z& , (ii) c
c

2  and & , and (iii) 
c

n  and rn enforce a perfectly plastic material law, the assumed frictional contact model (shown in 

Figs. 1b-c) and nonpenetration at contact interfaces, respectively [7]. cc
n

2×V , cc
n

2×N  and cc
t

2×N  are 
appropriate transformation matrices. 

5. Optimization with Complementarity Conditions 
We now consider the inverse problems corresponding to MCPs (2) and (3) that arise in the optimal design of 
structures with inelastic material properties and/or frictional contact conditions. The aim of such a design is to 
automatically determine the minimum and safe material distribution (i.e. typically represented by unknown 
cross-sectional areas A) of the structural members such that the predefined physical and material requirements are 
simultaneously satisfied. This involves the formulations and solutions of “nonstandard” optimization problems, 
known as MPECs [2], where the so-called “equilibrium constraints” are, in our case, complementarity constraints 
expressing certain intrinsic structural behaviors, such as the ones in MCPs (2) and (3). 

5.1 Optimization of Elastoplatic Structures 
The MPEC in variables (A,Q,u,z) that describes the optimal design of elastoplastic (softening) structures is [4]  

sconstraintnt displacemeandcalTechnologi                  

                  
0)()()(                  

)()(                  
   Subject to

)(   Minimize

TT

T

uplo

,,

V

AAA
zw0z0ArzAHQANw

0NzASCuASQ
0QCf

A

=++=

=+

=+

 (4) 

MPEC (4) minimizes the total weight/volume V(A) of the structure (directly related to the total cost) subject to the 
constraints given by the state problem in MCP (2), where the stiffness matrix S, the normality matrix N, the 
softening/hardening matrix H and the vector of yield limits r are written in terms of the unknown cross sectional 
areas A that are bounded within available lower Alo and upper Aup size limits. Technological and displacement 
constraints [3,4] impose specific conditions to accommodate, for instance, the requirement of identical member 
sizes for certain groups of structural members and displacement limits at some specified locations, respectively. 

5.2 Optimization of Structures with Frictional Contacts 
The inverse or optimal design problem to MCP (3) aims to obtain a minimum volume solution for rigid perfectly 
plastic structures with frictional contacts. The governing MPEC formulation in variables (A,Q, u& , z& ,rn,rt, & ) [3] is 
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in which matrix N and vector r are functions of the area variables A.

5.3 MPECs – An Overview 
The systematic study of MPECs has increasingly attracted research interest due to the fact that, in addition to being 
theoretically difficult and computationally challenging, MPECs find numerous applications in economic and 
engineering problems involving equilibrium systems [10]. An MPEC is an optimization problem, in which some 
or all constraints are defined by a parametric variational inequality or complementarity system [2]. The most 
prominent feature of an MPEC, and one that distinguishes it from a standard nonlinear programming (NLP) 
problem, is the presence of complementarity constraints. These constraints classify the MPEC as a nonlinear 
disjunctive (or piecewise) program. Consequently, besides the common issues associated with general NLP 
problems, the MPEC carries with it a “combinatorial curse” – a standard feature of all disjunctive problems. 
There are three main reasons why an MPEC is difficult to solve [2]. First, the complementarity constraints are 
disjunctive. As is well-known from the integer programming literature, disjunctive constraints such those 
embodied by the complementarity condition (e.g. either wj = 0 or zj = 0) are very difficult to handle. This, as a 
result, makes the MPEC disjunctive. There is no feasible point for which all inequalities are strictly satisfied. Even 
under restrictions, this makes the feasible region a union of finitely many closed sets. Second, the feasible region 
of an MPEC may not be convex. Third, the feasible region of an MPEC may not be connected. 
Any subset of these three difficulties may (and frequently) occur making the problem hard to handle and is often 
expected to show up as a severe numerical instability. To date, no algorithm has yet been proposed to guarantee 
solution of general MPECs. 

6. Regularization Approaches 
A direct attempt to solve the MPEC given in Eq. (4) or (5) is likely to suffer from numerical difficulties. A far 
better approach is to reformulate it as a standard NLP problem by suitably “treating” the complementarity 
constraints by some regularization technique. The idea is to solve a series of NLP subproblems such that the 
original complementarity condition is increasingly enforced, as some (positive) scalar parameter  is increased or 
decreased. We outline three such NLP-based algorithms in the following. 
Penalization: The complementarity term is transferred to the objective function and penalized (e.g. [3,4]). In 
particular, this involves modifying the objective function by adding the term zwT  in MPEC (4) and 

)( TTT
nnc rzw ++ &&  in MPEC (5). The algorithm then simply increases parameter  at each NLP iterate, with 

the intention of driving the complementarity term to zero. 
Smoothing: The complementarity conditions are replaced by a set of smooth functions 0)( =jj z,w  for all j in 

MPEC (4), and by 0)( =jj z,w & , 0)( =j,cj,c , &  and 0)( =j,nj,n r,  for all j in MPEC (5). A common 
function  used is the Fischer-Burmeister function [11] written as  

)(2)( 22
jjjjjj zwzwz,w +++=  (6) 

This function  has the property that 0)( =jj z,w  if and only if 0jw , 0jz  and 0=jj zw . The 
algorithm then iteratively decreases parameter  in order to drive the complementarity term to zero (e.g. [7]). 
Relaxation: The original complementarity constraints are replaced by their relaxed version zwT  in MPEC (4) 
and by ++ nnc rzw TTT &&  in MPEC (5). The relaxed problem is solved for successively smaller values of  to 
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force the complementarity term, which is nonnegative at feasible points, to approach zero (e.g. [7]). 
The success of which algorithm to use can be problem dependent, but we have found that all three regularizations 
performed robustly for our optimal design problems. The attraction of these schemes is that each subproblem is a 
standard NLP problem, for which the standard solvers, such as CONOPT [12], can be used. 

7. Illustrative Examples 
Two examples are provided: one concerns an optimal synthesis involving elastic softening materials (Fig. 1a) [4] 
and the other rigid perfectly plastic materials with frictional contacts (Figs. 1b-c) [3]. All examples can be solved 
efficiently by any of the three regularization techniques mentioned above. 
The first example considers the simultaneous topology and size design of a 3D cantilever beam (Fig. 2a) subjected 
to two points loads of 100  and 50  kN (  = 1), where v1 and v2 denote the corresponding displacements (m). The 
beam was translationally restrained in all directions at the four corner nodes at its supported end. The displacement 
limits imposed were 0.02 v1,v2  0.02 m. The design adopted a ground structure (shown in Fig. 2b) consisting 
of truss members. The PWL elastic softening material properties (kN, m units with E = 28000  103,
ft = fc1 = 14  103, fc2 = 28  103, h1 = 16800  103, and h = h2 = 2800  103) in Fig. 1a were used throughout, 
where l defines the member length. Area bounds for all members were set to 0 A .
The discrete truss model in Fig. 2b contains 99 nodes, 710 members, 285 degrees of freedom and 3550 yield 
functions.
An optimal design with total volume V = 0.2305 m3 was successfully obtained by solving MPEC (4). The 
designed member distribution is as drawn in Fig. 2c. 

Figure 2: 3D cantilever beam (a) geometry and loads, (b) ground structure, (c) optimal designed structure (solid 
line denotes tension member and dashed line compression member) [4]. 

The second example is the 3D double layer roof truss (16 m × 16 m in plan size and 2.828 m in height) shown in 
Fig. 3a. The structure was restrained only at some bottom layer nodes, in the y-axis direction along its perimeter 
and in all directions at four corners. At these bottom layer nodes 2, 3, 5, 8, 9, 12, 14 and 15, unilateral (along the 
x-axis) Coulomb frictional (Fig. 1c with 30tan .=  and 0= ) supports were installed along the perimeter. 
The roof truss was designed for  = 20 applied at top layer nodes, namely F(x:y:z) = (16 :4 : 16 ) at each node 
shown by  in Fig. 3a, and 0.5F and 0.25F at the nodes indicated by • and , respectively. Standard CHS sections 
with a yield stress of fy = 250 × 103 kNm 2 were adopted. All bottom layer members had the same area A1, all top 
layer members area A2, and diagonal members area A3, with all areas bounded as 820 × 10 6 A  2710× 10 6 m2.

Figure 3: 3D double layer roof truss (a) geometry and loads and (b) collapse mechanism ( , • and  denote applied 
forces F, 0.5F and 0.25F, respectively) [3]. 
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The discrete truss model consists of 128 members, 41 nodes and 103 degrees of freedom. 
The MPEC (5) was successfully solved to provide the optimal design in Fig. 3b, with V = 0.8899 m3,
A1 = 2044 ×10 6 m2, A2 = 1093 × 10 6 m2 and A3 = 2027 × 10 6 m2. The corresponding collapse mechanism in 
Fig. 3b involves translation at 6 contacts (namely supports 2, 3, 5, 8, 9 and 12) and no translation at 2 contacts 
(supports 14 and 15). 

8. Concluding Remarks 
Various state problems in engineering mechanics can be formulated as mathematical programs with 
complementarity constraints or more specifically as MCPs. The inverse or synthesis problems to such MCPs lead 
naturally to a challenging problem class known as MPECs. This short review is intended to provide an overview of 
the formulations and solution approaches to certain MPECs that arise in the context of structural optimization. The 
complementarity conditions describe naturally and elegantly elastoplasticity and contact conditions. 
While MCPs that arise in the structural mechanics context are eminently solvable since most possess key matrices 
with “nice” properties (e.g. positive definiteness), MPECs, on the other hand, are far more difficult to solve since 
they can be disjunctive, nonconvex and/or nonsmooth. Such properties are invariably associated with severe 
computational difficulties, similar to those in integer programming. 
In spite of these difficulties, we have had considerable success in solving structural optimization problems 
formulated as MPECs. The key idea is to regularize the complementarity conditions and transform the MPEC into 
a standard NLP problem, the iterative solution of which increasingly enforces complementarity. Three such 
techniques are penalization, smoothing and relaxation. All perform equally well with the structural optimization 
described. Numerous examples, two of which are provided herein, attest to their robustness and efficiency. 
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1 Abstract
The box girder is widely used in mechanical equipments. Since the design of box girder mainly relies on traditional 
experience , the structure is very heavy. This paper applies the topology optimization to the design of box girder to 
reduce weight. First, an optimization model for the three-dimensional box girder, in which the compliance is 
minimized and volume is constrained, is established based on SIMP method, and different filter functions are used 
to avoid numerical instabilities that will occur in the optimization process. By loading the box girder in three 
different positions respectively and using the Optimality Criteria to solve each of load conditions , three kinds of 
structures are obtained. Finally, an optimal topology configuration is obtained by combining the three structures, 
and its validity is tested by FEM. In this paper , by using three-dimensional model, the internal structure of box 
girder can be obtained ,which is useful for the layout of the ribs. The results provide a reference for the conceptual 
design of box girder ,and lay some foundation for the multi-load cases problem. 
2 Keywords: Topology Optimization; Box girder; Conceptual Design

3 Introduction 
To industrial equipments, the box girder , one kind of the fundamental pieces of manufacturing , is not only very 

common but also very important. Many parts that can be found in the factories, such as the girder of bridge crane, 
the bed of machine tool , belong to the box girder. The weight of box girder is usually accounted for a large 
proportion of the total weight of the device. The box girder directly or indirectly determines the precision, carrying 
capacity and other basic performance of equipment. And of course, the internal structure of box girder is more 
complex and difficult to reach a rational design. 

Currently, when designing box girder structure, traditional design methods include experience design and 
analogy design are used, and the results is particularly heavy. Bulky parts use more material in the manufacturing 
process, expend more energy during transport and adversely affect the device performance due to its excessive 
inertia. Therefore, the design by reducing weight of box-beams is urgent. In structural optimization, topology 
optimization that is innovative in design is a hot research field. With the method of topology optimization, 
Huayang Xu[1] has optimized the arm of flight simulator under inertial load , Lunjie Xie[2] has obtained a rational 
load bearing structure of electric car body in conceptual design phase, Bret[3] has designed a structure for flapping 
mechanism under multiple load cases, etc.  

This paper focuses on applying topology optimization to the box girder design. First, the box girder is abstracted 
as a simply supported beam, and an optimization model is established of which the objective function is 
compliance and the constraint is the volume, then, problems in the model solution process are studied and the 
method to solve them is found. Second, this model and method is used to design some kinds of new structures for 
the bridge crane girder with the loads position changed. Based on those structures, a new structure that can be 
applied to different load conditions is designed. 

4 topology optimization theory 

4.1 SIMP method  
SIMP method is widely used among the topology optimization methods. It has been proposed by Mlejnek[4] in 

1993, which builds the relationship between the material density and elastic modulus by the following formula:
( ) [ ]0 , 0,1p

i i i iE x x E x=   (1) 
where 0E  is the elastic modulus of material ix  is the i th element's density p  is the penalization 

power( 1p > ) . When using this method to the simply supported beam, the Eq. above is changed to the following in 
order to prevent stiffness matrix singular which will happen when the number of material density equal to 0: 

( ) ( ) [ ]min 0 min 0,1p
i i iE x E x E E x= + ，   (2) 

where minE  is the elastic modulus which is very little. 
4.2 The penalization power 

Material density varies continuously between 0 and 1 in SIMP method. Thus, the structure after optimization 
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exists middle density areas which can not be manufactured in reality and are need to be suppressed as much as 
possible. The utility of penalization power is to penalize those areas. Supposed the elastic modulus of material 

5
0 2.0 10 MPaE = ×  , according to Eq.(1), the Figure 1 is gotten, which shows the penalization power's influence 

on the elastic modulus. From this picture , when the value of penalization power increases, the middle density 
closers to the two ends of the interval of the elastic modulus, which achieves the desired effect of penalization 
power. 

Figure 1: The penalization power's influence                     Figure 2: The impact of different penalization power 
 on the elastic modulus                    on simply supported beam's optimization results 

Note that the results of topology optimization change as the penalization power is changed , and once the value 
is bigger than a certain value, the results of topology optimization may be wrong[5] . The          Figure 2 show this 
phenomenon. When p=1, penalization power and the result is not clear; when p=3, 
the structure is clear and can be used; when p=5 and p=10, the simply supported beam becomes a structure with 
some rods, which does not meet the engineering requirements. From this comparison, to get a right result for the 
simply supported beam, the penalization power's value at 3 is better ,which is used in this paper. 

4.3 Optimization Model 
When building an optimization model, the simply supported beam is discretized by the finite element method. 

And each element has a density ix  , which together forms a design space X

[ ]1 2, , , , ,i nx x x x=
TX   (3) 

where n  is the number of element after discretized. For the simply supported beam , we build a optimization 
model of which the objective function is to minimize compliance and the constraint is the volume as following: 

min ( ) ( )

( ) 0
.

c

v v
S t

=

=

T

T

X F U X

X X V
0 X 1

  (4) 

where F  is the load applied in the model , which is determined on the size of the load, direction and acting 
position; [ ]1, , nv v=

TV  is the vector of element volume; v is the volume that is wanted to reach. U(X)  is the 
displacement of each node, which can be get from the Eq.(5) : 

K(X)U(X) = F   (5) 

4.4 Sensitivity Analysis 
Since the design variable is nothing to do with the load F , the following Eq. can be gotten: 

0
ix
=

F   (6) 

The partial derivative of Eq. (5)is: 

0
i ix x

+ =
K UU K   (7) 

The partial derivative of volume constraint is
( ) ( )

i
i i

v v v
x x

= =
TX X V   (8) 

where iv is the volume of the i th element. 
The partial derivative of objective function is
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i i i i

c
x x x x
= + +

T
T TU K UKU U U U K   (9) 

Using Eq.(7)

i i

c
x x
= T KU U   (10) 

According to FEM theory, in each element ,there is: 
0( ) ( )i i i i ix E x=D D   (11) 

where 0
iD  is the elasticity matrix of each element, which is a constant matrix. 

The element stiffness matrix is based on isoparametric element theory, the element stiffness matrix is: 
1 1 1

1 1 1
( )i i ix d d d= Tk B D B J   (12) 

where B is the strain-displacement matrix, J is the determinant of Jacobian matrix. Using(11)
0( ) ( )i i i i ix E x=k k   (13) 

Last, the sensitivity of the objective function is: 

( )1 0
0 min

p
i i i i

i

c px E E
x
= Tu k u   (14) 

4.5 Optimality criteria 
The optimization model of simply supported beam is nonlinear, which can be solved by the Optimality Criteria 

(OC) method. This method which is based on K-T condition is used in topology optimization due to it's simply and 
efficient. Supposed 0 X 1  is satisfies, namely it is inactive, the design variables are updated using the 
following : 

( ) ( )
( ) ( )min

max 0, , max 0,

min 1, , 1,

,

i i i i

new
i i i i i

i i

x m when x B x m

x x m when x B x m

x B otherwise

= +    (15) 

where 
( )1 0

0 min
p

i i i i
i

i

px E E
B

v
=

Tu k u
  (16) 

To this problem, m=0.2 and  =0.5 is recommended[6]. Then, there is only one unknown number in the 
Eq.(15), which can be get by following the steps below: 

1) Let (1)
min 0= , and (1)

max is a large number, such as 91 10×  ; 

2) Calculate ( )( ) ( ) ( )
min max / 2k k k= +

3) Get newX  by Eq.(15), then ,calculate ( )newv X  , when ( ) 0newv <X let ( 1) ( )
max

k k+ = ; and when ( ) 0newv >X ,

let ( 1) ( )
min

k k+ =  ; 

4) Repeat steps 2 and 3 until to ( ) 0newv =X  . 

4.6 Filter function 
Among the optimization process of simply supported beam, there may be numerical instabilities, such as 

checkerboard problem and mesh-dependency. Generally , those problems appear simultaneously, thus, the method 
that can inhibit the checkerboard problem also can inhibit the mesh-dependence. One common approach to 
suppress these problems is using the density filter function[7], which is defined as: 

i

i

ij j j
j N

i
ij j

j N

H v x
x

H v
=   (17) 

Another commonly used method is the gray scale filter[8], which is a nonlinear method. This method is an update 
of OC method:
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( ) ( )
( ) ( )

( )
min

max 0, , max 0,

min 1, , 1,

,

i i i i

new
i i i i i

q

i i

x m if x B x m

x x m if x B x m

x B otherwise

= +   (18) 

The value of q is a key. For this optimization model, q=2 is recommended[9]. And it is just the OC method when 
q=1.

Different filter functions have different impact on the topology optimization results. In Figure 3, (a) is the result 
without any filter function, (b) is the result using the density filter function, (c) is the result using the gray scale 
filter function, (d) is the result using density filter and gray scale filter. Compared with no filter function, the 
structure is more clear and less checkerboard phenomenon when using filter function. When using two filter 
functions alone, the density filter is better than gray scale filter from (b) and (c),because (c) appears checkerboard 
problem. That is to say the gray scale filter shouldn't be used alone. Compared (b) with (d), there are some 
differences in the structure. Based on this study, in order to get the most reasonable structure of simply supported 
beam, the density filter method and another method that uses density filter and gray scale filter together are applied 
to the optimization model respectively. 

           
Figure 3: Different filter function's impact on                          Figure 4: The girder and its Simply supported beam 

optimization results 

5 Topologies under different conditions 
Box girders are widely used in machines. In order to use the topology theory above to get a new structure of box 

girder, the girder of bridge crane is selected as the research object, which can be simplified as a simply supported 
beam.  

The size of bridge crane girder is 10×1×1m, which is showed in                          Figure 4, and the maximum lifting 
capacity of it is 50 tons. The material of girder is Q345, of which the elastic modulus is 2.0e5MPa, and the 
Poisson's ratio is 0.3. Since the safety factor of this material is 1.4, the allowable stress is 246MPa. According to 
the girder's length and stiffness , the allowable deflection of grider is 12.5mm. This girder is abstracted as a simply 
supported beam, which is showed in                          Figure 4. 

In terms of the model loads, they are given by the lifting trolley through four wheels , and the loads are uncertain, 
whose size and acting position vary from time to time. However, in the optimization model, the loads are certain, 

and are known constants. Thus, the uncertain loads need to be simplified to certainty in this paper. When the 
lifting trolley is in the middle of girder , the structure is under the most dangerous condition, and when the lifting 
trolley is at both sides of girder , the structural deformation is least. Considering these, there are 4 kinds of lifting 
conditions to the girder, which the loads are the maximum lifting capacity: (a) the lifting trolley position is at the 
upper middle of the simply supported beam; (b) the lifting trolley position is 1/4 away from the left side of the 
simply supported beam; (c) the lifting trolley position is 1/4 away from the right side of the simply supported beam; 
(d) the lifting trolley position is at the three position above at the same time(it does not exist in reality). 

According to the filter function analysis above, different results can be gotten by using different filter function , 
and the results to the simply supported beam is in the Figure 5 . The results using density filter is on the left, and the 
results using density filter and gray scale filter is on the right. The letters in the pictures correspond to the 
respective lifting conditions above. 

There are many common grounds in the results using two kinds of filter functions. All the structures show a 
trapezoidal shape , which can be divided into two parts: the main structure on the middle and the support structure 
on left and right sides. Middle part of the structure is wider at the top, which is hollow, and on the front and rear 
web position, there are big trapezoidal holes, whose position are just below the loads. The hole does not appear on 
the Cover on the four kinds of lifting conditions. The support structure is the two trapezoidal sides., and the upper 
and lower materials on each side are removed. In the results, dark black units represent the main unit , which can be 
enhanced by adding an appropriate amount of ribs in these place. 
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Figure 5: The results of the simply supported               Figure 6: Bridge crane girder conceptual structure 
 beam using different filters  

In addition to the same points, there are differences between two results. The most obvious point is on the Under 
Cover. After using density filter, the Under Cover is gone, thus, the cross section is a inverted U. However, when 
using the other filter function, the Under Cover still exists, thus, the cross section is a rectangle. Theoretically, the 
loads is straight down , then these two cross-sectional structures have the same stabilities . However, the loads are 
uncertain in direction on actual working conditions, then the rectangle cross section is better than the other one. 
Therefore, the exists of Under Cover is necessary.  

6 Structure synthesis and verification 
According to the analysis of different results above, a conceptual structure for the bridge crane girder is gotten 

by removing materials on some parts of girder. The conceptual structure is showed in      Figure 6.  
In order to validate the conceptual structure , finite element model is built. When the lifting trolley is in the 

middle of girder , the structure is under the most dangerous condition. To this condition, the results is in Figure 7,         
Figure 8 and Table 1. In the figures, (1) represents the simply supported beam; (2) represents the bridge crane 
girder; (3) represents the conceptual structure. According to the results, the displacement of three models increase 
successively, and the conceptual structure one is 4.85mm which is the largest one, but it is still less than the 
allowable deflection which is 12.5mm yet. The maximum stress of three models increase successively too, and the 
largest one is the conceptual structure's stress which is 103MPa, but it is still less than the allowable stress which is 
246MPa yet. Most importantly, stress region is more uniform in the conceptual structure , which represents 
material is efficiently used. In conclusion , when the trolley is in the middle of girder, the conceptual structure's 
displacement meet the requirements and stress is better than the others. 

      
Figure 7: Displacement contour plot when trolley            Figure 8: Von Mises stress contour plot when 

in the middle                                                                                trolley in the middle 

Table 1: Displacement and stress when trolley in the middle 
Simply supported beam Bridge crane girder Conceptual structure

Displacement/mm 0.86 1.53 4.85
Maximum stress/MPa 56.60 81.90 103.00 

When the lifting trolley is 1/4 away from the left side , the results is in Figure 9, Figure 10 and Table 2. From the 
results, the displacement and stress of conceptual structure are the largest ones, but still in the allowable range, and 
stress region is uniform too. Due to the symmetry of the structure , the results to the condition trolley 1/4 away 
from the right is just the same as this results. The last condition in the four lifting conditions does not exist in 
reality ,thus there is no need to verify the structure in this condition.  
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Figure 9: Displacement contour plot when                  Figure 10: Von Mises stress contour plot when 
trolley 1/4 away from the left                            trolley 1/4 away from the left 

Table 2: Displacement and stress when trolley 1/4 away from the left 
 Simply supported beam Bridge crane girder Conceptual structure

Displacement /mm 0.63 1.10 5.11 
Maximum stress /MPa 56.60 115 130.00 

Table 3: Volumes to different models 
 Volume/m3 percentage

Simply supported beam 10.00 22.5% 
Bridge crane girder 3.60 62.5% 

Conceptual structure 2.25 100% 

From the Table 3, compared with the other structures, the conceptual structure is more light since they all have 
the same density and the volume of conceptual structure is least. In conclusion , the conceptual structure meet the 
requirements, and is a new weight light structure for the bridge crane girder.  

7 Conclusions 
This paper applies topology optimization method to the box girder's concept design stage. For simply supported 

beam, SIMP method is briefly introduced. The filter function that density filter combined with gray scale filter is 
better for simply supported beam when using SIMP method. Topology optimization is used on girder of bridge 
crane, getting a new conceptual structure which is verified by finite element analysis in two conditions. The 
conceptual structure is light and efficient in material using However, the optimization model does not consider the 
stress, which is the future research direction. 
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1. Abstract
This paper introduces a novel multi-criteria optimisation framework that efficiently combines manufacturing 
analysis of composite structures with respect to various production criteria such as manufacturability and 
limitation of process-based material deviations. These criteria include gaps induced by fibre placement systems as 
well as structural constraints regarding material failure, stability and damage tolerance. Within this optimisation 
framework, evolutionary algorithms are coupled with an in-house parametric FE-Model generation tool, which 
exhibits an extensive design scope comprising various unconventional stiffener topologies, evaluates buckling 
modes and obtains composite specific failure criteria according to multiple load cases. This work focuses on 
multi-criteria optimisation of a lattice-stiffened fuselage panel with novel double-curved stiffeners aiming for 
minimum weight. The final design is compared to a conventional aircraft stiffener topology with respect to weight 
and window size. 

2.  Keywords: Design Optimisation of Composite Panel, Evolutionary Algorithms, Response Surface Models, 
Automated Fibre Placement, Estimation of Prepreg Tow Gaps

3.  Introduction 
Increased utilisation of composite materials due to their specific properties such as strength-to-weight ratio, 
damage tolerance, reduced maintenance costs and flexibility has led to advanced production technologies such as 
Automated Fibre Placement (AFP) systems. Despite of high positioning accuracy these systems induce 
manufacturing deviations mainly provoked by geometric complexity of composite structures and restrictions in the 
structural design space by the dimensions and flexibility of the layup head [1]. Furthermore, unconventional 
designs adapted to loading conditions can significantly improve efficiency of the stiffened thin-walled structures in 
terms of weight savings compared to current composite applications in commercial aircrafts. However, increased 
geometric complexity of composite structure can lead to redesign necessities due to manufacturability 
requirements and significant production deviations, such as gaps between tows and deviations in fibre orientations 
by AFP. If not considered, consequently a reduced structural performance would be obtained [2]. Regarding 
manufacturing deviations of AFP systems, tow gaps have a vital role on mechanical performance of the prepreg 
laminated composite structures which is precisely presented by [3]. However, AFP induced gaps are most 
commonly analysed separately after completion structural designs. This may lead to recurring design phases or 
expansive manufacturing strategies to overcome this issue. Hence, as a solution methodology, especially for 
unconventional stiffeners, structural optimisation can be coupled with production analysis so that the structure 
adapts its topology to defined production technology unlikely to process adaptation to the final design to avoid 
significant material deviations. Thus, a novel optimisation approach is presented that associates structural 
optimisation with manufacturability of components and restriction of deviations regarding a newly developed AFP 
system.  

4. Panel Concept and Production Phases  

Initial concept of the aircraft side panel is based on evolution in biology such as bones or branches that have risen 
from various loading conditions in their environment. A detailed global topology optimisation of a fuselage barrel 
presented by [4] exhibits slanted, lattice and intersecting material densities around the window sections. 
Nevertheless, slanted stiffeners offer increased performance under fuselage regions loaded with shear forces [5] 
which lead to efficient material usage in terms of weight savings. Stiffener topology of the panel concept consists 
of a pure grid stiffened region with local stabilisers, so-called stiffener peaks around the windows and conventional 
stringer frame distribution in upper and lower regions where the slanted grid topology ends. This combination also 
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allows an efficient assembly process in circumferential directions of the fuselage. Advantageous of the machining 
technologies on foam structures are utilised for serial production of complex sandwich stiffener topologies [6] (see 
Figure 1).

Figure 1: Illustration of concept panel components (left) and the process chain (right) 

The manufacturing process starts with the prepreg-skin being placed on a 2D surface by AFP and then being 
transformed into 3D by a flexible forming process. Foam of stiffener peaks are placed and processed as well in 
AFP followed by the placement of the more complex grid-stiffeners. Draping process on lattice stiffeners and 
intersection points using innovative textile-concept is carried out and afterwards slanted stiffeners are infused and 
bonded to prepreg skin via co-curing process in autoclave. The production concept yields a significant reduction in 
manufacturing costs due to a single bonding of all panel components.  

5.  Automated Fibre Placement System  
Main advantages of the in-house system are increased laying velocity around 3 m/s and form flexible compaction 
device with a decreased minimal tape length compared to state of the art. Hence, the layup head design not only 
allows for manufacturing geometric complex structures but also for placing slit tapes on plane fuselage skin with 
high productivity. To adapt to different surface conditions like stiff metal moulds or the more elastic foams, the 
compaction device is separated in four force-controlled compaction segments, allowing an additional radial 
displacement. The geometric characteristics are presented in Figure 2, and as well as the most important criteria for 
design optimisation regarding restrictions of the compaction device.  

Figure 2: Illustration of newly developed modular layup head at left and manufacturability criteria at right  

The newly developed layup head processes 1/4” (6.35 mm) slit tape. Between each tow and compaction segment a 
gap of 0.2 mm exists because of tow guidance. Each segment is able to perform a radial displacement to adapt 
curved surfaces of up to 4 mm. With an overall width of 26 mm the resulting maximum slope of the compaction 
device is 0.154 across feed direction (b). Another criterion derived from the compaction device is the curvature (c). 
The segment diameter of 70 mm allows a maximum curvature of 0.028 1/mm for concave arched surfaces. These 
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three criteria, the gap, the maximum slope and the maximum curvature are taken into account within the 
optimisation procedure. 

6. Estimation of Manufacturability  
The manufacturability analyses focus on the production of the double curved stiffener peaks presented in Figure 1. 
Due to geometric complexity, during the optimisation, manufacturability analysis has to be carried out in order to 
adapt the structural surface to machine restrictions shown in Figure 2. This analysis is automatically performed 
with an AFP-interface-algorithm within the in-house parametric simulation tool. Computations of surface slopes 
and curvatures are performed by projecting partitioning lines on the stiffener peak according to the global fibre 
placement direction. Distances between lines are set to two tow widths including segmentation spacing of the 
compaction roller. By this means, the neutral fibre lines can be obtained between two partitioning lines 
representing projected fibre path borders. Ascending surface slopes are computed along the vertical direction of 
neutral fibre paths (Figure 3 left). Allowable curvature and minimum radius are iteratively computed regarding the 
neutral fibre line information. 

Figure 3: Computation of allowable surface slopes in layup direction (left), geometric gap analysis (right) 

Based on the same methodology, partial geometric gaps, d1, d2 (in Figure 3 right) are analysed at the points that 
are lying on the intersection of vertical partitioning lines and projected borders of tows with assumption of 
infinitesimal material strains vertical to fibre direction. The maximum gap value is calculated iteratively on each 
cell with summation of partial gap values of neighbour cells as follows: 

)21,21max( 11 iiii dddd ++ +
, i = number of the parallel neighbour cells  (1)

The estimation of the gaps will be larger than experimental values due to missing material behaviour during the 
compaction. However, this assumption will affect the mechanical performance in a positive way since the gaps are 
also minimized more than expected values which lead to increased fibre volume fraction in gap regions.  

7. Surrogate Models of Manufacturability Outputs 
In order to increase optimisation efficiency in terms of computation time, a response surface generation of the 
manufacturability output of stiffener peaks is carried out using radial basis function, artificial neural networks 
(RBF-ANN) that are based on biological process of neurons [7]. This methodology offers a faster approximation 
method by creating an output of linear combinations of weighted radial basis functions, in this case Gaussian 
functions, to get sufficient non-linear approximation models.   

Figure 4: Response surface generation of manufacturability output of stiffener peaks 

The Latin hypercube sampling method is chosen to generate input samples. The surrogate model generation 
represented in Figure 4 is carried out according to training data sets that contain input samples regarding 

926

Leo
Rectangle



4

optimisation parameters of the FE panel model and corresponding output sets containing maximum tow gaps, 
ascending slope, and curvature information of peak topology. Since the lay-up orientations are restricted to 0°, 
+45°, 45°, 90°, other orientations are not necessary to be included during computation of maximum gap, slope 
and curvature information.

8. Multi-criteria Optimisation  
The objective of the multi-criteria optimisation is formulated to reach minimum weight goal based on a 
conventional reference panel, under structural and manufacturability constraints of stiffener peaks. Evolutionary 
strategies based on selection, recombination and mutation operators are used to minimise fitness value consisting 
of approximated manufacturing outputs, structural responses and weight of the panel. The optimisation framework 
combines manufacturability outputs from surrogate models with FE analysis by adding and weighting mapping 
functions of objective Copt and mapping functions of constraints Cl

=/<. Summation is the fitness evaluation, C, of
each individual represented in equation (2) where X presents the system parameters, also F(Xi) and f(Xl) are
representing respectively,  the weight objective and the constraints. 

minimise +=
<+=

=

<=
nn

l
illli

opt
ii XfCwXFCwXfXFC

1

/
0 ))(())(())(),(( i = number of design variables 

l = number of constraints (2)

8.1 Design Variables and loading conditions 
As presented in Figure 5, an optimisation model is automatically generated by an in-house parametric panel 
generation tool which is written in Python. Window cut out topology can also be varied during the optimisation
and can be changed from oval to lozenge shape. The object oriented structure of the panel generation tool 
automatically enables FE models of different kind of stiffener topologies and profiles to expand the design scope 
with large number of design parameters.  

Figure 5: Design variables of newly developed fuselage side panel  

Automated design of producible lay-ups and thickness adjustments on overlapping zones or sections of different 
textile topologies are handled with composite module and production module (AFP and draping) within the panel 
generation tool. The layup parameters are optimised with an interface to the table of allowable layups consisting of 
combinations of all possible stacking sequences based on number of layers, orientations (+45, 45, 90, 0) and 
production requirements in [8], such as symmetry and balance condition where at least 8 % of fibres have same 
orientation, not more than four plies having the same direction could be stacked in a sequence and orientation of 
the outermost layers are restraint to +45 or 45 in order to minimise impact effects. Within this strategy all layup 
parameters such as number and orientations of the layups are reduced to only one index variable of the allowable 
layup table. 
In order to realise aircraft fuselage deformations on the panel level, periodic boundary conditions are applied at the 
edges of the FE model. Different loading scenarios stated in Table 1 and corresponding failure analyses are 
automatically performed during the optimisation.  
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Table 1: Load cases and origins of loading conditions with corresponding analysis type in optimisation process 

Load
Case

Loading Type Analysis Type Cabin Pressure 
[mbar] 

Axial Loading,
nx,x [N/mm] 

Shear Loading, 
nx, [N/mm] 

1 Cabin Pressure Static 1200 120.0 - 
2 Manoeuvre Static 600 60.0 86
3 Lateral Gust  Static 600 197.0 1.0
4 Lateral Gust Static, Buckle - - 86
5 Manoeuvre Static, Buckle - 137.0 67.0

8.2 Structural and Mechanical Constraints 
The damage tolerance requirement of the panel is satisfied by the maximum strain condition max in each load case 
(see Table 1). Due to the positive effect of the cabin pressure, only load cases 4 and 5 are considered for buckling. 
Furthermore, out of plane deformations are not allowed around the windows in order to prevent faster 
delamination in weak regions and sustain damage tolerance. Manufacturability constraints (5, 6 and 7 in Table 2) 
are assigned according to the requirements illustrated in Figure 2 and approximated by the response surface 
method. Manufacturability of the stiffener peaks is handled as upper restriction and the outputs under upper limit 
constraints are ranked equally since secondary influences such as machine speed in terms of laying rate are not 
considered.

Table 2: Structural Constraints 1–4 and manufacturability constraints 5–7 with source of computations  

No Constraint Type Constraints  Source 
1 Allowable Strain in each Load Case,  < max FEM – Abaqus® 
2 No Buckling Forms Around Windows, Load Cases 2, 4, 5 Ur < Umin FEM – Abaqus® 
3 Reserve Factor Load Case 4, RF1 RF1 > 1 FEM – Abaqus® 
4 Reserve Factor Load Case 5, RF2 RF2 > 1 FEM – Abaqus® 
5 Maximum Ascending Slope, m m < 0.154 Response Suface
6 Maximum Curvature, k k < 0.028 1/mm Response Suface 
7 Maximum Tow Gaps, d d  0.55 mm Response Suface 

9. Results and conclusions 
The evolution parameters of the panel are set to 30 populations with 80 offspring per generation and infinite 
lifespan in the optimisation environment. Convergence of the multi-criteria problem is observed at 27th generation 
after approx. 2600 structural evaluations, with static and buckling analysis in conjunction with response surface 
approximation of AFP manufacturability analysis. Lozenge shape of window cut-outs adapted to stiffener layout 
around the window is one of the significant outcomes of the optimisation. Even though the objective is to reach 
minimum weight based on reference value, panel offers 12 % larger windows compared to optimised reference 
composite panel under same loading conditions and constraints (Figure 6). Oval shapes of the windows are 
restricting the intersection angles to lower degrees in order to satisfy allowable window sizes. Significantly 
increased stability is observed on pure shear loading (RF1) due to lattice topology and adaptation of intersection 
angles and material properties to the dominant loading condition (RF2, combined shear and compression loading). 

Figure 6: Optimisation result with constraints and reference panel (right) and true geometric gap fields on peaks 
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Therefore, buckling values in load case 5 (compression and shear loading) are significantly reduced in all 
parameter combinations of oval shapes. Besides, configurations offering smaller window size than the reference 
panel are not included and ranked in the structural evolution. Additionally as presented in Figure 7, an efficient 
convergence is obtained for the layup index parameters of the allowable layup array, which comprises thousands 
of allowable stacking sequences sorted by ascending layer numbers. 

Figure 7: Best stiffener and window topology, convergence of grid laminate and manufacturability parameters 

The obtained peak configuration satisfies all requirements regarding production quality. Within this methodology, 
an automated structural evolution together with production quality can be obtained simultaneously without any 
requirements such as complex path programming to avoid large gaps between tows. To effectively improve 
manufacturing quality, gap information will in future be used to monitor the layup process continuously and to 
feedback data about real material behaviour in the optimisation framework. The alternative design and 
methodology can be improved even further by integrating influences of the draping process and other loading 
conditions in the structural evolution. 
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1. Abstract  
This paper presents a numerical method for stabilized and stiffened structural system by tension members. In these 
structures, it is generally difficult to control a shape and prestress because of high dependency between them. Our 
proposal model has similar features of these systems, and we find the resisting structural form efficiently for 
compression occurred by prestressing. 
Our analytical approach is to divide a structure into two groups which are instable system and statically 
indeterminate system. We formulated equations of stabilizing process in each group. These shapes of structures 
become a unique shape under the specified prestress. In previous research [1], we analyzed two-dimensional 
models and verified the proposed method. In this paper, we analyzed three-dimensional models and show some 
results which would be available to apply for spatial structures. Next, we present the optimization method for these 
structures. In this method, we define the strain energy as an objective function, and magnitude of prestress as 
design variables. It is difficult to apply linear analysis of stress and displacement in these structural models, 
because it would be instable without prestress. Therefore, we apply the geometrically nonlinear analysis with 
prestress by FEM. We focus a form-finding analysis and optimization for these structures in this paper. 
2. Keywords: Structural optimization, Stabilized and Stiffened Structural System, Genetic Algorithm 

3. Introduction 
This paper presents a numerical method for a structural system stiffened by tension members, such as tensegrity 
structures and cable domes. These structures are utilized for a spatial structure with light weight and attractive 
appearance. However, in engineering process, it is generally difficult to control a shape and prestress. Therefore, 
we have to apply the form-finding analysis for an equilibrium shape. Many numerical analysis methods of such 
structures have been proposed and it would be successful methods. On the other hand, similar types of these 
structures have been investigated and constructed. These are called “tension-stabilizing truss”, and “tensegric 
dome” [2]. A different feature from tensegrity is that these systems are utilized for comparatively low stiffness 
structures, or instable structures. These systems are useful to stiffen the single-layered truss shell. We focus a 
form-finding analysis and optimization for these structures in this paper.  

4. Isotonic Soap Films Stretched on the Polyhedron 
Isotonic soap film stretched on the polyhedron is a conceptual model of our proposed structural one. J. Plateau, a 
Belgian physicist in the 19th Century, formulated Plateau’s law which describes the structure of bubble soap films 
from his experimental observation (Fig.1). It shows that isotonic soap films are stretched on the polyhedron wire 
frame. It also can be assumed that the equilibrium shape by self-stress exists in the member arrangement which is 
a state of tension members covered with compression members. That is to say, in the case of low stiffness shell, it 
can be stiffened by only tension members. Besides, this structural system is not necessary to be rigid at the 
compression member’s joint, it would become light weight and high stiffness structure with prestressing. 

Fig.1 Isotonic soap films stretched on polyhedron formed wire frame (Reprinted from [3]) 
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5. Numerical Analysis 
5.1 Analytical Model 
It is shown the initial shape consist of truss, cable members and pin joints in Fig.2. Variables of p1and p2 are acting 
in the cable members. This model is a simple one of stabilized and stiffened structural system.  
We explain the outline of form-finding analysis. Our approach is to divide a structure into two groups. The first 
(g1) is a group of instable system in which some rigid body displacements modes exist. This group consists of 
compression truss members shown in left side of Fig.4. Compression members could be rotated at the node, and 
bending moment doesn't occur inside of members. The second (g2) is a group of statically indeterminate system in 
which some self-equilibrating stress modes exist. This group consists of tension members shown in right side of 
Fig.4. In order to form these assumed systems, we must modify boundary conditions. To analyze these systems, we 
must set forcible deformations as initial values (p1, p2). And then, we control the shape of the structure by 
displacements toward the stable state. The g2 will be change the shape of the structure with specified deformations 
of members forcibly, and the g1 will be change the shape of the structure as rigid body displacement by acting 
reversed force of the g2’s self-stress. In this way, we can obtain the stabilizing shape at the convergence. At last, 
forcible deformation as the initial values take the place of prestress values. The flow of analysis is shown in Fig.5.  

Fig.2 Initial shape and members 

Fig.3 elevation (left side) and plan view (right side) 

Fig.4 compression group (g1) and tension group (g2) 
We investigate whether the structure has stiffness by the method of geometrically nonlinear analysis with prestress. 
It is assumed that the external force is acting as vertical load. The model could be applied linear analysis by FEM, 
but we have to avoid acting compression force into tension members. It appears that this stiffened system of 
structure would be useful.  

5.2 Formulation of form-finding 
The discretized static equilibrium equation of truss structures can be written as 

𝐴𝒏 = 𝒇 (1)
𝐴 ∶  equilibrium matrix, 𝒏 ∶ axial force vector, 𝒇 ∶ external force vector

The deformation–displacement relation can be written as 

Fig.5 Analytical flow of 
form-finding 
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𝐵𝒅 = 𝜟𝒍 (2)
𝐵 ∶  deformation − displacement matrix, 𝒅 ∶ displacement vector, 𝜟𝒍 ∶ deformation vector

Now, we consider two groups of structural system. Rigid body displacement occurs by acting the External force in 
g1. Under the assumption of rigid body displacement, Eq. (2) becomes 

𝐵𝒅 = 𝟎 (in g1) (3)
𝟎 ∶ null vector

The Moore–Penrose generalized inverse matrix gives the displacement vector 𝒅 as 
𝒅 = [𝐼n − 𝐵+𝐵]𝜶 ≡ 𝐻𝜶 (4)

𝐼n ∶  unit matrix(𝑛, 𝑛), 𝐵+ ∶ Moore − Penrose generalized inverse matrix, 𝜶 ∶ arbitrary column vector
𝐻 ∶ matrix of rigid body displacement modes

To consider the convergence of the external potential energy, 𝒅 can be written as 
𝒅 = 𝛼𝐻𝒇 (5)

𝛼 ∶ incrementation parameter
The axial force vector 𝒏 in g1 can be written as 

𝒏 = −(𝐵+)
T𝒇 (6)

Obtained 𝒏 in this way become least-square solutions. 
Next, we formulate the displacement of g2. Acting the specified deformation causes the forcible displacement in 
g2. This specified deformation takes the place of prestress at the convergence of stabilizing process.  
Under the assumption of self-equilibrium state, Eq. (1) becomes 

𝐴𝒏 = 𝟎 (in g2) (7)
The Moore–Penrose generalized inverse matrix gives the displacement vector 𝒏 as 

𝒏 = [𝐼m − 𝐵𝐵+]𝜷 ≡ 𝐺𝜷 (8)
𝐼m ∶  unit matrix(𝑚, 𝑚), 𝐵+ ∶ Moore − Penrose generalized inverse matrix, 𝜷 ∶ arbitrary column vector

𝐺 ∶ matrix of self − equirbrating stress modes
To consider the convergence of the complementary energy,  𝒏 can be written as 

𝒏 = −𝐺𝛥𝒍 (9)
𝛥𝒍 is known value as specified deformation in g2. And, it is negative value. The external force of g1 can be obtained to 
calculate 𝒏 of Eq. (9) such as Fig. 6. 

Fig.6 Relation of force in g1 and g2 
The displacement of g2 can be written as 

𝒅 = 𝛼𝐵+𝛥𝒍 (10)
Obtained 𝒅 become least-square solutions, and we regard 𝒅 as the forcible displacement. To use 𝒅 of Eq. (5), and 
(10), the shape of structure is changing. The convergence condition is in below. 

𝑒1 = 𝒅T𝒇 (in g1)
𝑒2 = (−𝛥𝒍 − 𝒏)T(−𝛥𝒍 − 𝒏) (in g2)

𝑒 = 𝑒1 + 𝑒2 < 𝜀 (11)
−𝜟𝒍 becomes prestress when Eq. (11) is established. Therefore, the structure would be stabilized. 

5.3 Geometrically Nonlinear Analysis with Prestress 
In this paper, we show the geometrically nonlinear analysis with prestress by FEM. This analytical model stiffened 
by prestress, and it is important to include the geometric stiffness. This method is described as incremental analysis 
and updated Lagrange method. We apply the Newton-Raphson method as the solution of nonlinear equations. 
In the incremental interval, equilibrium equation can be written as 

𝐾𝛥𝒅 = 𝛥𝒇 (12)
𝐾 ∶  tangent stiffeness matrix, 𝛥𝒅 ∶ incremental displacement vector, 𝛥𝒇 ∶ incremental force vector

Eq. (12) is expressed as below. 
𝐾 = 𝐾𝐸 + 𝐾𝐺 (13)

𝐾𝐸 ∶  elastic stiffeness matrix, 𝐾𝐺 ∶ geometric stiffness matrix
𝛥𝒇 = 𝒓 = 𝒇 − 𝒒 (14)

𝒓 ∶  residual force vector, 𝒒 ∶ internal force vector
The prestress 𝒏0 is including in 𝐾𝐺 and 𝒒. 𝒏0 can be calculated by using Eq. (6), (8). 
To determine deformation, axial force, and internal force, we use 𝐵 matrix of the structure. 

𝛥𝒍 = 𝐵𝛥𝒅 (15)
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𝑛𝑘 =
𝐸𝑘𝐴𝑘

𝑙𝑘
𝛥𝑙𝑘 (16)

𝒒 = 𝐵T(𝒏0 + 𝒏) (17)
𝐸 ∶  elastic modulus, A ∶ sectional area of member

𝑛𝑘 is the axial force in the process of deformation by external force acting. According to the Newton-Raphson method, 
𝛥𝒅 can be calculated as 

𝛥𝒅 = 𝐾−1𝒓 (18)
To quantify the stiffness of the structure, we define the strain energy 𝑈  as below. Considering the effect of prestress, it 
is expressed by using strain energy including prestress.  

𝑈 = ∑(𝑛0𝑘𝛥𝑙0𝑘 + 𝑛𝑘𝛥𝑙𝑘)
𝑚

𝑘=1
(19)

5.4 Result of Form-finding Analysis 
We show the analysis for a fundamental type of structure (Fig.3). This model has 12 compression members and 16 
tension members. These are truss members and cable members. We assume that cable members are symmetrically 
prestressing. Thus, we set a limit to the number of parameters, and we can draw a strain energy surface of various 
shape structures. Two results (A,B) of numerical analysis and physical property for FEM are shown as below.  

                       

      
-40
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20

-40

-20
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20

40

Vertical load 1.0 kN/m2

Young’s modulus (truss) 2.1×108 kN/m2

Young’s modulus (cable) 1.4×108 kN/m2

Section area  (truss) 9.8×10-4 m2

Section area (cable) 9.5×10-5 m2

Coefficient for prestress 10 

Fig.7 Analysis result-A (p1=1.80, p2=1.10) Fig.8 Analysis result-B (p1=1.15, p2=1.40) 

Fig.9 Axial force in result-A Fig.10 Axial force in result-B

Fig.11 Strain energy surface 

No solution

Result-A

Result-B

Tab.1 Physical property and analysis condition 

truss members cable members truss members cable members 

Axial force (kN) Axial force (kN)
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Form of analysis result of form-finding in section 5.2 is shown in Fig.7,8.  Changing the variables p1, p2, various 
forms can be obtained. The physical property and analysis condition for geometrically nonlinear analysis with 
prestress are shown in Tab.1. The truss members are assumed the steel pipes of D = 101.6 mm. The cable members 
are assumed the strand cables of D = 14.0 mm. Coefficient for prestress is weight factor of prestress. 𝒏0 of Eq.(17)
include the coefficient for prestress in formulation.  
Axial force in geometrically nonlinear analysis is shown in Fig.9, 10. It appears that compression members are 
acted negative axial force, and tension members are acted positive axial force. This result means that it is effective 
to appy prestress for this model. If this model have solved by using linear analysis in FEM, tension members would 
be acted negative axial force.  
Strain energy surface in Fig. 11 show that this analysis is difficult to converge for optimization. Two cases of 
problem exist, the first is cable members cannot have almost same value of p1 and p2, it occurs vibration in 
form-finding. The second in FEM is the Coefficient for prestress is comparatively low value, tension members are 
acted negative axial force. Moreover, if the coefficient for prestress increase, compression force also increase in 
truss members. Thus, structural optimization is difficult to solve stably in this strain energy field. 

6. Structural Optimization by Genetic Algorithm 
In this paper, we apply Genetic Algorithm (GA) for structural optimization. GA is useful for an optimization 
problem such as finding global optimal solution without the gradient of objective function. In our proposed model, 
it is difficult to define the relationship between variables p1, p2 and strain energy, the gradient of energy cannot be 
obtained. Therefore, we chose GA for this problem. However, if we execute GA in this problem, many of 
individuals are fall in “No solution” region in Fig.11. It would not be efficient to converge. Therefore, we propose 
to change the variable space like Fig.12. This method is useful to avoid the region in which algorithm search. The 
formulation of optimization is shown in below. 

Find p1, p2
to minimize f (p1, p2) 
subject to pL1 < p1 <  pU1

 pL2 < p2 <  pU2

f (p1, p2) : Strain energy in Eq. (19) 
pL1, pU1, pL2, pU2 : Upper and lower constrain 

pL1  = 1.0, pU1 = 1.4, pL2 = 1.375 p1+ 0.025, pU2 = 2.0 
These formulation search the hill in which the Result-A exist in Fig. 11. The parameter of GA is shown in Tab. 2. 
We executed the GA optimization three times. Thus, we show the result of optimization in Fig. 13-15. The 
relationship between strain energy and Iteration number is shown in Fig.13. The relationship between entropy Dp
and Iteration number is shown in Fig.14. Entropy Dp is the value of assessment for convergence. It appears that 
these GA optimizations are in the state of convergence and finished in all trials.  

Individual number 100 Generation number 50 

Mutation ratio 0.06 selection tournament
elite

Crossover ratio 0.7 string 16bit 
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Tab.2 Parameter of GA 

Fig.12 Mapping of variable space 

Fig.13 Strain energy – Iteration number Fig.14 Entropy Dp – Iteration number 
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The form of GA optimization result is shown in Fig. 14. Axial force is shown in Fig. 15. Comparing with strain 
energy surface, the point of variables obtained by optimization is an optimal solution in the set region.  
Although axial force tends to be in the state of result-A in form-finding, the values of axial force are totally low.  

7. Conclusion 
This paper presents a numerical method for a structural system stiffened by tension members. The form-finding 
analysis can obtain the form in equilibrium state with prestress. The geometrically nonlinear analysis allows to 
apply the structure with prestress. The strain energy surface show that this model is difficult to converge for 
optimization, but mapping of variable space is useful for the case including the “No solution” region. The 
structural optimization by GA is available to find optimal solution for a high stiffened structure.  
This model is simple and static structure in the view of relation of member connection. This proposed method is 
useful for more complicated model such as instable structure with more tension members. The next step is to 
arrange these stabilized and stiffened structural models from every direction. 
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1. Abstract
The current work presents the use of sizing optimization for large scale industrial applications with multiphysics 
phenomena. Presented are some examples which include either structural-acoustic or thermal-structural coupling. 
Moreover, these incorporate advanced simulation features such as contact modelling and efficient equation solvers 
dedicated to handle such large models. 
This is achieved using the optimization system SIMULIA Tosca Structure as a direct add-on module for Abaqus. 
This module targets the thickness layout of the different structural sheet components for optimizing the static or 
dynamic responses of the structure computed using the users’ existing Abaqus workflows. 
Traditional design responses such as static stiffness, mass, internal and reaction forces and modal eigenfrequencies 
can be selected for both the objective function and constraints allowing the optimization of typical engineering 
setups where the shell thicknesses are the primary design variables. 
Sizing optimization is a powerful tool for efficient structural design, being already employed across several 
industries to systematically achieve structure configurations with competitive performance and reduced design 
times. 
The potential of this technology is here illustrated using some large applications from different industries, 
including a full automotive model from the transportation and mobility sector and a jacket offshore structure for 
wind turbines from the renewable energy sector. These represent some typical engineering sizing optimization 
setups of multiphysics and multidisciplinary problems like fully coupled acoustic structural interaction for NVH 
(Noise, Vibration and Harshness) design or thermo-structural coupling for designing high temperature 
components. Furthermore, the work demonstrates how sizing optimization benefits from advanced finite element 
modelling capabilities such as the support for contact inside or outside the design elements and approaches to 
handle large models with increased numerical efficiency, for instance the automatic multi-level substructuring 
eigenfrequency solver (AMS) introduced in Abaqus. 
2. Keywords: Industrial applications, sizing optimization, structural optimization software 

3. Introduction 
Structural optimization has shown to be a powerful automatic tool to fulfil the growing industry requirement for 
efficient resource usage [1, 2, 3]. Frequently, after defining the overall layout of sheet metal structures, there is a 
need to find the optimal thickness distribution that meets the functional requirements. While trial and error 
modifications represent a tedious and slow process, the use of sizing optimization tools represents a systematic 
procedure to automatically obtain optimized sheet thicknesses. 
The optimization system SIMULIA Tosca Structure [4] integrates optimization technologies in practical 
engineering environments as an add-on module easily integrated into the existing Abaqus [5] workflows as shown 
in Figure 1. After creating the finite element (FE) model of the structure, an optimization task can be defined by 
selecting the objective function to be minimized or maximized, the respective constraints and elements defined as 
design elements. All setups and definitions can be done in Abaqus CAE environment for pre-processing. 
Afterwards, the optimization task is completed by an iterative procedure where the model is automatically updated 
and modified using a robust non-linear constrained optimizer [8] based on sensitivities derived using the 
semi-analytical adjoint method [1]. Both the FE equilibrium and adjoint equations are solved by the Abaqus 
solver. At the end of the optimization job, the final model with optimized thicknesses is readily available for the 
typical CAE post-processing. 
The current paper presents the advantages and possibilities that such a tool is able to bring to engineering design 
tasks addressing several typical industrial optimization setups. The first example addresses the maximization of 
the lowest eigenfrequencies for an offshore wind turbine jacket structure. The second example addresses a coupled 
structural-acoustic problem where the sound pressure generated by a structural excitation is minimized at a certain 
location. This mimics applications in Noise, Vibration and Harshness (NVH) related to the driving user comfort. 
To conclude, a full automotive model will be subjected to a mass minimization task with stiffness constraints, 
underlining the capabilities and ease of use of these optimization tools.   
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Figure 1 – Tosca Sizing process workflow 

4. Offshore wind turbine jacket structure 
The first example will consider the modal dynamic behaviour of a jacket structure that supports a 5MW offshore 
wind turbine, presented in Figure 2a. We optimize the thickness configuration of the truss jacket structure for 
maximizing its lowest eigenfrequencies. The structure is shown in Figure 2b, modelled with S4R (4 node reduced 
integration) 3D shell elements. The remaining components of the wind turbine are modelled using continuum 
elements, membrane elements and rigid bodies, accounting for their correct inertial distribution and the 
foundations are represented by four piles which are fixed in the ground. The total finite element model has 155300 
elements and 612807 degrees of freedom (DOF) and the eigenfrequency analysis is performed using Abaqus AMS 
(Automatic Multi-level Substructuring) eigenvalue solver [5]. This allows for significant overall analysis runtime 
reduction in large-scale simulations [6]. The present case requires the evaluation of the first 10 modes and the 
analyses are performed using 24 CPU cores. The total CPU time is reduced by 60% when compared to the 
traditional Lanczos eigenvalue solver. This reduction is severely increased when the number of requested modes is 
increased: 75% for 50 modes and 90% for 100 modes considering the current example. This reveals a good 
scalability when considering larger models.

a) b) c)
   

Figure 2 – Offshore wind turbine: a) FEM model, b) shell jacket structure to be optimized and c) defined groups for 
clustering the thicknesses 

The objective of the current optimization task is to maximize the lowest eigenfrequencies of the structure with a 
mass constraint. The objective function ( ) is defined using the Kreisselmaier-Steinhauser [4] formulation 
described in equation (1) and will consider the first 4 ( ) eigenmodes:

(1)

The design domain is meshed by 83020 shell elements modelling the truss structure. Each of the respective shell 
thicknesses represents one design variable – also called free sizing. As a consequence, the thickness of the shell 
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elements varies freely. This will tell how to subdivide the optimized into various constant thicknesses profiles. 
Alternatively, these elements can be clustered into groups that have the same thickness, therefore reproducible by 
assembling different parts together. In the present case we consider 9 independent groups represented in Figure 2c, 
thus reducing the 83020 thickness design variables to 9. 
The free optimization result is shown in Figure 3a and the respective optimization iterative process in Figure 4, 
showing an increase in the objective function of 41% without increasing the weight of the structure. For the 
clustered optimization the results are presented in Figure 3b and Figure 5. The additional constraint of grouping the 
design variables still allows an increase for the objective function of 15% for the same initial mass. 

a)  b) 

Figure 3 – Change of thickness of the optimized structure: a) with free sizing and b) with clustered sizing

Figure 4 – Optimization iteration history for the free sizing optimization for the objective function, lowest 
eigenfrequencies and normalized mass

Figure 5 – Optimization iteration history for the clustered sizing optimization 

938

Leo
Rectangle



4

5. Fully coupled structural-acoustic sizing optimization 
The current application reveals the optimization of a structural shell plate coupled with an air cavity in order to 
minimize the pressure measured at a nodal location inside the acoustic domain when the structural component is 
subjected to a harmonic loading as illustrated in Figure 6a. The plate is simply supported at its boundaries and 
loaded at its central point.
The governing finite element equilibrium equation for a structure with structural and acoustic domains subjected to 
harmonic loading and assuming a steady-state time-harmonic response can be described by equation (2) [7]:

(2)

where  is the excitation frequency of the applied load and resulting response. ,  and  are the mass, damping 
and stiffness matrices. is the load amplitude for the structural or acoustic domain, according to the respective 
suffix s and a. The interaction between both domains is quantified by the coupling matrix  and the response 
amplitudes given by  and  for the structural and acoustic degrees of freedom, respectively. 
The objective is to minimize the resulting pressure amplitude at the centre of the cavity considering an exciting 
frequency from 500 to 1000 Hz while keeping its weight below the initial value. In order to consider the frequency 
response across the defined spectrum with  discrete excitation frequencies, we introduce the Q-mean norm 
formulation for the objective function as explained in [7] and defined in equation (3): 

subject to: equilibrium – represented by equation (2)    and    mass constraint – 

(3)

where  represents the amplitude of the pressure at the node(s) of interest,  the total mass of the structure and 
 its initial value and  the vector of the thickness design variables.  is set to 6 as it reveals to be 

numerically stable and to cause only a small error when compared to the min-max formulation [7]. 

a)  b)  c)
   

Figure 6 – a) Coupled structural-acoustic model, b) acoustic modes for air cavity and c) shell plate initial modes 

a) b)

Figure 7 – Optimization iteration history of the pressure frequency response amplitude at the centre of the air 
cavity for the a) free sizing and b) clustered sizing optimization, respectively 
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The initial structure modes and eigenfrequencies are represented in Figure 6b and Figure 6c for the uncoupled 
domains.
The results for free and clustered sizing optimizations are shown in Figure 7a and Figure 7b, respectively, where 
we can observe a significant reduction of nodal acoustic pressure during the optimization iterations.

6. Automotive sizing optimization 
The current application of sizing optimization considers a full automotive model available as an Abaqus example 
model [5], shown in Figure 8. The vehicle is modelled considering 331578 S4 (4 node shell elements with full 
integration) and 17443 S3R (3 node shell elements having reduced integration) shell elements, totalling 
approximately 2 million of degrees of freedom.  
The objective of the optimization is to minimize the mass of the structure subject to stiffness constraints. Both free 
and clustered optimization will be considered. The clustered thickness optimization groups the thicknesses into 
198 section groups color-coded in Figure 8. 

Figure 8 – Automotive finite element model considered for sizing optimization

We will require that the all bending, torsional and axial stiffness remain above the initial values. The structure is 
submitted to 3 representative different load cases defined in Figure 9 being clamped at the rear and loaded at the 
front wheel knuckles. The resulting displacement at the load locations is used to represent the stiffness of the car in 
these scenarios and combined as represented in equation (4) where the first subscript of the displacement 
represents its orientation and the second the nodal location. In order to compute the sensitivities of these 
displacement constraints, the respective adjoint equations are solved for each required DOF and iteration using 
Abaqus solver. 
  Bending stiffness: Torsional stiffness: Axial stiffness: 

(4)

Bending stiffness Torsional stiffness Axial stiffness 

Figure 9 – Illustration of the stiffness constraints for the mass minimization optimization 

The shell thicknesses are constrained to vary between -20% and 20% of the initial value and the optimization 
convergence curves are presented in Figure 10 and Figure 11 for the free and clustered options, respectively. In 
both cases, a significant mass reduction of 19% and 15% can be achieved with the same axial and bending initial 
stiffness measures and even with a significant increase in torsional stiffness. 

7. Conclusion 
The use of sizing optimization with SIMULIA Tosca Structure is capable of bringing major improvements to the 
design of shell structures. As here demonstrated with several applications we were able to maximize the structural 
eigenfrequencies or to reduce the acoustic pressure without increasing the weight of the structures. Additionally, 
we have also minimized the structural mass while also keeping or improving its stiffness. Being able to easily 
integrate these optimizations into existing workflows, it is a valuable tool for the design of structural shell 
components.
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At the conference, additional examples will be presented illustrating the use of sizing optimization to applications 
that involve thermo-structural coupling and include contact modelling.  

Figure 10 – Mass and stiffness constraints optimization iteration history for the free sizing optimization process 

Figure 11 – Mass and stiffness constraints optimization iteration history for the clustered sizing optimization 
process
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1. Abstract
The widely used static topology optimization methods try to find optimal design of structures under loads that are

static or vary slowly. However, when the loads change rapidly, their time-dependent characteristic and the inertia

effect must be taken into consideration, and therefore dynamic response topology optimization methods should be

employed. Two difficulties in solving such problems are the treatment of time-dependent responses and sensitivity

analysis. This paper proposes a one-parameter functional to approximate the extreme value of time-dependent

response. The accuracy of the approximation can be controlled by the parameter and some of its important prop-

erties are discussed. The proposed functional is incorporated into topology optimization problem to minimize the

maximum value of time-dependent response at prescribed material volume. The displacement of a specific point

of the structure is considered. The density-based approach is used to solve the topology optimization problems

and the adjoint variable method is employed to perform sensitivity analysis. The design variables are updated by

the Method of Moving Asymptotes. Two numerical examples are conducted to demonstrate the effectiveness of

the proposed method and the time-dependent characteristic of the dynamic loads and inertia effect on the topology

optimization results.

2. Keywords: Time-dependent response Topology Optimization One-parameter functional Adjoint variable method.

3. Introduction
The widely used static topology optimization methods try to find optimal design of structures under loads that are

static or vary slowly[1]. However, when the loads change rapidly, the time-dependent characteristic and inertia

effect must be taken into consideration, and therefore dynamic response topology optimization methods should

be employed[2]. This work tries to minimize the maximum dynamic response of structure at prescribed material

volume. Two difficulties in solving such problems are the treatment of maximum operator in the objective function

and sensitivity analysis. This work proposes a one-parameter functional to approximate the maximum value of

time-dependent response and incorporated it into topology optimization problem. The density-based approach is

used to solve the topology optimization problems and the adjoint variable method is employed to perform sensi-

tivity analysis. The design variables are updated by the Method of Moving Asymptotes. Two numerical examples

are conducted to demonstrate the effectiveness of the proposed method and the time-dependent characteristic of

the dynamic loads and inertia effect on the topology optimization results.

4. One-parameter Functional to Approximate the Extreme Value of Time-dependent Response
Let f t be a continuous function defined on the interval 0,T , M and m respectively its maximum and minimum

values . Zhuang and Xiong[3] proposed a functional ψ f ,α to approximate M based on the discrete form of

Va-approximation[4]

ψ f ,α
∫ T

0 f t α f t dt∫ T
0 α f t dt

(1)

where α is a positive constant and when it tends to positive infinity, ψ f ,α tends to M.

This work makes a simple transformation p lnα and obtains the following one-parameter functional.

ϕ f , p
∫ T

0 f t ep f t dt∫ T
0 ep f t dt

(2)

The functional has the following properties:

(i) m ≤ ϕ f , p ≤ M.
(ii) lim

p→−∞
ϕ f , p m, lim

p→ ∞
ϕ f , p M.

(iii) ϕ f , p is nondecreasing.

1
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The proof of (i) and (ii) is easy and will be omitted here. To prove (iii), we note that

dϕ
d p

∫ T
0 f 2 t ep f t dt

∫ T
0 ep f t dt − ∫ T

0 f t ep f t dt 2∫ T
0 ep f t dt

2
(3)

Thanks to the Cauchy-Schwarz inequality, we have∫ T

0
f 2 t ep f t dt

∫ T

0
ep f t dt ≥

∫ T

0
f t ep f t dt 2 (4)

so dϕ/d p ≥ 0, which implies (iii). It also can be proved that dϕ/d p 0 iff f t is a constant function.

According to the properties listed above, ϕ f , p can be a good approximation to the maximum or minimum

value of the function f t when the value of p is sufficiently large or small. More importantly, the accuracy

of this approximation can be controlled by adjusting the parameter p. When increasing the value of p, ϕ f , p
approximates the maximum value of the function better; on the contrary, if the value of p is decreased, ϕ f , p
approximates the minimum value of the function better.

5. Maximum Dynamic Response Topology Optimization
5.1. Maximum Dynamic Response Topology Optimization Formulation

In order to solve the dynamic response topology optimization problem, the popular density-based approach is

employed. The density-based topology optimization approach assigns each element e a density variable ηe and

then links its Young’s modulus Ee and structural density(mass density) ρe with ηe by appropriate interpolation

schemes. To prevent the appearance of the localized modes in dynamics analysis, the polynomial interpolation

model proposed in[5] will be used.

Ee E0 15η3
e ηe /16 (5)

ρe ρ0ηe (6)

where E0 and ρ0 respectively are the Young’s modulus and structural density of the solid material.

By using the density-based approach, the dynamic response topology optimization problem in the time domain

can be formulated as (7). The objective is to minimize the maximum dynamic response of the structures during

the loading phase.
min

η
max

0≤t≤T
f u t ,η

s.t. Mü t Cu̇ t Ku t f t

g η V η −Vmax

N

∑
e 1

ηeve −Vmax ≤ 0

0 < ηmin ≤ η ≤ 1

(7)

where f u t ,η is the dynamic response of the structure at time t. M, C and K are respectively the global mass,

damping and stiffness matrices. N is the number of elements, ve is the volume of element e and Vmax is the

prescribed volume of total material. ηmin is a positive lower bound vector assigned to η to avoid singularity of

the stiffness matrix during topology optimization process. Given the value of the design variable vector η and

the initial condition of the structure u 0 u0, u̇ 0 u̇0, the displacement vector u t , velocity vector u̇ t and

acceleration vector ü t can be obtained by solving the dynamic equilibrium equations.

It is difficult to solve this problem directly, here we replace the objective function by the one-parameter func-

tional (2) and formulate the following topology optimization problem.

min
η

ϕ f , p

s.t. Mü t Cu̇ t Ku t f t

g η V η −Vmax

N

∑
e 1

ηeve −Vmax ≤ 0

0 < ηmin ≤ η ≤ 1

(8)

5.2. Sensitivity Analysis

As we wish to apply a gradient-based optimization algorithm to find the optimal material distribution of the

design, the sensitivity of the objective function with respect to the design variables must be evaluated. Considering

that the number of design variables is larger than the number of constraints in topology optimization problems, the

adjoint variable method[6] is preferred.

We assume that the loads and the initial conditions are independent of the design, that is ∂ f/∂ηe 0,∂u0/∂ηe
0,∂ u̇0/∂ηe 0. Then according to the adjoint variable method, when seeking the derivative ∂J/∂ηe, it can be

2
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augmented with the product of a Lagrangian multipliers λ t and the derivative of the residual(which is zero at

equilibria)

∂ϕ
∂ηe

∂ϕ
∂ηe

∫ T

0
λ T ∂

∂ηe
Mü Cu̇ Ku− f dt

Cp

∫ T

0
1 p f − pϕ ep f ∂ f

∂ηe

∂ f
∂u

∂u
∂ηe

dt
∫ T

0
λ T ∂

∂ηe
Mü Cu̇ Ku dt

Cp

∫ T

0
1 p f − pϕ ep f ∂ f

∂ηe
dt

∫ T

0
λ T ∂M

∂ηe
ü

∂C
∂ηe

u̇
∂K
∂ηe

u dt

Cp

∫ T

0
1 p f − pϕ ep f ∂ f

∂u
∂u
∂ηe

dt
∫ T

0
λ T M

∂ ü
∂ηe

C
∂ u̇
∂ηe

K
∂u
∂ηe

dt

(9)

where Cp 1/
∫ T

0 ep f t dt.
Twice integrating-by-parts the last term and rearranging yields

∂ϕ
∂ηe

Cp

∫ T

0
1 p f − pϕ ep f ∂ f

∂ηe
dt

∫ T

0
λ T ∂M

∂ηe
ü

∂C
∂ηe

u̇
∂K
∂ηe

u dt

∫ T

0

∂u
∂ηe

T Mλ̈ −Cλ̇ Kλ Cp 1 p f − pϕ ep f ∂ f
∂u

T dt
∂u
∂ηe

T

−Mλ̇ Cλ
∂ u̇
∂ηe

T

Mλ

∣∣∣∣∣
t T

(10)

Since (10) holds for arbitrary λ t , the Lagrangian multipliers can be chosen to eliminate the last two terms of

the right-hand side of (10)

Mλ̈ −Cλ̇ Kλ −Cp 1 p f − pϕ ep f ∂ f
∂u

T , t ∈ 0,T
λ T 0, λ̇ T 0

(11)

And the derivative ∂ϕ/∂ηe can now be simply given as

∂ϕ
∂ηe

Cp

∫ T

0
1 p f − pϕ ep f ∂ f

∂ηe
dt

∫ T

0
λ T ∂M

∂ηe
ü

∂C
∂ηe

u̇
∂K
∂ηe

u dt (12)

In order to obtain λ t , we apply the transformation ΛΛΛ s λ T − s , then Eq. (11) becomes

MΛ̈ΛΛ s CΛ̇ΛΛ s KΛΛΛ s P s ,s ∈ 0,T
ΛΛΛ 0 0, Λ̇ΛΛ 0 0

(13)

where P s is given as

P s −Cp 1 p f − pϕ ep f ∂ f
∂u

T ∣∣∣
t T−s

(14)

When ΛΛΛ s is obtained by numerical methods, λ t can be obtained by λ t ΛΛΛ T − t .

In particular, when the displacement response is considered, f LT u, ∂ f/∂u LT , ∂ f/∂ηe 0, where L is

a unit length vector with zeros at all degrees of freedom except at the point where the displacement is considered.

When u t ,u̇ t ,ü t and λ t have all been obtained, the objective function and the sensitivities can be evalu-

ated by (2) (12) and the trapezoidal summation[7]

∫ T

0
h t dt ≈

Ns

∑
n 0

h tn wn (15)

where Ns is the number of steps used to discrete the time domain, tn are time points and the weights are

2w0 w1 · · · wNs−1 2wNs T/Ns (16)

6. Numerical Examples
This section presents two numerical examples which minimize the maximum displacement of the loading point

of the structure. In both examples, the International System of Units(SI) is adopted and Young’s modulus E0

2.0E11, Poisson’s ration ν 0.3 and structural density ρ0 7800 for fully solid material is assumed. The Rayleigh

damping C αrM βrK is assumed and the coefficients αr and βr are considered to be design-independent and

3
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are chosen as αr 10 and βr 10−5. The sensitivity filter[8] is employed to avoid the checkerboards and mesh-

dependencies phenomena. The radius of the sensitivity filter is set to be three times the size of the elements used

to discrete the design domain. The standard settings are used for the MMA optimizer[9]. The Newmark method is

used to solve the dynamics equilibrium equation. The value of the parameter in the functional is set to be 5/ fmax,

where fmax is the maximum value of the displacement during the loading phase. For comparison, a corresponding

static design problem is also set up for each example, where the magnitude of the static load is the same as the

maximum value of the dynamic load over loading phase.

6.1. Cantilever Beam under Sinusoidal Loading

This example uses a cantilever beam design problem as shown in Fig. 1(a) to demonstrate the effectiveness of the

proposed method. The design domain is a 8×4 rectangular area with thickness 0.01. A dynamic load is vertically

applied at the bottom right of the structure. The prescribed volume fraction of material is set to 0.5. The dynamic

loading is assumed as the sinusoidal function, and two different integration time T 0.02,0.2 are considered.

(a) Design domain and boundary condition (b) Static design

1E3

0
t

F

T

(c) Sinusoidal Load

Figure 1: Topology optimization problem of cantilever beam under sinusoidal loading

In order to solve the topology optimization problem, the design domain is discretized by square bilinear plane

stress elements whose size is 0.05. The corresponding static design is shown in Fig. 1(b). The optimal designs

under dynamic loading are shown in Fig. 2. They clearly show that the change rate of the dynamic load have great

influence on the design result. When the load changes slowly, the dynamic design is similar to the static design.

When the load changes rapidly, the dynamic design is obviously different from its static counterpart. The data listed

in Table 1 show that, the dynamic design is better than the static design when the time-dependent characteristic of

the load and the inertia effect are considered.

(a) T 0.02 (b) T 0.2

Figure 2: Topology optimization results of cantilever beam under sinusoidal loading

4
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Table 1: Maximum displacement of the design for cantilever beam under sinusoidal loading

Integration time Dynamic design Static design

T 0.02 4.37e−5 5.35e−5

T 0.2 3.72e−5 3.73e−5

6.2. Clamped Beam under Cosine Loading

The topology optimization problem is shown in Fig. 3(a). The design domain is a 12×2 clamped rectangular

area with thickness 0.01. A dynamic load is vertically applied at the centerline of the bottom of the structure. The

prescribed volume fraction of material is set to 0.4. The dynamic loading is assumed as the cosine function, and

four different integration time T 0.02,0.05,0.1 and 2.0 are considered.

(a) Design domain and boundary condition (b) Static design

1E3

0
t

F

−1E3

T

(c) Cosine Load

Figure 3: Topology optimization problem of clamped beam under cosine loading

In order to solve the topology optimization problem, the design domain is discretized by square bilinear plane

stress elements whose size is 0.05. The corresponding static design is shown in Fig. 3(b). The optimal designs

under dynamic loading are shown in Fig. 4. They clearly show that the change rate of the dynamic load have great

influence on the design result. When the load changes slowly, the dynamic design is similar to the static design.

When the load changes rapidly, the dynamic designs are obviously different from their static counterpart. The

dynamic design corresponding to different integration time are also different from each other. The data listed in

Table 2 show that, the dynamic design are better than their static counterpart when the structure subjected to the

given dynamic loading. This example again demonstrate the effectiveness of the proposed method.

(a) T 0.02 (b) T 0.05

(c) T 0.1 (d) T 0.2

Figure 4: Topology optimization results of clamped beam under cosine loading

7. Acknowledgements
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Table 2: Maximum displacement of the design for clamped beam under cosine loading

Integration time Dynamic design Static design

T 0.02 2.20e-5 3.14e-5

T 0.05 3.02e-5 4.02e-5

T 0.1 3.39e-5 4.21e-5

T 2.0 4.08e-5 4.25e-5
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per is supported by the Innovation Foundation of BUAA for PhD Graduates.
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1. Abstract  
Periodic homogenization models are often used to compute the elastic properties of periodic composite materials 
based on the shape and periodicity of a given material microstructure. This paper extends previous work to 3-D 
analysis and anisotropic design cases investigating how rapidly the mean compliance and the 21 independent 
elastic coefficients from the apparent stiffness tensor converge to the corresponding values of the homogenized 
tensor. The outcome indicates that it is sufficient to have a low scale factor to replace the non-homogeneous 
composite by the equivalent homogeneous material with the moduli computed by homogenization. 
2. Keywords: Homogenization, Optimization, Topology, Scale, Cellular 
 
3. Introduction 
The optimal design of periodic composites has been an area of intense research [1]. The so-called "unit-cell" is the 
microstructure representative of the smallest periodic heterogeneity of the material domain. The resulting 
macroscopic material is then defined assembling unit-cells. The use of continuum finite elements, homogenization 
and the SIMP (Solid Isotropic Material with Penalization) parameterization constitutes the traditional approach to 
obtain optimized porous materials through topology optimization. Topology optimization, in the frame of 
continuum elasticity, is an iterative design method that optimizes a material distribution in a given design domain 
with respect to a specified objective function and a set of constraints [2]. Topology optimization can be used to 
design materials by inverse homogenization. In this case the microstructure does not exist a priori but one seek to 
come up with a microstructure (interior topology of a unit-cell) using objective functions that consider prescribed 
or extreme homogenized properties [3].  
In this work one uses the inverse homogenization method to extremize the energy density based objective function 
subjected to volume or permeability constraints. For instance, ensuring permeability isotropy while prescribing a 
preferential stiffness direction is of practical interest concerning bone implants (scaffolds). Bio-transport 
properties in the scaffold region is fundamental because cells, nutrients and waste products are supposedly to 
migrate easily inside the scaffold microstructure for tissue regeneration. At the same time the scaffold is a bearing 
load device which demands for increased mechanical stiffness. An appropriate trade-off between the conflicting 
properties of permeability and stiffness can be achieved by performing topology optimization [4-9]. 
The inverse homogenization method assumes that the scale of a unit-cell is indeterminate (infinitely small) as well 
as periodic Boundary Conditions (BC’s) [10-13]. This makes uncertain whether the obtained topology can be 
translated into real composites of macroscale. In practice, one has a finite number of measurable unit-cells 
assembled together to define the composite material. Moreover, the stress or strain fields are in general arbitrary 
(not periodic) near the boundary of the composite.  
Therefore one important contribution here is to investigate scale-size effects on the mechanical response of 
periodic materials with finite periodicity applying standard testing procedures and compare them with the 
predictions from the homogenization method. This study follows similar studies already reported in the literature 
which investigated scale-size effects although involving only two-dimensional bi-material unit-cells with 
prescribed material symmetry, see [14-17]. This work extends the analysis of the scale-size effects to solid-void 
three-dimensional periodic composites, anisotropic design cases and investigates how rapidly the mean 
compliance and the 21 independent elastic coefficients from the apparent fourth-order stiffness tensor converge to 
the corresponding values of the homogenized stiffness tensor. 
 
4. Material model 
The material model here is a 3-D porous composite material generated by the repetition of a unit-cell in all 
directions of the space. The unit-cell represents the smallest periodic heterogeneity of the composite domain Ψ. 
Periodic repetition of a unit-cell made up of a given parent material will yield a porous macroscopic material 
whose constitutive properties may differ substantially from the parent one. This macroscopic behavior can be 
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Y 

unit-cell Y 

composite Ψ 

d D Y Y 

Ψ

a) b) 

evaluated using homogenization theory. This theory assumes periodic boundary conditions (BC’s) applied to the 
unit-cell domain Y and infinite periodicity of the unit-cell (Y-periodic), i.e. its feature size d is much smaller than 
the cellular material global size D (d/D → 0), see Fig. 1a. These assumptions make uncertain whether the obtained 
topology can be translated into real composites of macroscale. In practice, the composite material comprises a 
finite number of measurable unit-cells and the stress or strain fields are not periodic near the structure boundary.  
The optimal material microstructure topology is found here using the topology optimization method applied to the 
unit-cell design domain Y. This domain is considered cubic and unitary, |Y| = 1. For a numerical problem solution, 
this domain is discretized using 8-node isoparametric hexahedral finite elements such that the resulting mesh is 
20×20×20 elements, see Fig. 1b. The effective material properties (homogenized properties) can be found using a 
numerical homogenization procedure described in [13]. The relative density μ of material in each finite element is 
the problem design variable and  it is assumed constant inside the element volume. Solid and void corresponds to μ 
= 1 and 0, respectively. The topology optimization problem may consist in finding the distribution of density μ in 
Y that extremizes the elastic energy density given a stress field as detailed in the next section.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: a) Material model to be interpreted in the light of the homogenization theory. Array of n×n×n unit-cells 

of global size D and one unit-cell of size d. Periodic boundary conditions are illustrated; b) Material numerical 
model with schematic periodic boundary conditions. 

 
5. Optimization problem 
The local anisotropy problem of finding the optimal lay-out of a unit-cell for minimum compliance and requiring 
at least orthotropic permeability or prescribed volume fraction can be stated as, 
 

( ) klmnmnklCH

2

1
min  

( ) ( ) 3,..,1,and;03,..,1;* HH =≠=∧==≥ jiji
ij

Kjik
ij

K  

   or 
*

d)( VY
Y

≤y  

 
 
 

(1) 

 
In Eq. (1) μ is the local density varying between 0 (void) and 1 (material) which depends on the spatial variable y in 
the unit-cell design domain Y. The stress tensor is σ  and characterizes an averaged macroscopic stress field 
applied to the composite. The homogenized compliance tensor is CH, i.e. the inverse of the homogenized stiffness 
tensor EH. The stiffness tensor at each point of Y is related to the tensor E0 of the base material properties through 
the SIMP interpolation scheme [18]. Regarding the permeability constraints, one enforces the permeability tensor 
to be diagonal and each diagonal coefficient has to be "equal" or "greater than" a threshold, k*. This way one gets 
an interconnected pore network on the periodic material satisfying a critical (minimum) permeability in all 
direction of the space. The permeability measure of porous media is given by the homogenized tensor KH. This 
tensor is obtained homogenizing a potential flow problem in periodical porous media characterized by the Darcy 
law (Darcy flow is assumed) [10,12]. Here one considers the interpolation between permeability and local density 
μ given by a power-law (see e.g. [19,20]). The permeability tensor for the base material, K0, is here considered to 
be unitary, diagonal and isotropic. This way the interpolation scheme means that void and solid have high (100%) 
and low (0%) permeability, respectively. Consequently, the homogenized permeability tensor KH characterizing 
the periodic material medium becomes normalized, i.e. its coefficients take values between 0 and 1 (0% and 
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3 

1×1×1 2×2×2 3×3×3 4×4×4 5×5×5  6×6×6  

100%), and thus the threshold k* in Eq. (1) can also be fixed between these bounds. 
 
6. Numerical testing procedures 
Recall that the homogenized elastic properties in Eq. (1) are calculated when n → ∞. Consequently, they are n 
independent and there is no size of the unit-cell (d → 0). That is why, it is critical to investigate how accurate 
homogenization predictions are compared to the actual properties of a composite with the unit-cell scaled n times. 
In this work the scale factor n, defined as D/d with D = 1, varies from 1 to 6 as illustrated in Fig. 2.  
 
 
 

 
 
 
 
 
 

Figure 2: Unitary arrays containing n×n×n unit-cells (n varies from 1 to 6). 
 

In order to estimate apparent elastic properties, this work follows a standard numerical testing procedure described 
in [21] and summarized as follows. For instance, let’s consider the Dirichlet-type displacement boundary 
conditions, 

 ( ) ( ) 6to1=•=
Ψ∂Ψ∂

ii xxu   (2) 

as well as the Neumman-type traction boundary conditions: 

 ( ) ( ) 6to1=•=•σ
Ψ∂Ψ∂

ii nnx   (3) 

where  

 =
00

000

00

,

00

00

000

,

000

00

00

,

00

000

000

,

000

00

000

,

000

000

00
i   (4) 

and ∂Ψ is the boundary of the composite sample Ψ, u is the displacement vector, x is the spatial position vector, σσσσ 
is the Cauchy stress tensor, n is the outward normal unit vector and β is a constant. The upper script index i on 
tensor ΘΘΘΘ means the application of six fundamentals tests (three normal and three shear mechanical tests shown in 
Eq. 4). In the case of Dirichlet-type conditions, where the applied displacement field is x linearly dependent, the 
sample Ψ is tested at a uniform strain β. In case of Neumann’s, the test is carried out on Ψ at a uniform stress β. 
The specific nature of the Dirichlet and Neumann-type conditions allow direct estimation of the stiffness and 
compliance tensors, referred to as Dirichlet ED and Neumann CN tensors, respectively. In both cases, average 
stress  and strain fields are computed in the volume |Ψ| and then, 

 ED=  and CN=   (5) 

In turn, defining ( ) 1NN −= CE  as the Neumann stiffness tensor, yields 

 E N=   (6) 

One considers here two additional types of BC’s because Neumann-type conditions underestimate too much the 
apparent properties of porous materials due to the larger compliance of the void phase near the boundary.  
On the one hand, one pursues a battery of fundamental tests applying the constant pressure, either normal or shear, 
only on the solid phase. On the other hand, one applies mixed BC's, i.e. a uniform pressure upon a rigid plate that in 
turn transfers the normal load to the top surface of the “solid” and “void” elements. Using rigid plates for shear 
tests here is cumbersome. For shear, one applies instead displacement-based BC’s as given by Eq. (2), i = 4 to 6. 
However, the displacements are only applied to two sets of opposite facets and only the displacements that are 
x-dependent are applied (this is less restrictive than Dirichlet's). The application of these additional BC's is 
restricted here to orthotropic designs for the sake of getting tensor symmetry and static equilibrium. 
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7. Results 
Two macroscopic stress fields are selected for demonstration purposes, hydrostatic and three different shear forces 
as indicated in Table 1. The corresponding optimal microstructures are shown considering either volume or 
permeability as design constraints in Eq. (1). The hydrostatic optimal solution with volume constraint is a 
closed-wall unit-cell (cut section view is shown) whereas the remaining cases show an open-cell microstructure as 
optimal. The anisotropy plots along with parameter shown in Table 1 are also used and explained in [22,23]. 
 

Table 1: Macroscopic stress fields and corresponding optimal designs (solid part only) for volume and 
permeability constraints. Graphical representation of anisotropy and parameter . 

 

Volume constraint 
V* = 50% 

Permeability constraint 
k* = 50% 

Macroscopic stresses 

(σ11;σ22;σ33;σ12;σ23;σ13) 
Topology Anisotropy Topology Anisotropy 

0.1644 0.4351 Hydrostatic 

 
(σ; σ; σ; 0; 0; 0) 

 
 

 

 

0.4200 0.3790 
Shear 

 
(0; 0; 0; σ; 2σ; 1.5σ;) 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3: Strain energy density convergence for Dirichlet-type BC’s and Neumann-type BC’s.  

 
The convergence of the strain energy density and the independent coefficients of the stiffness tensor to the 
homogenization values for the hydrostatic (with permeability) and shear (with volume constraint) cases are shown 
in Fig. 3 to 5, respectively. For the highest scale factor studied here (n = 6), Fig. 3 shows a rapid rate of 
convergence of energy (deviations < 10%) and the longitudinal coefficient estimates D

iiiiE  and N
iiiiE  are below 7% 
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of deviation with respect to homogenization (see Fig 4a, 4b and 5). However, estimates of N
iiiiE  are based on a 

moderate contrast ratio 10voidsolid =EE  rather than 12voidsolid 10=EE  used in the remaining cases. This avoids 

excessive compliance of the void phase making the Neumann BC’s effective only for non-porous composites. To 
test porous materials, Neumann conditions can be slightly changed such that the uniform pressure is only applied 
on the solid phase or mixed BC's can be used also as explained in section 6. Having the analyses restricted to 
orthotropic cases, the resulting estimates deviate from homogenization less than 20%, as seen in Fig. 4c and 4d. In 
general, while the convergence of longitudinal coefficients is quite exceptional, the rate of convergence is not so 
good for some non-longitudinal coefficients. Enlarging the number of targeted tensor coefficients up to 21 with the 
shear case, one sees actually a pretty convergence in Fig. 5a with most deviations less than 10% for n = 6. Larger 
deviations are obtained in Fig. 5b. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Scale-size effects analysis for the hydrostatic case. a) Dirichlet-type BC’s; b) Neumann-type BC’s with 

10voidsolid =EE ; c) Constant stress on solid; d) Mixed BC’s.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Scale-size effects analysis for the Shear case. a) Dirichlet-type BC’s; b) Neumann-type BC’s with 

10voidsolid =EE . 
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8. Conclusions 
Homogenization assumes the unit-cell infinitely small and with periodic BC's. However, in practice, the composite 
material comprises a finite number of measurable unit-cells and the stress or strain fields are not periodic near the 
structure boundary. It is thus critical to investigate whether the obtained topologies are affected when applied in 
the context of real composites. This is done here by scaling the unit-cell an increasing number n of times. For each 
n one accesses the apparent properties of the resulting composite by means of numerical experiments applying e.g. 
Dirichlet and Neumann-type BC's. Alternative stress-based BC's are investigated to test porous materials 
overcoming excessive compliance of the void phase. Convergence to the homogenized properties can then be 
checked. The present work indicates that for practical purposes, even for microstructures with low scale factor (n = 
6), it is mechanically admissible to use the equivalent moduli given by the periodic homogenization theory.  
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1. Abstract 
To widen the scope of structural optimization applications at the enterprise level in the automotive and aerospace 
industries, and to increase the community of engineers using integrated structural optimization software effectively, 
certain industrial needs have to be met by such software a priori.  These needs, which are yet to be met, are 
discussed in this paper.  Satisfying these needs includes establishing a new form of collaboration between software 
developers and industry and will bring applications of the integrated structural optimization software in the 
automotive and aerospace industries to new heights.  The subject needs are not limited to commercial structural 
optimization software, but should be viewed as desired features in any integrated structural optimization software. 

2. Keywords
Structural Optimization, Commercial Software, Integrated Software, Intelligent Software, Industrial Application, 
Computer Aided Engineering CAE, Collaboration 

3.  Introduction 
Over the past decade there has been a significant growth in industrial structural optimization applications.  
Capabilities of Commercial Structural Optimization Software (CSOS) have increased considerably, now allowing 
for incorporating analysis results ranging from stiffness and strength, to crashworthiness, and durability. Some of 
these analyses are performed inside the CSOS.  More importantly, CSOS allows for linking with the analyses 
performed outside of CSOS.  This is a reflection of the current situation in the automotive and aerospace industries 
where no structural part is designed without performing a vast number of different numerical analyses.  Analysts and 
designers need to account for an ever-increasing number of requirements to produce realistic industrial designs.  The 
fact that structural optimization can now be applied to total vehicles with the number of influential parameters 
increasing from tens to thousands has only added to the complexity of the tasks to be performed by the CSOS. 

From an enterprise perspective it is often advantageous to utilize CSOS as opposed to Process Integration and 
Design Optimization (PIDO) tools:  PIDO tools typically require their own sub-processes to be created.  PIDO tools 
also often impose additional requirements on the analysis programs and sub-processes to be included in PIDO.  
Thus, the designers and analysts have to master the challenges arising from the complexity of the new enhancements 
and extra processes.  This approach can be contrasted with using CSOS, which typically result in simpler final 
processes that are easier to maintain. 

In spite of the analyst’s efforts, even when a specific optimization process is effective, it is often not suitable for 
wide applications from an enterprise standpoint.  One of the main reasons being the requirement to convince the 
approving/certification authorities that the obtained solution is a viable one. 

To improve the current CSOS capabilities and to increase the community of engineers using structural optimization 
effectively, CSOS must adapt to the realities of the industrial design processes. Several broad categories where 
improvements should be made in CSOS are presented below.   The listed needs are not limited to CSOS, but should 
be viewed as desired features in any integrated structural optimization software. 
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4. Ease of use and flexibility 
CSOS must be robust and easy to use by people with limited or no optimization background.  Example of what can 
happen with the current CSOS usability is presented in Figure 1.  Figure 1(a) shows the design space for a highly 
loaded fitting. The fitting was optimized using several CSOS tools.  Figure 1(b) shows two of many solutions 
obtained via topology optimization. All of the CSOS vendors struggled when using their own tools to arrive at a 
valid solution. As shown in Figure 1(c), valid solution was eventually found after an exhaustive combination of 
topology and shape optimizations requiring high levels of analysis and interpretation skills. 

 (a) Design space   (b) Topology optimization possibilities  (c) Valid solution  

Figure 1.  Stages of a typical topology optimization problem 

In addition to the expertise required to operate CSOS, effective debugging also presents a problem.  Two examples 
of error messages that have been encountered when solving structural optimization problems are presented in Figure 
2.  In both cases, the software developers could not easily determine the cause of these errors and how to fix them.  
It is obvious that these messages are not interpretable by the most end users of the software. 

Figure 2.  Example of non-interpretable error messages from CSOS 

Easy access to clear step-by step “How-to” tutorials on various aspects of using the specific features of the software 
is mandatory.  These tutorials should not refer to other tutorials; they should not require additional reading to 
accomplish the tasks described in the tutorial.  The majority of the finite element (FE) structural optimization 
software on the market lacks such tutorials. 

CSOS must provide enough controls to expert users to access the solution details, the details of the optimization 
algorithms, and allow re-adjusting considerably the optimization procedural steps.  For example, most of the FE 
CSOS has a limited control over how many times the gradients of the external response should be evaluated during a 
design cycle.  In case of thousands of variables and computationally expensive external responses, the external finite 
difference gradient calculations may take a significant amount of time.  Allowing users to control how many times 
the response gradients are calculated can significantly reduce the computational time required for optimization. 
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5. Integration with legacy tools and flexibility of internal equations 
CSOS vendors often strive to bring more and more analysis capabilities inside of their software.  Although helpful in 
some cases, such an approach is not always acceptable.  Both automotive and aerospace industries have legacy tools 
that are required to be used, regardless of how easy to use, accurate, and effective CSOS might be.  Such tools are 
trusted by the experienced designers.  Such tools have been verified and validated as required for product 
certification.  Intuitive and easy interfaces to such legacy tools with minimum or no programming experience are 
essential.  The ideal CSOS should allow external tools to calculate not only the responses, but also the element and 
material properties, as well as variable values – everything that currently can be computed inside of Finite Element 
Analysis (FEA) codes.  In addition, it is essential to allow for handling not only scalar inputs and outputs from 
external codes, as it is done now, but also arrays of inputs and outputs via a single call to external programs.  Current 
capabilities to link to external programs often require extensive knowledge of computer systems, access to very 
specific versions of compilers, and having administrative privileges on the computer.  Analysts don’t have any of 
that.  Struggling with linking external codes into CSOS often eliminates any desire to use structural optimization.  
Efficient and easy-to-use linking to external analyses is an essential part of establishing CSOS processes at the 
enterprise level. 

To prevent calculating many characteristics outside of CSOS codes, increasing the flexibility of the internal 
equations could be very helpful, as well as allowing the use of some programming language syntax in the equations.  
Alternatively, an ability to translate from a programming language into the equations would be very useful to the 
analyst.  The current equations provided by CSOS have similarities to the Fortran function syntax; however, these 
equations don’t allow any loops of “if” statements.  This makes them very limited and restrictive, as it requires 
tedious and error-prone translations of existing routines from programming languages into the CSOS equations. 

It is not uncommon for the equations to reach hundreds of lines in length.  Difficulties with handling the equations 
combined with the error-prone strict requirements for the way of compiling external analyses for CSOS often forces 
finite element codes to be used for analysis only.  In this case FEA is coupled with PIDO optimization engines due 
to flexible internal equations and easier and more flexible interfaces to legacy codes. 

This problem will get worse as the automotive and aerospace industries increase exploiting applications of non-
metallic materials. Specifically, CSOS make use of failure criteria which are of little use for practical structural 
design and which are not recognized by the product certification authorities.  

6. Intelligence and guidance 
CSOS should support and guide users during all phases of the optimization process: during problem setup, execution 
of the optimization procedure, and when reviewing the results.  The tool intelligence should be derived from the 
intermediate solution results and from efficient incorporation within the tool the knowledge and expertise of existing 
in-house tools, processes, best practices, and design criteria. 

6.1 Intelligence and guidance during optimization problem setup 
CSOS developments have already gone through great lengths of making it easier for end users to set up all aspects 
of a design problem in a graphical way.  Often, even the order in which menu items are presented, suggests the most 
reasonable way for the sequence of operations to be set up for a specific optimization problem.  One of the 
inconveniences that users experience in the current problem setup procedure is too many mouse clicks required to 
select various sub-options to define the problem correctly.  By the time the user starts setting up the optimization 
problem, CSOS already has the information about the associated FE model.  Thus, the choices the user makes in 
setting up the problem are not entirely arbitrary.  An example of code-embedded intelligent guidance would be to 
allow the user to define the type of optimization problem first (topology, sizing, etc.), then - what specific part 
should be optimized, and some general parameters of the problem.  Based on this information the software may be 
able to automatically define a majority of the parameters and relations between design variables and responses, 
leaving the user merely to check and adjust what was not correctly identified by the default setup. 
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6.2 Intelligence and guidance during execution of the optimization  
The current CSOS approach to running optimization problems is to have the user set up the problem and then let the 
optimizer arrive to a better solution point without interruption.  However, user intervention, user decision, and 
appropriate visualization technique are essential during the solution phase of complex problems.  Especially when 
the optimizer encounters problems in finding a good solution and/or when the model and/or the objectives and 
constraints are not well defined.  Possible techniques allowing analysts to target specific region of exploration are 
illustrated conceptually in Figure 3. 

                      

Figure 3.  Conceptual examples of visually indicating the target (preferred) region of exploration where optimization 
should be concentrating its efforts 

Note that such kind of visualization should be dynamic and accessible while an optimization procedure is being 
executed, thereby allowing a user to influence the direction (path) of optimizing if so desired.  Using such 
visualization techniques allows the analyst to decide whether to tighten or to remove certain constraints on the fly 
during an optimization solution. 

Tightly connected with flexibility of exploration is the robustness of the code.  Currently, if the code encounters an 
error, the optimization procedure stops, asking the user to fix the error.  A much more robust approach would be for 
the code to continue the optimization/exploration process regardless of the error.  CSOS has the information about 
all the previous, successfully analyzed solution points; therefore nothing should prevent the software to go to one of 
the previously visited points, adjust the search direction, and continue the optimization, while keeping detailed 
textual and graphical logs of what has happened and what has caused the setback. 

6.3 Intelligence and guidance during optimization post-processing 
Visualization is essential after a candidate (optimum) solution is obtained.  It is not enough to arrive to a good 
solution.  It is essential to convince the approving and certification authorities that the obtained solution is viable.  
The analyst is required to clearly, visually, and without much effort, explain why the specific solution was obtained, 
how it was obtained, and what happens if some parameters of the solution were to be changed. 

To answer these questions, specialized optimization-oriented visualization capabilities need to be created.  
Currently, most CSOS visualization tools create contour plots of responses superimposed on the structural model.  
These types of plots are analysis oriented.  This means that for the analyst to visualize the optimization process he or 
she must go through a number of analysis result plots (e.g., stresses for several load cases), determine which ones 
contain critical results for the most important load cases, and then try to create the combined plot for several 
important iterations. 

Automating and easing up this process would help to answer the “how” questions. Dynamically showing how the 
locations of the critical regions change from one iteration to another would also assist in managing the critical 
regions in the structure.  Such dynamic and static contour plots on the structural model should also identify the 
specific load cases which caused the critical regions to appear. 

957

Leo
Rectangle



11th World Congress on Structural and Multidisciplinary Optimisation 
07th -12th, June 2015, Sydney Australia 
 

5

Another example is the ability to immediately and easily visually compare analysis results of different iterations.  
All the required information for this is readily available inside the CSOS, but it is not currently presented to the 
analyst in a convenient form. 

Readily available 2D plots of the objective function, constraint violations, and design variables with respect to the 
iteration number are useful from the conceptual standpoint.  However such plots don’t provide insight into the 
optimization procedure, and are not able to answer the above-mentioned “how, why, and what if” questions. To help 
answer the “why” questions, advanced multidimensional visualization techniques may be required. 

Figure 4 illustrates an approach suggested in Ref. [1] when 2D alpha plots were used to study the tradeoffs between 
three airplane planform configurations.  The objective values, as well as the constraints, were represented in a single 
plot to illustrate where the designs were located with respect to constraints.  Many other multidimensional 
visualization techniques of this type are already available.  

Figure 4.  Illustration of a multidimensional visualization technique for a non-convex design space from Ref. [1]. 

Another feature desired by many analysts is the ability to visualize the response sensitivities, as well as the 
sensitivities of the objective and constraints superimposed on the structural components, much like the contour plots 
for stresses. The conceptual example of such a plot is presented in Figure 5.  Such types of plots help the analyst to 
answer potential “what if” questions.  It is even more desirable to make such plot interactive, so that the user can 
actually change some parameters on the plot, and observe changes in the results. 

Figure 5.  Conceptual example of a contour plot showing sensitivities of a structural response  

Along with displaying sensitivity information comes the CSOS ability to identify the most influential variables and 
to suggest which variables could be eliminated or made constant.  As the optimization problems are at the point 
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when having thousands of variables is not an unusual setup, a capability to filter out important and non-important 
variables automatically and represent these choices graphically will be a big help to analysts. 

A CSOS with enhanced intelligence may suggest users how to improve/augment design variables during (or after) 
optimization.  For example, if a stiffness response is sensitive to thickness design variables and the loading is 
dominated by a bending behavior, it is reasonable to assume that introducing shape or topology variables will result 
in more improvements compared to the thickness variables.  Thus the software may suggest possible 
improvements/augmentations to the existing design variables as well as the location on the part where such new 
variables could be defined.  The software could also define these new variables automatically using default settings 
if a user wants that. 

Extremely desirable is the ability to calculate approximate results on the fly as a response to changes in some design 
parameters, without performing complete FEA solutions to answer “what if” questions.  Such a capability would be 
especially useful for large models, when FEA takes considerable amounts of time. 

7. Optimization-related capabilities 
It is common in the automotive and aerospace industries to consider dozens, hundreds, and sometimes thousands of 
load cases.  Some of these load cases are not relevant for finding an optimal design as they don’t result in active 
constraints.  For such cases, the CSOS should have an option to automatically and robustly handle a multitude of 
load cases, neglect the non-critical ones, and consider only the relevant load cases and constraints in solving the 
optimization problem.  This procedure of load case screening should be dynamic, where the active load cases should 
be adjusted as the optimization process progresses. 

Optimization is not the only approach to design space exploration and finding a better solution.  Design of 
Experiments (DOE) and trade/sensitivity studies are quite popular in the aerospace and automotive industries.  
Currently, even if FEA must be used in such studies, the studies themselves are performed outside of CSOS with the 
problem setup being started from scratch.  Whereas after the design optimization problem is setup in CSOS, 
everything is ready for both DOE and sensitivity studies.  Yet these studies, which are often a part of the internal 
optimization algorithms, are not exposed to the user and appropriate visualization is not being created for them. 

CSOS codes always proudly and rightfully claim to utilize the high quality next-generation internal approximations.  
CSOS could more extensively use these approximations.  Such techniques as approximate Pareto optimization, 
global optimization, probabilistic optimization, and user-guided optimization, could all use these high quality 
internal approximations.  The acquired data could be used by CSOS to provide analysts with a large variety of 
options for efficient and fast design space exploration and to arrive at a solution that is valuable from the analysts’ 
standpoint, and not only from the optimization algorithm’s standpoint. This is best illustrated by the fitting example 
in Figure 1, where the optimization algorithm continued to return a solution which was not practical for 
manufacturing and required the analyst to intervene several times prior to arriving at a valid design. 

8. Collaboration between industry and CAE vendors 
In the past, Computer Aided Engineering (CAE) software vendors have been co-located with industry on design 
projects for the wrong reason: too often, the software has been difficult to use and required vendors to be co-located 
with the company’s engineering team to interpret the solution results from the CSOS.  An important issue in 
accepting CSOS in aerospace and automotive industries at the enterprise level is the early interaction between the 
software vendors and customers (industry) regarding the features that are planned for implementation in CSOS.  Up 
to this point, the CAE vendors often have developed new features that the vendors thought would be important.  
These features were then implemented in the CSOS in a way that the vendors thought would be convenient for their 
customers.  As a result, industry often received the newly-developed software that was not doing exactly what was 
needed.  The specialized intermediate fixes and updates issued by vendors to bring software closer to exact industry 
needs were hard to install due to computer security in industry.  As a result, the needed capabilities were often 
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obtained by industry a year or two after the features were officially first released.   This situation would change if 
software vendors were to discuss the new features (analytical requirements) with customers before starting 
development of the features.  Not only functionality, but also appearance, performance, ease of use, and future 
extendibility of the new software enhancements should be discussed through ongoing technical dialogs between 
industry users and CAE vendors.  

9. Conclusions 
The analytical software requirements discussed in this paper would allow CSOS to gain more industrial support and 
a faster increase in its user-base across multiple industries.  The reason for such requirements to surface at this time 
is that 10 years ago the CSOS were not mature enough to be seriously considered for use in the enterprise product 
design processes.  Now, with improved CSOS capabilities and robustness, the possibility of exploiting CSOS tools 
more extensively in the enterprise design processes is real; however, such an opportunity comes with new and 
stricter requirements.  Without fulfilling the proposed requirements, including advanced problem-solving techniques 
in addition to embedding decision-making algorithms through predictive analytics, the CSOS user-base in the 
aerospace and automotive industries will most likely remain static or grow slowly.  This is primarily because there 
would be significant difficulties in persuading program management to attempt utilizing the current optimization 
tools more extensively in the enterprise-wide detailed-design processes.  Although CSOS is the primary target of the 
subject needs, they are not limited to CSOS but should be viewed as desired features in any integrated structural 
optimization software. 
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1. Abstract  
Automotive and aero industries are rapidly increasing applications of numerical simulations for structural, 
structure-interfacing, and multi-field analyses ranging from structural stiffness and strength, to crashworthiness 
and durability. Simulation applications and tool chains are cast into sophisticated, but strict, processes to ensure 
reliability, design integration, and interaction between partners, departments and suppliers. 

Commercial and in-house optimization frameworks, i.e., process integration and design optimization (PIDO) 
tools, have evolved considerably, allowing for coupling of processes, tools, and individual design parameters. 
Thus, the designer/CAE specialist is required to master the challenges arising from the complexity of such 
processes.  Although originally intended for this specific purpose, even efficient PIDO implementations may not 
be suitable for general applications from an enterprise standpoint. Especially for multi-disciplinary optimization 
when analyses from various disciplines compete and their influences need to be balanced. 

This paper presents the background and rationale why PIDO implementations may not be suitable from an 
enterprise aerospace/automotive perspective. A view of the bottlenecks is also presented, along with proposed 
approaches to resolve them. 

Specifically, to increase the efficient use of commercial PIDO tools in the automotive and aerospace industries, 
these integration and optimization frameworks should provide: 

• Friendlier ways of integrating existing third-party and legacy tools 
• Interactive human control of the optimization process, i.e., “on-the-fly” adjustments of the design variables, 

targets, constraints, and optimization methods 
• Intuitive and robust support of heterogeneous computing systems 
• Ease of maintaining and modifying the created processes that should be available both in GUI and batch 

modes. 
The PIDO approach demands high flexibility, with strong end-user interaction and interfacing. 

2. Keywords: Process Integration and Design Optimization (PIDO), MDO, Complex Engineered Systems, 
Enterprise Optimization Framework, Big Data, Preliminary Design 

3. Motivation 
Recent years have seen an enormous growth in computer aided engineering (CAE).  In the coming years, the 
available computing power will increase even faster. Any item and part with structural requirements within 
complex products such as automotive vehicles or airplanes is designed using high fidelity structural simulations 
including finite element analyses. Usage of high fidelity, fast computational structural mechanics (CSM), 
computational fluid dynamics (CFD), and multidisciplinary optimization (MDO) tools and processes has 
significantly improved product performance and greatly reduced product development costs. By taking advantage 
of advanced computational analysis tools and coupling analyses to multidisciplinary optimization tasks, designers 
can simultaneously improve the product design, and reduce the time and cost incurred during every design cycle. 
There is a widespread virtualization strategy in industry to reduce the number of experimental validations required 
to “certify by analysis” [1]. The objective is to further reduce product development costs for the aero-industry, and 
for “development on demand” for the automotive industry with its massive unit numbers and customer drive for 
superior performance and individualization. 

Today’s approach within large enterprise CAE development organizations is to cast each and every tool and 
development step into a clearly defined process. Interaction of the design disciplines, development partners, and 
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suppliers, together with strict project schedules, necessitate strict responsibilities.  Such responsibilities are 
reflected in reasonably strict CAE process chains. To accommodate this CAE development environment, software 
tools are required to provide very effective and efficient interfaces. There has been a flurry of merger and 
acquisition activities taking place in the software industry, with the objective of providing the “one and only” 
software suite that is the best “integrator” around. However, no single application or system is capable of handling 
all of the product design issues, spread out to all companies and all departments, and to resolve the necessary 
interactions between the tools and data. Product data management (PDM) systems are mostly in place but have not 
truly penetrated the CAE simulation world yet. Mastering the entirety of simulation data generated within an 
enterprise, even within a period of only one year, constitutes a big burden of resources and development cost. 

Optimization, specifically in the sense of PIDO, shifts these challenges into another dimension. Commercial 
software tools such as Optimus [2], Isight [3], Dakota [4], ModeFrontier [5], among others, are offering a 
reasonable coverage of system integration from CAD and CAE software to optimization, visualization, statistical 
analysis, and full product data management (PDM) integration. The underlying approach has always been to 
introduce a so-called “master flow” which determines the optimization process that includes analyses, iteration 
loops, along with computing resource and job management.  

From an enterprise standpoint, this master flow approach is not reasonable. It inevitably brings out several issues 
which are presented below. The current design work in industry is already so complex that no single tool, or 
vendor, or process is capable of adequately adjusting to all of the demands of high fidelity design work. In this 
paper, this issue is elaborated, along with a vision of how to overcome this trap. Our vision is driven by the belief 
in computational design, data affinity, and future design processes. 

The issues of a master-slave context are presented in the following section with respect to computing resources by 
considering a specific type of genetic algorithm (GA) as an example. Next, the basis of a vision for a next 
generation computing and numerical optimization environment is presented by reassembling the building blocks 
of a (potentially automated) design process. Finally, the requirements for this transition presented, along with a 
discussion via several open questions. 

4. GA with respect to computing resources: Synchronous Master-Slave versus an Asynchronous Approach 
Genetic algorithms (GAs) are an attractive class of techniques for solving a variety of complex search and 
optimization problems. Although they are not the only possible approach even for discontinuous problems, GAs 
are an integral part of most PIDO tools.  GAs offer a global optimization strategy at the cost of heavy computing 
resources for state evaluation in every generation. Classical GA starts by evaluating responses at a predefined 
number of points. This set of points is called a generation. For a large number of points, the evaluations are usually 
performed in parallel. For large-scale problems of practical importance, distributed computing techniques are 
typically implemented. However, classical GA also requires synchronization; it requires correlation of the results 
of all the points in a single generation after all the points in the generation are evaluated. This synchronization 
point becomes a road block for a heterogeneous computing environment when the process to evaluate a single 
point in the generation is significantly slower than for the others. The overall process is determined by a so-called 
master process which consists of generation synchronization (environmental selections) and offspring generations. 
Multiple, parallel point evaluations constitute the slave jobs. Such types of algorithms are called synchronous 
distributed master-slave GA (SDGA). 

The speedup lost in synchronizing a point may be considerable in networked, heterogeneous computing 
environments [6]. Asynchronous (also called generation-less) GAs have been proposed to overcome this drawback 
via alternative implementations of the individual’s life-cycle dissolving a strict generational evaluation. The reader 
is referred to [7] for details regarding modelling of an individual’s life-cycle and mating strategies. In computing 
terminology, an asynchronous distributed GA (ADGA) is obtained by “unrolling” the loop of generation, 
crossover, and mutation until convergence is achieved.  

In heterogeneous network environments, one single slow processor may impede the overall progress in executing 
SDGA. Significant speedup can be obtained by implementing the idea of ADGA [6]. Moreover, complete resource 
management and scheduling could be decoupled. Implementation of such ADGA may achieve partitioning of GA 
schemes into pieces of work which can be processed in parallel. An optimal partitioning in terms of runtime 
speedup should allow for a full utilization of all available resources. 

5. PIDO approach and the eternal resource bottleneck in enterprise design work 
Transferring the idea of asynchronous versus synchronous genetic algorithms to the whole optimization process 
reveals significant issues within current PIDO tools and their proposed integration into enterprise design work. For 
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this case, the PIDO tool assumes the role of the master, with the slave-jobs being plugged in via numerous 
interfaces. The master thus controls the overall optimization process; however, in every enterprise, the resources 
required to fulfill design work are always limited. This includes the required computing power in the form of the 
number of computer cores, computing time, disk space, and computer memory; they are referred to as hardware 
cost. The PIDO tool also assumes the role of a scheduler to distribute slave jobs to any computing environment by 
controlling all of the associated resources. Moreover, when evaluating sophisticated functions by CSM, CFD, or 
MDO tools, computation of the state evaluations presents a resource issue on its own, e.g., with respect to software 
licensing. One should not underestimate the challenge for an enterprise to decide whether a number of licenses is 
provided for multiple design tasks instead of using the same number of licenses for one sophisticated multi-job 
task. Smart decisions must be based on the expected payoff for the engineering design problem, but should also 
include estimation of computing and license resource consumption. Today, PIDO tools lack transparent 
visualization and tracking of such resources. Furthermore, clear insight into multi-job status, job scheduling, and 
solution convergence and robustness are essential. 

Last but not least, for enterprise design work, the limited resource time to solution represents not just computing 
wall clock time, but also engineering decision time. Typically the analyst is faced with the dilemma of setting up 
one fast single job for a specific design versus a multi-job design exploration or optimization process. Intelligence 
and guidance for optimization post-processing to understand why a particular design is superior to another is a key 
to fast decisions in the time-pressured enterprise project work environment.  

From an enterprise standpoint, it is believed that the current master-slave PIDO approaches will never be able to 
fulfill all of these requirements. Instead, it is proposed that a different approach is followed in the future for 
reassembling the typical PIDO modules as described in the following. 

6. Vision of Optimization Data Management Engine for Resource-optimal Enterprise Design Work 
To resolve the issues described above, it is proposed that the classical master-slave approach be decomposed and 
moved to what is called an Optimization Data Management Engine (ODME). By analogy with the genetic 
algorithms presented above, any synchronization points within the complete CAE design process can be avoided. 
To illustrate, consider the multidisciplinary optimization tasks of airplane or car design where CFD and structural 
analyses such as crash and noise, vibration, and harshness (NVH) are involved. Suppose that the CFD or crash 
analysis takes more time and resources than for the structural analysis. For a typical master-slave PIDO, all 
analysis results are synchronized only after all of the analyses are completed. Thus, a quick structural analysis will 
typically need to wait for the CFD or crash analysis to be completed. This bottle-neck is inherent to master-slave 
approaches. 

Our vision for a multidisciplinary multi-job optimization environment is to break up the master-slave components 
into process modules. A conceptual draft of the reassembled modules is depicted in Fig. 1 which consists of 
evaluation modules (CSM/CFD/MDO tools), post-processing and visualization modules, resource controller 
modules (computing load share, licensing control, job scheduling), and driver modules (DOE, RSM, single 
analysis request, Data Mining, Optimization algorithms, etc.). The core around which those modules are arranged 
is a high-performance database storing all relevant analysis models and results: CAD/CAE model properties, 
design variables, dedicated response values, as well as job Meta data such as job run time, resource consumption, 
submission status, etc. Based on today’s technical standards, open or standard protocol (SQL) database concepts 
can be utilized to implement such a database.  

Let us refer again to the MDO optimization example illustrated above and show how it would look within the 
ODME. The optimization algorithm is initiated from some driver module and sent to a Resource Controller in the 
database; this is identified by a “to evaluate” marker for the corresponding CFD, Crash and NVH analyses being 
scheduled by the Resource Controller according to the available software licenses and high-performance 
computing (HPC) load sharing. As soon as the license and HPC load share are available, every particular 
Evaluation Module starts its analysis. Thus, a prioritized single job evaluation may “overtake” an optimization 
evaluation for a period of time, but not prevent the rest of the evaluations in the running generation. Meanwhile, 
quick and cheap evaluation results, if present, are already fed back to the Database Resource Controller and could 
be visualized by a selected Visualization Module. Based on the current solution information, the user might want 
to change the optimization parameters or variables, or to set up a completely new Driver Module. At some point, 
all of the required evaluations are completed, with the initial optimization task being completed and the results 
being stored in the Database. 
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Figure 1: Optimization Data Management Engine as a reassembly of PIDO master-slave approach: 

Database interacts with Resource Controller, Driver, Evaluation, and Visualization modules 
 
Within the proposed environment, more features could be implemented successively. Eventually, a classification 
of the maturity of the analysis results is envisioned to account for different levels of fidelity. Such a classification 
would allow for efficient data usage in different design stages, from predesign and design exploration up to 
detailed design, life cycle analysis, and certification. More practical features could easily be implemented such as 
multiple user and client access, web-based interfaces, etc. 

7. Conclusions 
The classic PIDO-based numerical optimization approach is presented in this paper, along with its conceptual 
drawbacks in the context of the enterprise design work requirements from the automotive and aerospace 
perspectives. To overcome the underlying issues of this approach, numerous changes are proposed for the standard 
master-slave approach being implemented in today’s PIDO tools. An enterprise computing environment based on 
an optimization data management engine (ODME) is envisioned by reassembling the existing PIDO modules 
around a central analysis evaluation and storage database with a resource controller. 

It is expected that when the proposed new paradigm is implemented, multidisciplinary and large-scale 
optimization capabilities will be easier to adapt to existing design processes in the automotive and aerospace 
industries. Furthermore, it is expected that the PIDO-based approach and other approaches to optimization will 
gain more industrial support and enterprise-wide implementation. As a result of implementing the new proposed 
PIDO concept, it is anticipated that a new phase of growth of numerical optimization and associated numerical 
simulation in enterprise design work will ensue. 
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1. Abstract
Designing transient thermal mechanical systems is a challenging task. Material can have many different functions:

it can provide heat capacity, heat conduction, mechanical stiffness or even function as an actuator. Topology op-

timization can provide the engineer with valuable insight on such a problem. One of the most popular topology

optimization approaches is the density method. This method is applied to a transient thermal mechanical problem.

In order to ensure manufacturability, penalization is applied to suppress intermediate densities in the final design.

However, for transient thermal mechanical optimization problems, conventional penalization does not work for

most objective functions. A new penalization method, material penalization, is presented that does suppress in-

termediate densities in the transient thermal mechanical domain. Each element is given its own unique set of

penalization parameters which are optimized to maximize the objective function for a minimization problem. By

reusing sensitivity information from the density variables, the additional computational cost is limited.

2. Keywords: Topology optimization, Penalization, Manufacturability, Transient thermo-mechanical.

3. Introduction
In the density method, the usually discrete material placement problem is relaxed, allowing for intermediate ele-

ment densities. The material properties of the elements are scaled with these densities. To ensure manufacturability

and to allow for interpretation, however, the final design of a topology optimization (TO) should not contain in-

termediate densities. In order to achieve an intermediate density free, or black-and-white, design with the density

method, the intermediate material is penalized. SIMP (Simplified Isotropic Material with Penalization) is a com-

mon approach, but in this paper RAMP (Rational Approximation of Material Properties) [1] is used because of

its reported superior performance on thermo-elastic problems [2]. For stiffness optimizations, SIMP and RAMP

penalization are able to result in a black-and-white design. However, for transient thermal mechanical (TM) prob-

lems, SIMP or RAMP penalization is often not sufficient to result in a black-and-white design. Because of the

complex relationship between element density and objective in transient TM problems, intermediate densities are

in some places more optimal than a void or completely filled element, even in absence of a volume constraint.

SIMP and RAMP are not able to change this, which is also apparent in literature. Most transient TM topology

optimizations that utilize the density approach contain intermediate densities ([3], [4]). This is also the case for

steady-state TM optimization problems ([5], [6]).

Besides penalization, there are other methods to suppress intermediate densities. Grey penalization is a widely

applied method. The objective function is augmented with a term, that increases when intermediate densities are

present. However, determining the scaling of this grey penalization term w.r.t. the original objective is cumber-

some. By choosing it too high, the design will end up in an inferior local minimum. Too low, and final design

will still contain intermediate densities. Grey penalization has been used in, for example, in [6]. Nonetheless,

it was not able to produce a black-and-white design for every design case. Other methods that are available are

projection methods. This has been used in [4] as a post-processing step, where a threshold was set at 0.5. However,

the thresholded design had a much lower performance, because there is no guarantee that a post processed design

is still an optimum. Projection during the optimization, as proposed in [7] has, by the author’s best knowledge,

not yet been applied to transient TM problems. This might create an intermediate density free design without

deteriorating the performance, however, in this study a different approach has been chosen.

In this paper an extension to the conventional penalization method is presented that is able to create a black-

and-white design for transient TM problems. This is done by assigning individual penalization parameters to

every element, which are included in the optimization with very limited extra computational cost. In the following

section, Section 4, background on penalization in transient TM systems is given. In Section 5 the new penalization

method is presented and the resulting topology optimization problem is stated in Section 6. Finally, the new

penalization method is applied to a transient TM problem in Section 7.

1
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Figure 1: Standard RAMP penalization for different penalization parameters.

4. Background on penalization in TM systems
In density-based topology optimization involving solid mechanics, the Young’s modulus is interpolated with the

element densities. With RAMP penalization, the interpolated Young’s modulus of an element is defined as:

E∗(ρ) = Emin +
ρ

1+q(1−ρ)
(E0 −Emin), (1)

where E∗ indicates the interpolated Young’s modulus, E0 the Young’s modulus of the original material and Emin
denotes a lower bound added for numerical reasons, chosen a factor 10−6 lower than E0. ρ is the virtual element

density and q the penalization parameter. The effect of q on the interpolation can be observed in Figure 1. It is

apparent that if an intermediate value of the Young’s modulus is optimal, penalization will not prevent the optimizer

from utilizing this intermediate density since all the intermediate values of the Young’s modulus are still available

after penalization, only with different corresponding density values.

In transient TM problems, four material properties can be penalized: the Young’s modulus E, the coefficient

of thermal expansion (CTE) α , the heat capacity c and the heat conductivity k. In this study, instead of the CTE,

the thermal stress coefficient (TSC) β is penalized, defined as β = Eα , as advised in [2]. Little research has been

conducted on how to penalize the material properties, often they are all penalized with the same penalization fac-

tor. By the author’s knowledge, the possibility of penalizing the material properties by different factors for TM

problems is first mentioned in [8]: “In principle, the power p [the penalization parameter] could take different

values for each physical property. However, for simplicity and to avoid having to choose multiple parameters, the

same power is selected for all material interpolations.”. The latter is common practice in TM optimizations. Gao

and Zhang [2] explored the effect of different penalizations, but only on an optimization of a mechanical system

with a given temperature rise. Outside of the TM field, some research has been done on the effect of different

penalization parameters. For piezoelectric systems, [9] pose a set of rules for different penalization parameters. In

[9], different penalization rules are found for different types of piezoelectric systems. The effect of different pe-

nalization parameters on a piezoelectric energy harvesting device under static and dynamic loading is investigated

in [10]. They find that different sets of penalization parameters produce different layouts. Because these papers

employ the electro-mechanical domain it is hard to draw quantitative conclusions for the TM domain. However, as

in the electro-mechanical domain, it is likely that different penalization parameters have an influence on the final

layout of TM optimization problems.

5. Material penalization
When all the material properties are penalized by the same factor, the material behavior at intermediate densities

will be similar to the original material, except it will behave as if there is less material (for example, a less thick

plate in 2D). However, when the penalization parameters are changed relative to each other, the material behavior

at intermediate densities will change. Let qc, qk, qE and qβ be the penalization parameters for the heat capacity,

heat conduction, Young’s modulus and TSC respectively. An element with, for example, qc = 0, qk = 5, qE = 0

and qβ = 0, will have a much lower heat conduction in relation to the change of the other material properties at

intermediate densities, because the conduction is penalized more. This intermediate material can be related to

concrete, which is stiff but has a low heat conduction. On the other hand, an element with qc = 0, qk = 0, qE = 5

and qβ = 0 has a much lower stiffness in relation to the other material properties. The intermediate material could

represent a type of copper wire connection. Thus, by changing the penalization parameters relative to each other,

a range of material behaviors can be generated.

The basic idea of the new penalization method, material penalization, is: find a set of penalization parameters,

that gives the material at intermediate densities adverse behavior for the optimization problem. This will prevent

the optimizer from using intermediate densities as design elements. For example, when high conduction is optimal,

2
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the intermediate material should behave insulating. However, the adverse behavior is often not easily selected and

depends on different aspects. At first, different objectives benefit from other sets of penalization parameters, as

shown in [9]. It is, therefore, not possible to find a single set of penalization parameters that gives a black-and-white

design for all transient TM TO problems. Secondly, within one problem, intermediate material that is adverse at

one location can have favorable behavior at other locations. Thus, in order to ensure a black-and-white design,

each element needs its individual set of penalization parameters that creates intermediate material that behaves

adversely. Thirdly, as the design evolves during optimization, the function of an element may also evolve and

therefore, the penalization parameters need to be altered. Concluding, because the adverse behavior depends on

the design problem, element location and function, the penalization parameters of each element are included as

design variables.

The penalization parameters are optimized simultaneously with the density variables, but the penalization

parameters are optimized to maximize the objective function, whereas the density variables minimize the objective

function. Maximizing will provide the set of penalization parameters for each element that gives intermediate

material adverse behavior. Keep in mind that these parameters will not change the material properties of the final

design, as it should consist of only black or white elements, which are not affected by the material penalization.

The new optimization problem can be stated as a continuous min-max problem.

6. Topology optimization
6.1 Problem formulation

As stated, the focus of this study is on TM problems. Mechanical coupling to the thermal domain is neglected, and

therefore a one-way coupled system of equations has to be solved to get the system response. Furthermore, the

mechanical behavior is considered to be quasi-static compared to the thermal dynamics. The finite element method

(FEM) is used to discretize the thermal and mechanical equilibrium equations in space. This gives the following

initial value problem:

CTṪ(t)+KTT(t) = Q(t), (2)

KUu(t) = AT(t), (3)

T(0) = Tambient , (4)

where CT and KT denote the heat capacitance- and conduction-matrix, respectively, T and Q indicate the nodal

temperature- and the thermal loading-vector, KU denotes the mechanical stiffness matrix, A denotes the thermal-

mechanical coupling matrix and u indicates the nodal displacement vector. These equations are solved by Euler

backward time integration with an initial temperature field which is given in Equation 4. For the example in this

study, the objective is only a function of displacements and time. The optimization problem can thus be written as:

min
ρi

max
si, j

(
f =

∫ t f

0
p(u(t), t)dt

)
, (5)

subject to: C(ρi,si, j)Ṫ+KT(ρi,si, j)T = Q, (6)

KU(ρi,si, j)u = A(ρi,si, j)T, (7)

0 ≤ ρi ≤ 1, (8)

−1 ≤ si, j ≤ 1, i ∈ [1,N], j ∈ [1,4], (9)

where f is the objective, p a chosen function of the displacements and time, N the total number of elements and

t f the end time. ρi is the virtual density of element i, and si, j is the penalization parameter design variable of

property j and element i. Since there are four penalized material properties per element, there are 4N penalization

parameters in total. Note that all the system matrices are dependent on the element densities ρ , as well as on the

penalization parameters design variables s.

In order to normalize the penalization parameters and to smoothen the variation of the RAMP curve over the

domain of s, a mapping has been applied that maps the domain of the design variables s onto the domain of the

actual penalization parameters q which are input to the RAMP equation (Equation 1):

s∗ = c1s3 + c2s, (10)

q =

{
s∗ s∗ ≥ 0
s∗

1−s∗ s∗ < 0
, (11)

where the constants c1 and c2 are chosen as 13 and 2 respectively. Now, the design variables range from -1 to 1,

which is handled better by the optimizer than the penalization parameters which range from −15/16 to 15. The

3
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Figure 2: RAMP extended to also promote besides of penalizing properties. Design variable s varies from -1 to 1

and the RAMP curve changes roughly at the same rate over the complete range of s.

course of the RAMP curve for different values of the design variables s can be seen in Figure 2.

6.2 Sensitivity analysis

Since the topology optimization contains many design variables and few constraints, adjoint sensitivities are used

to calculate the sensitivities in order to save computational time compared to direct sensitivities [11]. By augment-

ing the objective with the governing equations (Equation 2 and 3), each multiplied with an adjoint variable, the

following equations for the sensitivities can be derived [12]:

d f
dvi

=
∫ t f

0

[
λλλ T (t)

(
dKU

dvi
u(t)− dA

dvi
T(t)
)
+ μμμT (t)

(
dCT

dvi
Ṫ(t)+

dKT

dvi
T(t)− dQ(t)

dvi

)]
dt (12)

λλλ T (t)KU =
dp(t)

du
(13)

−μ̇μμT CT +μμμT (t)KT = λλλ T (t)A (14)

μμμ(t = t f ) = 0 (15)

where λλλ and μμμ denote the adjoint vectors, independent of the design variables to which the objective is derived.

Note that the numerator-layout notation has been used. The adjoint (Equation 14) is discretized in time using an

Euler forward interpolation scheme. Since the adjoint problem is a terminal value problem (Equation 15), integra-

tion is done backwards in time, causing the Euler forward scheme to become implicit. In equation 12, the objective

function is derived w.r.t. a yet to be defined parameter vi. This can be both the element density as well as one of

its penalization parameters. Note that for both cases the same adjoint variables can be used since no definition of

vi is needed in their calculation. This implies that the sensitivity information of the penalization parameters comes

at little extra cost once the density sensitivities have been determined. Only the derivatives of the system matrices,

which are known exactly, differ between the densities and the penalization parameters. The interpolated material

property needs to be derived to either the density or the penalization parameter.

6.3 Optimization procedure

Linear programming with adaptive move limits is used as optimization algorithm. Every iteration the density vari-

ables are moved in the direction in which their derivatives w.r.t. the objective function is negative. Simultaneously,

the penalization variables are moved in the direction in which their derivatives are positive, in order to maximize

the objective function. The move limits determine the step size. The ratio between the size of the move limits

of the density and penalization variables determines how fast the one can change with respect to the other. This

has a large influence on the result. It was observed that when the density variables have much larger move limits

than the penalization variables, the chance of ending up in an inferior local minimum is the lowest. However this

also increases the number of iterations because the penalization variables change slowly due to their small move

limits. Equal move limits for the penalization and density variables have been used as this already gave satisfactory

results.

7. Transient TM demonstrator
In this section, the material penalization method presented in the previous sections will be applied on a transient

TM case, as depicted in Figure 3. On the left and right side the domain is fixed, and ambient temperature is

prescribed, which is also the initial temperature for the whole domain. The top and bottom side are thermally

isolated. On the red elements a heat load is applied from t = 0. The objective is to minimize the thermal error from

t = 30s to t = 60s. The thermal error is defined as: |uob j −1.5 ·10−3|, which means that a displacement of 1.5mm

4

969

Leo
Rectangle



Figure 3: Transient TM test case. Red elements are fixed, green elements are design variables. The heat load is

applied equally on the red elements.

(a) Final design without penalization. (b) Final design with conventional pe-

nalization.

(c) Final design with material penal-

ization.

Figure 4: TO results for the transient TM case for different penalization settings.

is desired over the time frame of interest.

The solution without penalization is displayed in Figure 4a. The design shows a mechanism that pushes the

area on which the heat load is applied upward, to reach the target displacement. Around the fixed domain there is a

ring that provides heat capacity and slightly decreases the objective displacement when it expands. This complex

design gives a clue for the engineer in what direction the final design can be made, but it leaves a lot undecided. No

design for the suspension of the domain on which the heat load is applied can be deduced because it is suspended in

intermediate densities. Adding conventional penalization does not improve the situation, as can be seen in Figure

4b. When material penalization is applied, it becomes much clearer what the final design should look like. This is

displayed in Figure 4c. Now there are hardly any intermediate densities left. The remaining intermediate densities

are in areas where for example a certain stiffness is required: around hinge points. These are areas to which the

engineer should pay special attention, for example, when determining the exact required thickness.

This also shows that a black-and-white design is only achieved when there are competing material properties.

On the hinge points, where intermediate densities are present, only the stiffness of the elements is dominant (and

desires an intermediate value). When this is the case, material penalization will not be able to result into a black-

and-white design.

8. Conclusion
In this research TO is applied to a transient TM problem. A new penalization method, material penalization, is

presented for transient TM TO problems. Every element is given its unique set of penalization parameters which

are optimized to maximize the objective function, where the overall goal is to minimize the objective function.

Material penalization will not always be able to create a black-and-white design, as it needs counteracting material

properties. However, when this is the case, it is shown that material penalization, unlike conventional penalization,

is able to result in a manufacturable, intermediate density free, design for a complex transient TM problem.

Further investigation into the relative optimization speeds of the density and penalization variables and how

this compares to the total number of iterations will be relevant in order to reduce the total number of iterations.

Furthermore, when minimizing the penalization parameters instead of maximizing them, this method might be

used to investigate which material properties (and thus material) are favourable at different locations of the design.
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1. Abstract
In this paper, we propose a robust shape optimization method for a shell structure with unknown loadings. The 
concept of the principal compliance minimization for minimizing the maximal compliance is applied to the shape 
optimization design of a shell structure. The principal compliance minimization problem can be transformed to the 
equivalent maximization problem of the fundamental eigenvalue of the stiffness term, and this problem is 
formulated as the distributed-parameter optimization problem based on the variational method. The derived shape 
gradient function is applied to the H1 gradient method for shells to determine the optimal shape variation, or the 
optimal free-form. With this method, the optimal smooth curvature distribution of a shell structure can be 
determined without shape parameterization. The calculated results show the effectiveness of the proposed method 
for robust shape optimization of a shell with unknown loadings. 
2. Keywords: Robust shape optimization, shell structure, loading uncertainties, principal compliance, H1 gradient 
Method,  

3. Introduction 
Structural optimization techniques are widely utilized in many structural design fields. In general optimum design 
problems, the boundary condition is treated deterministically, although the condition such as loading condition 
frequently contains uncertainties. A design problem we often encounter loading conditions from all directions 
or multiple loading conditions by sharing of parts in actual design problems, which is one of the design 
problems with unknown or uncertain loadings. As the optimal design is generally vulnerable to the variation 
of loading because the structural performances such as stiffness or strength are strongly influenced by 
loading, the reliability design is often introduced to the formulation of optimal design problems. Safety factor 
or probabilistic approach is a method of reliability design problems. However, too large factor often causes 
excessive performances, redundant structure and weight gain.  

Another approach to avoid the vulnerability of the optimally designed structure to variations of loading has 
been proposed by Cherkaev et al. [1], in which the concept of the principal compliance minimization is 
introduced, which is defined as the minimization of the maximal compliance under the worst possible 
loading. They formulated it as a min-max compliance problem, and showed that the principal compliance 
minimization problem can be transformed to the equivalent maximization problem of the fundamental 
eigenvalue of the stiffness term. They applied this idea to a simple size optimization problem. Takezawa et al. 
[2] applied the concept of the principle compliance to a topology optimization problem under the assumption 
that the loading domain is limited in a small sub-domain of the linear elastic domain to solve the full size 
linear elastic system efficiently.

In this paper, we newly propose a robust shape optimization method for shell structures by employing this 
concept to the free-form optimization method for shells. This method is a parameter-free shape optimization 
method based on the variational method, which was proposed by one of the authors [3]. In this method, a 
shape optimization problem is formulated in the continuous system, and the optimal smooth curvature 
distribution of a shell structure is determined without any shape parameterization, although almost all shape 
optimization methods need shape parameterization. The principal compliance minimization problem is 
transformed to the equivalent maximization problem of the fundamental eigenvalue of the stiffness term based on 
this concept. The transformed objective functional is maximized under the volume constraint, and the shape 
gradient function is theoretically derived using the material derivative method and the adjoint variable method. 
The derived shape gradient function is applied to the H1 gradient method for shells to determine the optimal shape 
variation, or the optimal free-form. We carried out a numerical example to verify the effectiveness of the proposed 
robust shape optimization method. 
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4. Governing equation for a shell as a set of infinitesimal flat surfaces 

(a) Geometry of shell (b) Local coordinates and DOF of surface. 

Fig.1  Shell consisting of infinitesimal flat surfaces. 

As shown in Fig.1 and Eq.(1), consider a linear elastic shell having an initial bounded domain 3 , mid-area A
with the boundary of A  , side surface S and thickness h. It is assumed that a shell structure occupying a bounded 
domain is a set of infinitesimal flat surfaces as shown in Fig.1, and stress and strain of the shell are expressed by 
superposing the membrane and bending components based on the Reissner-Mindlin theory. 

3 2
1 2 3 1 2 3( , , ) ( , ) , ,

2 2
h hx x x x x A x , ( , ),      ( , )

2 2 2 2
h h h hA S A= × = × (1)

As shown in Fig.1(b), Eq.(2) and Eq.(3), the displacement vector expressed by the displacements in local 
coordinate 1,2,3{ }i iuu  is considered by dividing into the in-plane direction 1,2{ }u  and the out-of-plane 
direction 3u . In this paper, the subscripts of the Greek letters are expressed as 1,2=  and the tensor subscript 
notation uses Einsteins summation convention and a partial differential notation. 

1 2 3 0 1 2 3 1 2( , , ) ( , ) ( , )u x x x u x x x x x   (2) 

3 1 2 3 1 2( , , ) ( , )u x x x w x x   (3) 

where 0 0 1,2{ }uu , w  and 1,2{ }  express the in-plane displacements, out-of-plane displacement and 
rotational angles of the mid-area of the shell, respectively. Then, the weak form state equation relative to 

( )0 w Uu = u , ,  can be expressed as Eq.(4). An in-plane load 1,2{ }f = , an out-of-plane load 3{ }f  are 
considered as the external forces. 

( ) ( )( ) ( )( ) ( ) ( )0 0 0 0 0, , , , , , , , , , , , ,a w w l w u w U u w U= 　 　　u u u   (4) 

where ( )  expresses a variation. In addition, the bilinear form ( )a ,  and the linear form ( )l  are defined. 

( ) ( )( ) ( )( ) ( )( ){ }0 0 0 , 3 , 0 , 3 , , ,, , , , , sa w w C u x u x C w w d= +u u  (5) 

( )( ) ( ) ( ){ }0 1 01 3 1 2 02 3 2 3, , i il w f u d f u x f u x f w d= = + +u   (6) 

where{ }C , , , =1,2 and{ } , 1,2
sC = express an elastic tensor with respect to the membrane stress and an 

elastic tensor with respect to the shearing stress, respectively. It will be noted thatU in Eq.(4) is given by the 
following equation.

( ) ( ){ }5(1) (1) (1) (1) (1) 1
0,1 0,2 1 2, , , , H ( ) | satisfy the given Dirichlet condition on each sub-boundaryU u u w A=   (7) 

where H1 is the Sobolev space of order 1. 

5. Robust shape optimization of shell structure 
 
5.1. Domain variation 
We consider that a linear elastic shell structure having an initial domain , mid-area A , boundary A and side 
surface S  undergoes domain variation V (i.e., design velocity field) in the out-of-plane direction such that its 
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domain, mid-area, boundary and side surface become s sA sA and sS as shown in Fig.2, respectively. It is 
assumed that the thickness h remains constant under the domain variation. The subscript s  expresses the 
iteration history of the domain variation.  

Fig.2  Out-of-plane shape variation by V.

5.2. Principal compliance
In a domain , the principal compliance pl of a structure is defined as the maximal compliance under all 
admissible unknown loadings [1].

{ }max( ) maxp i iA
l l f u dA= =   (8) 

where the unknown loadings satisfy following normalizing condition as shown in Eq.(9). 

11 1
2 ij i jA f f dx =   (9) 

where f  is the force vector, and , 1,2,3{ }ij i jA =  is a diagonal tensor which expresses the loading positions and their 
magnitude. The component of ijA  is proportional to the magnitude of the force corresponding, and has an 
infinitesimal  at the point without loading. Then, the inverse tensor of ijA  expresses the weight factor to 
describe the set of admissible loadings. The principal compliance minimization problem can be transformed to the 
equivalent maximization problem of the fundamental eigenvalue (1) , because the maximal compliance can be 
expressed as the inverse of the fundamental eigenvalue of the stiffness tensor [1].

(1)1pl   (10) 

(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
0 0 0 0 0 0(( , , ), ( , , ))= (( , , ), ( , , )),    ( , , ) , ( , , )a w w b w w w U w Uu u u u u u   (11) 

where the bilinear form ( , )b is defined as 

( )( ){ }0 0 3 0 3 33(( , , )) ij i jb w A u u dx A u x u x A ww dx= = +u   (12) 

5.3. Problem formulation 
Let us consider a free-form optimization problem for minimizing the principal compliance of a shell structure. 
Letting the state equations in Eq.(11) and the volume be the constraint conditions, and the fundamental eigenvalue 
be the objective functional to be minimized, a distributed parameter shape optimization problem for determining 
the optimal design velocity field V  can be formulated based on the variational method as 

Given ˆ,A M   (13) 
Find V   (14) 

that minimize　 (1)   (15) 
subject to  Eq.(11) and ˆ(= )

A
M hdA M   (16) 

where M  and M̂  denote the volume and its constraint value, respectively.  
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5.4. Derivation of shape gradient function and optimality conditions 
The Lagrange multiplier method is used to transform this constrained shape optimization problem to the 
unconstrained one. Letting 0( , , )wu  and  denote the Lagrange multipliers for the state equation and volume 
constraints, respectively, the Lagrange functional L  associated with this problem can be expressed as 

(1) (1) (1) (1) (1) (1) (1) (1)
0 0 0 0

(1) (1) (1)
0 0

(( , , ), ( , , ), ) (( , , ), ( , , ))
ˆ                                                    (( , , ), ( , , )) ( )

L w w b w w

a w w M M

= +

+

u u u u

u u
  (17) 

The material derivative of the Lagrange functional L  can be derived as shown in Eq.(18) using the design velocity 
field V .

(1) (1) (1)(1) (1) (1) (1) (1) (1) (1)
0 0 00 0 0

(1) (1)(1) (1) (1) (1) (1) (1)
0 00 0

(( , , )), ( , , ))+ (( , , )), ( , , )) (( , , ), ( , , ))
ˆ(( , , ), ( , , )) { (( , , ), ( , , )) 1} ( )

L a w w b w w a w w

b w w b w w M M

u u u u u u

u u u u　　　
　　　 ,G Cn,V V　　　

 (18) 

( )(1)
M nA A

G G VdA G G dA= +n,V n V  (19) 

where (= )Gn G  expresses the shape gradient function. C  is the suitably smooth function space that satisfies the 
constraints of the domain variation. H  is twice the mean curvature of mid-area A . The notations andtop btmn   n
denote unit outward normal vectors at the top surface and the bottom surface, respectively, and a unit normal 
vector at the mid-area ( )mid top btmn n = n = n is assumed by Shimoda et al. [3]. The coefficient function of the 
shape gradient function G  consist of (1)G  and MG  corresponding to 1st eigenvalue and volume constraint, 
respectively. The optimality conditions of the Lagrange functional L with respect to 0( , , )wu , 0( , , )wu  and 
are expressed as 

(1) (1)(1) (1) (1) (1) (1)
0 00 0

(1) (1) (1)
00

(( , , ), ( , , ))= (( , , ), ( , , )),  

                                                       ( , , ) ,   , ,

a w w b w w

w U w U

u u u u

u u( )
  (20) 

(1) (1)(1) (1) (1) (1) (1)
0 00 0

(1) (1) (1)
0 0

(( , , ), ( , , ))= (( , , ), ( , , )),  

 ( ) ( , , ) , 

a w w b w w

,w, U,     w U

u u u u

u u　　　　　　　　　　　　　　　
  (21) 

(1) (1) (1) (1)
0 0{ (( , , ),( , , ))=1b w wu u   (22) 

ˆ ˆ( ) = 0,    0 0M M ,    M M   (23) 

When the optimality conditions are satisfied, L  becomes 

L G= n,V  (24) 

Considering the self-adjoint relationship (1) (1) (1)
0 0( , , )=( , , )w wu u , which is obtained from comparing Eq.(20) and 

Eq.(21), the shape gradient functions (1) , MG G   are derived as

(1) (1) (1) (1) (1) (1) (1) (1)
0 , , 0 , , 0 , , 0 , ,

(1) (1) (1) (1) (1) (1)(1) (1) (1) (1) (1) (1) (1
33 330 0 0 0

{ ( )( ) ( )( )}
2 2 2 2

{ ( )( ) } { ( )( )
2 2 2 2

h h h hG C u u C u u

h h h hA u u A w w A u u A w

　

　 ) (1)}w hH
  (25) 

MG hH
 (26) 
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6. H1 Gradient method for shells 
The free-form optimization method for shell was proposed by Shimoda [3], which consists of main three 
processes; (1) Derivation of shape gradient function (2) Numerical calculation of shape gradient function (3) The 
H1 gradient method for determining the optimal shape variation. The H1 gradient method is a gradient method in a 
Hilbert space. The original H1 gradient method was proposed by Azegami in 1994 [4] and also called the traction 
method. Shimoda modified the original method for free-form shell optimization. In the present paper, we employ 
the H1 gradient method for shells to determine the optimal shape variation for the robust shape optimization 
problem. It is a node-based shape optimization method that can treat all nodes as design variables and does not 
require any design variable parameterization. 

Fig.3  H1 gradient method for shells. 

This minimax problem may encounter the repeated eigenvalue problem of the objective functional. When this 
problem occurs, we change the objective and constraint functions as shown in Eq.(27). ( 2)r  denotes the number 
of repeating. The repeated eigenvalue is judged by introducing the range . In this paper we use 

(1)0.02
0{+ .

{ }

(1) (1) (1) ( ) ( ) ( )
0 0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0 0 0 0

1

(( , , ), , ( , , ), ( , , ), )

ˆ(( , , ), ( , , )) (( , , ), ( , , ))  ( )

r r r

r
k k k k k k k k

k

L w w w

b w w a w w M M
=

= + +

u u u

u u u u　　
  (27) 

In an analogous way, the shape gradient function becomes 

( )( )

1

r
k

M
k

G G G
=

= +  (28) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0 , , 0 , , 0 , , 0 , ,

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) (
33 330 0 0 0

{ ( )( ) ( )( )}
2 2 2 2

{ ( )( ) } { ( )( )
2 2 2 2

k k k k k k k k

k k k k k kk k k k k k k

h h h hG C u u C u u

h h h hA u u A w w A u u A w

　

　 ) ( )}kw hH
 (29) 

5. Results of numerical calculation 
The proposing method is applied to a simple problem to confirm the validity of the proposed method. Fig.4 shows 
the shape optimization problem definition of a box-shaped cantilever shell structure. As shown in Fig.4(b), an 
unknown loading is applied to the center of the free end face. The volume constraint is set as the same as the 
initial value. 

(a) Velocity analysis. (b) Stiffness analysis. (c) Evaluation of compliance 
calculation.

Fig.4  Boundary conditions. 
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Fig.5(a) shows the obtained optimal shape. The clamped end expands while the area of free end narrows toward 
the loading point. The iteration convergence histories of the 1st and 2nd eigenvalues are shown in Fig.5(b). To
confirm the robustness of the result, we use the polar coordinate in which the origin is the point of the loading, and 
measure the compliance of every 30 degree in the circumferential direction. The convergence history of the 
principal and the evaluation compliance of every 30 degree in the circumferential direction is shown in Fig.5(c), 
and comparison of compliances of each loading direction is shown in Fig.5(d). It is confirmed that the 1st 
eigenvalue is maximized as shown in Fig.5(b). The compliance is reduced by approximately 76% as shown in 
Fig.5(c)(d). We confirm that the optimal robust shape with high stiffness and independence of loading direction 
can be obtained with this method. 

(a) Obtained shape 
(b)Iteration histories of ratios of eigenvalue. 

(c) Convergence history of principal and evaluation 
compliance. (d) Comparison of compliances for loading directions. 

Fig.5 Results of robust shape optimization.

5. Conclusions 
In this paper, a robust shape optimization method for a shell structure with unknown loadings was constructed 
based on the concept of the principal compliance minimization which was transformed to the equivalent 
maximization problem of the fundamental eigenvalue of the stiffness term. A principal compliance maximization 
problem subject to both constraints of the volume and the state equation of shell structure was formulated as a 
distributed-parameter shape optimization problem, and the sensitivity function for this problem was theoretically 
derived. The derived shape gradient function was applied to the H1 gradient method for shell structures to 
determine the robust optimal shape. The calculated result showed the effectiveness of the proposed method for 
robust shape optimization of a shell structure with unknown loading, or for creating the smooth optimal shell 
structure with high stiffness and independence of loading directions.  
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1. Abstract
In recent years, a compliant mechanism has been paid to attention as a new mechanism to replace a traditional rigid 
link mechanism and the use of compliant mechanisms in mechanical products, medical instruments and MEMS 
can be expected to increase. In our previous research, we focused on a vehicle suspension as a promising 
application target of a compliant mechanism and proposed an optimal design method for a vehicle suspension 
based on a compliant mechanism or a compliant suspension. In this research, we now apply a compliant 
suspension to a wheelchair and design a compliant suspension for a wheelchair using the method developed in the 
previous research. Most wheelchairs except some expensive ones don’t have a suspension and only rely on tires for 
absorbing vibration and shock from a road. Since a compliant suspension consists of fewer parts than a traditional 
suspension and can be potentially integrated into a frame of a wheelchair, a compliant suspension can be added to 
a wheelchair at low cost. We design and manufacture a compliant suspension, retrofit an existing wheelchair with 
it and test ride quality of a wheelchair with a compliant suspension. 
2. Keywords: Wheelchair, Suspension, Compliant mechanism, Topology optimization, Shape optimization. 

3. Introduction 
In mechanical design, mechanisms consisting of rigid parts linked to moveable joints are often used, and in such 
mechanisms, the relative motion of the links is constrained by the joints. On the other hand, compliant mechanisms 
[1] utilize a structure's flexibility to achieve a specified motion, by deforming the structure elastically instead of 
relying on joint movements. Such compliant mechanisms often consist of fewer parts than rigid link mechanisms, 
or can even be monolithic, and, compared to rigid link mechanisms, they have several merits [1] [2], such as 
reduced wear and operation noise, zero backlash, freedom from lubrication requirements, weight savings, 
manufacturing advantages, and ease of miniaturization. Therefore, the use of compliant mechanisms in mechanical 
products such as mechanical products, medical instruments and MEMS (Micro-Electro Mechanical Systems) [1] 
[3] can be expected to increase. In our previous research [4] [5], we focused on a vehicle suspension as a promising 
application target of a compliant mechanism and developed an optimal design method for a vehicle suspension 
based on a compliant mechanism or a compliant vehicle suspension. 
In this research, we now apply a compliant suspension to a wheelchair and design a compliant suspension for a 
wheelchair using the method developed in the previous research. Most wheelchairs except some expensive ones 
don’t have a suspension and only rely on tires for absorbing vibration and shock from a road. Figure 1 shows 
examples of wheelchairs without and with suspensions. Since a compliant suspension consists of fewer parts than 
a traditional suspension and can be potentially integrated into a frame of a wheelchair, a compliant suspension can 
be added to a wheelchair at low cost. 

Figure 1: Wheelchairs without a suspension [6] (Left) and with a suspension [7] (Right) 

4. Two stage design method of a compliant mechanism 
Two stage design method [8] is the method for designing a compliant mechanism, consisting of topology and 
shape optimization. In this method, topology optimization first creates an initial outline of a compliant mechanism 
by considering only linear analysis. The optimal configuration of topology optimization is converted to an initial 
shape optimization model. At this point, design domains not considered during topology optimization can be 
added. Shape optimization then yields the detailed shape of a compliant mechanism by considering non-linear 
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analysis, stress constraints and making accurate quantitative performance evaluations. Using this method, a 
designer can more easily and efficiently create a practical compliant mechanism. In a series of our previous 
researches, two stage design method was extended to apply a design of a vehicle suspension based on a compliant 
mechanism. From many design requirements for a practical vehicle suspension, 5 essential requirements i.e. stroke, 
camber angle, roll centre height, lateral rigidity and natural frequency of a suspension system were selected and 
used as an objective function and constraints conditions of topology and shape optimization. See the references [4] 
[5] for their details. In this research, this method is applied to a design of a wheelchair suspension based on a 
compliant mechanism. 

5. Design of a compliant wheelchair suspension 
5.1 Design concept and conditions of a wheelchair suspension 
Figure 2 shows the concept of a wheelchair suspension designed in this paper. A suspension is an independent part 
and attached to an existing wheelchair by an aluminium plate. Design domain of a suspension is 0.40m width and 
0.25m height. Material of a suspension is ABS with Young's modulus of 2600MPa, Poisson's ratio of 0.32 and 
density of 1050kg/m3. Allowable stress is 58MPa. Thickness of a suspension is 0.02m. As for load, a wheelchair 
has 2 front small wheels and 2 rear large wheels and they share the weight of people and a wheelchair itself. After 
consideration of total weight, position of the centre of gravity and shock load, it is assumed that maximum load of 
a suspension is 500N. As for design requirements specific to a suspension, only stroke is considered. Target length 
of stroke is 0.02m when maximum load is applied. 

Aluminum plate

SuspensionShock absorber

Figure 2: Existing wheelchair (Left) and concept of installation of a suspension (Right) 

5.2 Topology optimization 
By changing positions of input, output and constraints, the most promising initial outline of a suspension is 
explored. The volume constraint is set at 15%. Figure 3 and 4 show the design conditions and optimal 
configuration that are finally adopted respectively. 

0.15m
0.05m

0.20m

0.
11

m
0.

11
m

0.
05

m
0.

17
m

0.
03

m

Fixed
Input (Bearing)

Output (Shock absorber)

Figure 3: Design conditions 

Figure 4: Optimal configuration 

979

Leo
Rectangle



3

5.3 Shape optimization 
The optimal configuration shown in Figure 4 is converted to an initial shape optimization model. In addition, 
connecting and bearing area is added to the model. Figure 5 shows the initial shape optimization model. Arrows 
shown in Figure 5 indicates control points whose coordinates are used as design variables of shape optimization. 
Table 1 summarizes initial, target and optimized values of stroke, maximum stress and weight. Figure 6 shows the 
optimal structure of a wheelchair suspension. 

Input

Fixed

Figure 5: Initial shape optimization model 

Table 1: Initial, target and optimized values of stroke, maximum stress and weight 

 Initial Target Optimized 
Stroke (m) 0.0056 0.02 0.02 

Maximum stress (MPa) 22.9 <58.0 47.5 
Weight (kg) 0.743 - 0.630 

Figure 6: Optimal structure 

6. Manufacturing and riding test of a wheelchair compliant suspension 
The optimal structure of a suspension designed in the previous section is converted to a CAD model of SolidWorks. 
A suspension is made from an ABS plate by using a milling machine Roland D.G. MDX-540. Figure 7 shows the 
finished product. The suspension is attached to a wheelchair by an aluminium plate. Figure 8 shows a wheelchair 
with compliant suspensions. Since adequate shock absorbers cannot be bought due to time limitation, shock 
absorbers are not installed at this time. This is one of future subjects. The stroke length of a suspension when 
people ride on a wheelchair under stationary condition is 0.0085m. 

Figure 7: Suspension manufactured by a milling machine 
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Figure 8: Wheelchair in which a suspension is installed 

To test the effectiveness of a suspension, a riding test is conducted. 10 undergraduates participate the test as 
subjects. For comparison, they ride on wheelchairs with and without suspensions. A subject rides on a wheelchair 
and another person pushes a wheelchair to pass the obstacle shown in Figure 9. The obstacle is 0.45m width and 
0.03m height. Ride quality of a wheelchair without suspensions when passing the obstacle is set at 3 and a subject 
relatively evaluates ride quality of a wheelchair with suspensions on a scale of 0.5 to 5. Figure 10 shows evaluation 
results and indicates that a suspension contributes the improvement of ride quality of a wheelchair. 

Figure 9: Obstacle used for a riding test 

Blue: Without suspension
Red: With suspension

Figure 10: Evaluation of ride quality 

7. Conclusion 
In order to improve ride quality of a wheelchair with limited weight and cost, this paper proposes a wheelchair 
suspension based on a compliant mechanism. A suspension is designed by using two stage design method 
consisting of topology and shape optimization. To indicate the effectiveness of a suspension, it is designed, 
manufactured and attached to an existing wheelchair and a riding test is conducted.  
As for future works, (1) installation of shock absorbers and measurement using accelerometer and (2) design of a 
suspension integrated into a frame of a wheelchair are planned.  
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Abstract
Injuries to the lower extremities are one of the major issues in vehicle to pedestrian collisions. To minimize injury 
risks of pedestrian lower extremity, this paper presents the design optimization of a typical vehicle front-end 
structure subjected to two different impact cases of TRL-PLI and Flex-PLI. Several approaches involving 
sampling techniques, surrogate model, multiobjective optimization algorithm and reliability analysis are 
introduced and applied. In order to take into account the effect of design variables uncertainty, the reliability-based 
design optimization (RBDO) is conducted, and a Monte Carlo Simulation (MCS) is adopted to generate random 
distributions of the constraint functions for each design. The differences of the different Pareto fronts of the 
deterministic optimization and RBDO are compared and analyzed in this study. Finally, the reliability-based 
optimum design result is verified by using test validation. It is shown that the pedestrian lower extremity injury can 
be substantially improved for meeting product development requirements through the proposed approach. 

Keywords: Reliability optimization; Vehicle front-end structure; Pedestrian protection; Multiple impact cases 

1. Introduction 
According to World Health Organization (WHO) statistical data, 22% of deaths on the world roads are 

pedestrians, and this proportion is as high as two thirds in some countries [1]. Meanwhile, the frequency of lower 
extremity injuries is higher in vehicle to pedestrian collisions. For example, serious lower extremity injuries from 
bumper contact occurred in 43% of seriously injured pedestrian cases in US, 35% in German and 43% in Japan [2-

3]. So, researches on protection of pedestrian lower extremity have become a very important part in both the 
academe and automotive industry.

To evaluate the performance of lower extremity protection, two different subsystem legform tests have been 
used in the extensive government regulations and standards. One is Transport Research Laboratory Pedestrian 
Legform Impactor (TRL-PLI) in the European Union (EU) regulation, the other is Flexible Pedestrian Legform 
Impactor (Flex-PLI) in European New Car Assessment Program (EuroNCAP) [4-5]. For instance, Shin et al. [6]

performed bumper size optimization and the result could meet requirements of TRL-PLI impact. Lee et al. [7]

researched the front-end structure for Flex-PLI impact. However, the above investigations on design optimization 
in the existing literature mainly focus on the single legform impactor. Matsui [8] investigated the characteristics of 
safety assessment results of different vehicle types using the TRL-PLI and the Flex-PLI. The results showed that 
the tibia injury assessment was different between the TRL-PLI and the Flex-PLI owing to their different sensor 
types. So, the vehicle front-end structure is subjected to multiple legform impactor cases which should be verified 
for the required regulation and standard. However, the traditional approach is to tune the design manually for each 
test mode separately. It is therefore hardly to find a design that is work properly for all test modes. 

All optimization problems cannot neglect the uncertainty, which exists in material properties, geometries and 
manufacturing precision etc. In order to take into account various uncertainty, Reliability-based design 
optimization (RBDO) is introduced and aims at finding a reliable optimum solution by converting the 
deterministic constraints into probabilistic ones. Many researchers have focused on this field [9-12]. Nevertheless, 
vehicle front-end structural optimization for minimizing injury risks of TRL-PLI and Flex-PLI impact considering 
the uncertainty has received limited attention in the literature. To address the issue, The paper presents a 
comprehensive study approach of how different non-deterministic optimization schemes are performed in the 
design of vehicle front-end structure under multiple impact cases.  

2 Performance assessment and experimental validation 
2.1 TRL-PLI and Flex-PLI  

According to EU regulation, the fracture risk of the tibia is evaluated from the upper tibia acceleration (aUT)
and the knee ligament damage risk is evaluated from the knee bending angle (aKB) and knee shear displacement 
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(DKS) as shown in Figure 1(a). The fracture risk of the tibia is evaluated from the tibia bending moment measured 
at multiple locations, and the knee ligament damage risk is evaluated from knee ligament elongations of Anterior 
Cruciate Ligament (ACL), Posterior Cruciate Ligament (PCL), and Medial Collateral Ligament (MCL) according 
to EuroNCAP as shown in Figure 1(b). 

(a) TRL-PLI                       (b) Flex-PLI                                        (a) TRL-PLI                       (b) Flex-PLI

Figure 1: Injury criteria                   Figure 2: The test condition of legform-to-bumper 
2.2 Assessment of TRL-PLI and Flex-PLI  

Tibia and knee injuries are assessed after completion of the legform-to-bumper test under the conditions 
shown in Figure 2. The initial velocity of two impact cases is 40 kph. In this study, the impact location is selected 
as the center of the bumper. The test results of the TRL-PLI and Flex-PLI injury is shown in Table 1. According to 
Table 1, the aUT of the TRL-PLI (197.2g) is higher than the EU regulation limit value (170g). It is found that the 
ACL (11.2mm) is more than 10mm, which cannot meet the Euro-NCAP assessment rating requirements. 

Table 1 The assessment of the TRL-PLI and Flex-PLI test results 

TRL-PLI Flex-PLI 
Injury Requirement Test Assessment Injury Requirement Test Assessment 

Tibia
injuries aUT (g) 170 197.2 Violated

T1 (Nm) 282 209.1 Satisfied 
T2 (Nm) 282 264.5 Satisfied 
T3 (Nm) 282 278.3 Satisfied 
T4 (Nm) 282 161.5 Satisfied 

Knee
injuries

aKB (º) 19 13.1 Satisfied MCL (mm) 19 16.4 Satisfied 
DKS (mm) 6 2.3 Satisfied ACL (mm) 10 11.2 Violated
/ / / / PCL (mm) 10 5.0 Satisfied 

To meet the design requirement, the multiobjective reliability-based optimization design is introduced to 
design the front-end structure for minimize injury values of TRL-PLI and Flex-PLI. This procedure is shown in 
Figure 3. The Optimal Latin Hypercube Sampling (OLHS) technique adopted for constructing the surrogate 
models. The RBF model is constructed based on the response results of sampling points. The MOPSO is applied to 
search the optimal solution set. The Monte Carlo Simulation (MCS) is applied to perform a reliable analysis. 

FE model construction and validation

Optimization problem definition
Objective functions and Constraints
Design variables and ranges

Optimal Latin Hypercube Sampling

Construct surrogate model 

Evaluate the Error

Satisfied?

Deterministic optimization formulaton

MOPSO Algorithm

Reliability-based assessment

Validate the optimum design

Satisfied?

End

Add the 
sampling

No

No

Yes

Yes

Figure 3: Flowchart of the reliability design optimization process              
2.3 Numerical model and validation 

To assess the protection performance of various vehicle front-end structures, the finite element (FE) model 
need be constructed. The baseline model, as shown in Figure 4, consists of the following groups of components: 
bumper, hood, front rail, lamp, energy absorbing plate, spoiler support plate et al. In this study, the validity of CAE 
model is conducted by comparing the simulation results with the corresponding physical test results with these 
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curves of aUT and ACL elongation as plotted in Figure 5. From which, the simulation curves of the aUT and ACL 
elongation all well agree with the corresponding results obtained from the physical test. The maximum difference 
between simulation and test is less than 5% and the total area and trend of curves are rather alike. As shown in 
Figure 6, each legform campaign gesture agrees well with the physical test. Therefore, the CAE model is accurate 
and effective for the vehicle front-end structure design optimization in the subsequent study.
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Figure 4: The FE model Figure 5: Comparison of the curves between simulation and physical test

0ms               10ms             20ms             30ms                    0ms             10ms          20ms            30ms

     (a) TRL-PLI                                                                     (b) Flex-PLI  
Figure 6: Different time steps of TRL-PLI and Flex-PLI impact between the simulation and physical test   

3 Vehicle front-end structure design optimization 
3.1 Design responses and variables 

From engineering experience, the rigidity of energy absorbing plate and spoiler support plate have important 
effect on pedestrian legform injury, thereby making the best possible combination of these components under each 
legform impact conditions. The thickness of energy absorbing plate (x1), the X-direction distance of energy 
absorbing plate (x2), the thickness of spoiler support plate (x3), the X-direction distance of spoiler support plate (x4),
have significant influences on front-end structure rigidity. Thus, these parameters are taken as design variables, as 
show in Figure 7. Table 2 provides the list of the design variables, the baseline design values, as well as the 
corresponding lower and upper bounds. In order to take into account the uncertainties, the design variables are 
assumed to distribute normally in this study, whose coefficient of variation is given as 5% from typical 
manufacturing and assembly tolerance. The variations of design parameters are selected in terms of possible 
design changes allowed. 

Figure 7: Design variables 
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According to Table 1, the upper tibia acceleration of TRL-PLI and ACL of Flex-PLI could not meet the 
design requirements. For this reason, they are chosen as the design objectives in Table 3. Considering that the 
design variables have an influence on other eight injury values of TRL-PLI and Flex-PLI, and eight of them are 
chosen as the constraints. Table 3 lists the responses of baseline design and the allowance of each constraint. 

Table 2 The value of the design variables 

Design 
variations Distribution COV( / ) Initial value Boundary value 

Lower Upper 
x1 Normal 5% 1.0mm 0.6mm 1.4mm 
x2 Normal 5% 80mm 20mm 100mm 
x3 Normal 5% 1.0mm 0.6mm 1.4mm 
x4 Normal 5% 80mm 20mm 100mm 

Table 3 The baseline design and design optimization target  

Responses Objectives Constraints 
 aUT ACL aKB DKS T1 T2 T3 T4 MCL PCL 

f1(x) f2(x) g1(x) g2(x) g3(x) g4(x) g5(x) g6(x) g7(x) g8(x)
Baseline 206.71 11.70 13.60 2.23 218.78 263.24 290.80 162.81 16.92 5.21 
Target Min Min 18.05 5.7 267.9 267.9 267.9 267.9 18.05 9.5

3.2 Constructed metamodel 
For four continuous variables ),,,( 4321 xxxx=x , the number of levels for each variable can be selected to be 5 

and a total of 25 sampling points are generated in the design space by the OLHS method. The objective and 
constraint values of each sampling point are obtained by using LS-DYNA version 971. Four typical basis functions 
of RBF including thin-plate spline, Gaussian, multiquadric and inverse multiquadric are used and their accuracies 
are compared. In this study, additional 10 validation points are selected to access the accuracy of these surrogates. 
Based on these validation points, the accuracies of basis function of RBF model can be assessed by using 
estimators of R2 and RAAE. Validation results of selected error metrics for different functions of RBF metamodel 
are shown in Table 4. The fitting results of multiquadric function of RBF model are very good with high values of 
R2  0.9 and low RAAE  0.3. Therefore, the Multiquadric function of RBF model is considered most suitable and 
are selected to perform the design optimization below. 

 Table 4 Error assessment for different functions of RBF metamodel

Thin-plate spline Gaussian Multiquadric Inverse multiquadric 

R2 RAAE R2 RAAE R2 RAAE R2 RAAE 
aUT 0.9092 0.574 0.8412 0.273 0.9532 0.252 0.9462 0.331 

ACL 0.8721 0.413 0.8651 0.440 0.9123 0. 231 0.9354 0.332 
aKB 0.8126 0.388 0.8135 0.255 0.934 0.218 0.8936 0.327 
DKS 0.8215 0.554 0.8341 0.465 0.9616 0.222 0.9321 0.251 
T1 0.8934 0.257 0.815 0.367 0.9251 0.159 0.8955 0.359 
T2 0.8232 0.452 0.8189 0.279 0.9294 0.212 0.9094 0.453 
T3 0.8971 0.630 0.9063 0.312 0.9571 0.203 0.9013 0.370 
T4 0.9136 0.471 0.933 0.307 0.9072 0.291 0.9036 0.271 

MCL 0.8752 0.484 0.8653 0.491 0.9136 0.289 0.9022 0.284 
PCL 0.8751 0.352 0.8852 0.342 0.9203 0.291 0.8713 0.451 

3.3 Reliability-based design optimization 
In the reliability-based design optimization, the desired reliability of eight design constraints ( jR ) are set as 

95% and 99%. And the minimize value of mean value is set for the two objectives, respectively. The 
reliability-based design is formulated as: 
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The four design variables according to the probability distribution defined previously are incorporated, and 
reliability-based optimization is performed. The Pareto fronts are obtained using the MOPSO algorithm with the 
population size (50) and number of generations (100). The MCS is consisted with 10,000 descriptive sampling 
points using given distribution in this study. Performing the Monte Carlo analysis using RBF to the functions 
instead of CAE function evaluations allows a significant reduction in the cost of the procedure. Figure 8 presents 
the Pareto fronts for multiobjective deterministic and reliable designs. 

In three Pareto fronts, each point represents one solution in different cases, which indicates the trade-off 
between upper tibia acceleration and ACL elongation. Obviously, these two objectives strongly compete with each 
other: the lower upper tibia acceleration, the higher ACL elongation. It is noted that the Pareto front of the 95% 
reliable design is farther away from the deterministic counterpart and the 99% reliable design is farthest away from 
the 95% reliable design in Figure 8.

8.2 8.4 8.6 8.8 9.0
145

150

155

160

165

170  Deterministic design
 Reliabile design (95%)
 Reliabile design (99%)

a U
T (g

)

ACL (mm)

aUT = 161.5g

Figure 8: Pareto fronts of the deterministic and reliable design optimization  

3.4 Comparison and validation of optimization results 
Figure 9 shows the optimal Flex-PLI response results of physical test at different times. It is noted that the 

optimal is obtained by the minimum distance selection method (TMDSM). Compared with Figure 6, the third 
image shows that the knee bending degree is obviously abated at 20ms. The kinetic energy can be adequately 
absorbed by the front-end structure in the optimum design.

                   (a) 0ms                               (b) 10ms                         (c) 20ms                             (d) 30ms 
Figure 9: Animation after the optimization design 

Table 5 The test results between the baseline and optimal design 

Description  Baseline (Test) Optimal result (Test) Reduction (%) 
Objectives )(1 xf 197.2 156.71 20.53 

)(2 xf 11.2 8.09 27.77 
Constraints )(1 xg 13.1 11.51  

)(2 xg 2.3 2.38  
)(3 xg 209.1 186.26  
)(4 xg 264.5 252.34  
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)(5 xg 278.3 263.87  
)(6 xg 161.5 149.12  
)(7 xg 16.4 14.59  
)(8 xg 5.0 5.46  

Variables 1x 1.0mm 0.62mm  
2x 80mm 45.02mm  
3x 1.0mm 0.81mm  
4x 80mm 84.98mm  

According to the response values of tests, the results between the baseline and optimal is compared in Table 5. 
The injury values of aUT and ACL elongation are reduced to 20.53% and 27.77% relative to the initial design, 
respectively. Thus, the optimization result satisfies the design requirements. In summary, the presented method is 
effective for the front-end structure design, and these results show that the optimal design has improved the 
pedestrian safety significantly. 

4 Conclusions 
A system approach has been developed to design and optimize the vehicle front-end structure for minimizing 

injury risks of pedestrian lower extremity based on TRL-PLI and Flex-PLI in this study. The numerical model of 
TRL-PLI and Flex-PLI impact vehicle was constructed first and validated with physical test. Then, the optimal 
Latin hypercube sampling (OLHS) method was adopted for design of experiment (DOE) and the surrogate model 
was constructed through Radial basis function (RBF). The optimal problems involving in a number of objectives 
were solved by the multiobjective particle swarm optimization (MOPSO) algorithm in this study. In order to take 
into account the uncertainties of design variables, the Monte Carlo simulation (MCS) is used as reliability analysis. 
It was found that the result of reliability-based design was more conservative than the results of deterministic 
optimization as expected. As the variation of performance constraint functions raised by the uncertainties of design 
variables was considered, the reliability of the front-end structure design for the vehicle safety was greatly 
improved in the real engineering application. 
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1. Abstract
While excellent biological and mechanical properties of ceramic scaffolds place them amongst the main 
candidates for applications of bone and cartilage repair, an optimum trade-off between critical biological and 
mechanical functions remains challenging during design process. These ceramic scaffolds should not only 
enhance tissue regeneration function, but also be of adequate mechanical strength particularly in load-bearing 
applications. One of the techniques used for the fabrication of ceramic scaffolds is robocating which has so far 
received little attention in the currently available optimization analyses related to the design of these scaffolds. In 
this study a vigorous optimization analysis based on finite element (FE) method is performed to maximize 
compressive strengths of such scaffolds while maintaining the minimum biological functions required for tissue 
ingrowth. The results demonstrate that an optimized functionality of ceramic scaffolds fabricated by robocasting 
needs a careful design of critical geometrical features.
2. Keywords: Robocasting, bone tissue engineering, ceramic scaffolds, optimization

3. Introduction
Today, there is an increasing need for the treatment of bone defects caused by trauma, infection, or injuries. 
Current treatments for bone defects include autografts, allografts and other synthetic substitutes such as metals 
and bio-ceramics [1] which all have their own problems and limitations. As a result, recent research has been 
devoted to bone tissue engineering (BTE) which emerged in the early 1990s to address limitations of tissue 
grafting [2]. In the scaffold tissue engineering strategy, a 3D scaffold populated with cells and signaling 
molecules is used to provide temporary biomechanical environment for tissue regeneration for promoting cell 
attachment and growth of neo-tissue. Despite remarkable progress in BTE, many challenges and limitations still 
exist on the way of such scaffolds to be marketed and replace current conventional treatments of bone defects. 
One of the most important challenges associated with BTE scaffolds is to optimize their mechanical and 
biological functionality so that they can provide adequate mechanical support and enhance tissue regeneration. 
These two functions often result in conflicting design goals, because improved mechanical support function 
needs a dense scaffold while enhanced tissue regeneration function requires a porous scaffold. Therefore, an 
optimum trade-off between biological and mechanical criteria is necessary in the design of bone scaffolds.
A number of different optimization studies based on numerical methods have been established in literature [3, 4].
Hollister and colleagues [5] were amongst the first who applied the finite element based homogenization theory 
to relate periodic orthogonal pore diameters of a scaffold to its effective stiffness and porosity. They used 
topology optimization approach to matching the effective moduli of minipig mandibular cancellous bone to 
ceramic material. In other studies, the direct homogenization [6] and inverse homogenization approaches [7]
were implemented to maximize the effective modulus of BTE scaffolds. Further studies were performed by Chen 
et al. [8] and Adachi et al. [9], in which the interaction process of scaffold degradation and tissue regeneration
were also taken into account in the optimization process.
While significant advances have been made in available optimization studies on tissue engineering scaffolds,
almost none of these studies have considered fabrication limitations induced by the so-called robocasting 
technique. Another concern associated with currently available optimization studies is that they do not take 
account of scaffold's strength as a design criterion in the optimization process because stress is a non-
differentiatable quantity [10, 11] which could have significantly limited the reliability of such optimization 
approaches. Therefore consideration of fracture strength is critical to develop more trustworthy optimization 
methods, particularly for ceramic scaffolds whose application in load-bearing scenarios is often limited due to 
the inherent brittleness and relatively low fracture strength. Numerical methods have shown their capability to 
effectively predict fracture strength of such scaffolds based on the stress fields obtained by FE simulations [12].
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In this study, FE method will be used to conduct a design optimization analysis of Hydroxyapatite (HA) 
scaffolds fabricated by robocasting technique to maximize their strength for load-bearing applications.

4. Method
Different parameters such as porosity, pore size, and interconnectivity of scaffolds affect the quality of tissue 
regeneration, among which porosity is the main design variable known to influence tissue regeneration [13],
which has often been considered as a biological design criterion in different optimization studies. Here, while a
constraint is imposed on the porosity of scaffolds in order to satisfy biological functions, the effect of different 
geometrical features will be investigated on strength and effective modulus of the scaffolds. Since the scaffolds 
are assumed to be fabricated by the robocasting technique, fabrication limitations related to this technique should 
be taken into account. Robocasting or direct ink writing (DIW) technique is a solid free form (SFF) fabrication
method in which a filament of ink is extruded from a nozzle in a layer-wise fashion and ultimately forms a 3-D
mesh of interpenetrating struts whose structure can have different patterns depending on design requirements
[14]. Figure 1 shows three of most common patterns fabricated by this technique.

 
Figure 1 : Three of most common patterns fabricated by robocasting technique; (a) square pattern; (b) honey 

comb pattern; (c) triangle pattern

In the first step, a comparison will be made between the fracture strengths related to each of the above patterns. 
For this purpose, three different scaffolds based on these patterns are created in SolidWorks software. All three 
scaffolds have similar porosity, strut and pore size. Then FE simulations are carried out using ABAQUS/CAE 
software in which the scaffolds are placed in between two parallel analytical rigid plates. One of the rigid plates 
is fixed while the other can move under the action of a linearly increasing applied force. The force is applied 
perpendicular to the printing plane (x-y plane) simulating a compression test in the z direction. Fracture strength 
for each test is predicted based on a critical stress criterion by assuming an opening fracture mode (mode I), 
which is the most commonly activated in brittle materials [15]. This fracture mode is known to induce cracking 
perpendicular to the rod axes over the entire structure at t)
[12]. Hence, in the current analyses, fracture is presumed to occur when the maximum of t in the structure 

f) of the rods reported in [12]. For instance, Figure 2 represents FE stress 
contours corresponding to the highest range of tensile stress in the square pattern. Since an applied compressive
stress of 39 (MPa) on the top surface leads to the maximum tensile stress equivalent to f in the structure, it will 
be taken as the compressive strength of the scaffold. For the determination of the maximum of tensile stress, 
stress at near-contact regions and singularities are ignored. Intrinsic mechanical properties of HA [12] used in 
current numerical simulations have been given in Table 1.

Table 1 : Intrinsic mechanical properties of HA

E (GPa) f (MPa)
Hydroxyapatite (HA) 85 0.28 80

Table 2 represents the mechanical properties related to the three different configurations of tissue scaffolds 
obtained by FE analysis. 
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Table 2 : Mechanical properties for the three different configurations of scaffolds

Square pattern Honey comb pattern Triangle pattern
Compressive strength (MPa) 39 6.5 33.8
Compressive effective modulus (GPa) 11.7 4.08 11.7
 
The results show that square pattern offers the highest compressive strength compared with the other two 
topologies. Another fact that can be concluded from the above results is that effective modulus of scaffolds may 
not be correlated to their strength, because as it can be observed, while square and triangle patterns have similar 
effective modulus, their strengths are not the same. Moreover, honey comb pattern offers an effective modulus 
which is almost three times less than the one related to square pattern, nevertheless, its strength is more than 6 
times smaller than the one for square array. All these results signify the importance of considering strength as an 
optimization criterion for the design of bone tissue engineering scaffolds. 

 

Figure 2 : FE stress contours corresponding to the highest range of tensile stress in the square pattern when a 
compressive stress of 39 MPa is applied perpendicular to the top surface (note that the stress contour shows only 

the top range of tensile stresses and the rest in grey indicates the lower stress) 

Since it was observed that the square pattern offers better mechanical properties, the geometry of this pattern will 
be optimized as follows. In order to define controllable geometrical features, a representative volume element 
(RVE) whose repetition forms the entire scaffold needs to be defined. A RVE can often be found within 
scaffolds fabricated by the robocasting technique. Figure 3a clearly shows how the repetition of a RVE forms a 
scaffold with a square pattern.

 
 

Figure 3 : A scaffold with square array fabricated by the robocasting technique; (a) the scaffold and a section 
displayed in black color represents a RVE within the scaffold; (b) controllable geometrical features in a RVE
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Once a RVE is extracted from the scaffold, its geometrical features can be defined in terms of three controllable
parameters as shown in Figure 3b. These parameters include scaffold's pore size in the printing plane (Px-y), 
radius of each strut's cross section (r), and overlapping depth of two struts at top of one another (f). Given that 
the RVE is used to represent the entire scaffold, the porosity of scaffold can be expressed as:

                                   
2

2

2 ( 2 ) 2
100 1 (1)

(4 2 )( 2 )
x y f

x y

r p r V
Porosity

r f p r
where Vf represents the intersection volume of two overlapping struts at top of one another, expressed as:

                                             
2 2 2 2(2 )

0 0
4 (2)

r r x r r f x

f r f
V dzdydx

Given that a desirable minimum value is required for porosity in order to satisfy tissue ingrowth function, the 
effect of other geometrical features on the strength and effective modulus of scaffolds can be investigated. It is 
obvious that at least two of the aforementioned geometrical features must change simultaneously, in order to 
maintain a constant desirable porosity of the scaffold. In this study a constraint is imposed on the porosity of 
scaffold (porosity = 60%), and 8 scaffolds with similar strut's radius (r) but different pore size (Px-y) and 
overlapping depth (f) will be compared. Ratio of overlapping depth to radius (f/r), which can be easily adjusted 
during fabrication process by changing layer spacing, has a range from 10% to 80% in this study [16, 17]. The
details of geometrical features related to these 8 scaffolds are given in Table 3.

Table 3 : Details of geometrical features related to 8 different scaffolds

f/r Px-y f Porosity
Scaffold 1 0.1 1140 30 60%
Scaffold 2 0.2 1080 60 60%
Scaffold 3 0.3 1020 90 60%
Scaffold 4 0.4 960 120 60%
Scaffold 5 0.5 900 150 60%
Scaffold 6 0.6 840 180 60%
Scaffold 7 0.7 780 210 60%
Scaffold 8 0.8 720 250 60%

5. Results and discussion
Figure 4 draws a comparison between compressive strengths related to these 8 different scaffolds with varying 
pore sizes (Px-y) and overlapping depths (f) listed in Table 3. While a constant porosity is maintained for all 
scaffolds, a change in their controllable geometrical features can result in significant improvement of their 
compressive strength. It was observed that the optimum ratio of f/r for the geometry of such scaffolds is around
0.4. In fact, this optimized geometry could enhance the compressive strength by 32% and 17% compared with 
the cases in which f/r was 0.1 and 0.8 respectively.

Figure 4 : Comparison between compressive strengths related to scaffolds with different f/r ratio
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Since effective modulus of bone tissue engineering scaffolds plays an important role on their biomechanical 
functions, a comparison is also drawn between the compressive effective modulus related to these 8 scaffolds,
which is presented in Figure 5. The results demonstrate that the optimized geometry will possess a greater 
effective modulus as well. Interestingly, it was observed that effective modulus for the optimized geometry (f/r =
0.4) was enhanced by 52% compared with the worst case (f/r = 0.1), whereas this improvement was only 32% 
for the compressive strength, a fact that shows it is important to take into the account the mechanical strength of 
scaffolds in the design optimization of bone tissue engineering scaffolds.

Figure 5 : Comparison between effective modulus related to scaffolds with different f/r ratio

6. Conclusion
This article could provide valuable insight into the optimization of ceramic scaffolds for bone tissue engineering 
applications fabricated by the robocasting technique. The results demonstrated that an optimized functionality of 
such scaffolds needs a careful control over particular geometrical features during design process. The square 
patterns showed better mechanical properties in terms of compressive strength compared with honey comb and 
triangular patterns. Moreover, for a square pattern, the results confirmed that an optimum relationship exists 
between its geometrical features which would significantly increase the compressive strength of such scaffolds 
while a constraint is imposed on its total porosity. It was also observed that effective modulus of scaffolds may 
not always represent their strength, a fact that signifies the importance of fracture strength to be considered as a 
design criterion in optimizations analyses of scaffolds.
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